
COVER/EINBAND (175 * pages: height=297mm, width=210mm = 18.20mm 90gr/qm 1:1)

A Framework for Model-Driven
Development of Mobile Applications
with Context Support

Steffen Vaupel

Philipps-Universität Marburg, Deutschland
Fachbereich Mathematik und Informatik
2018

Model-driven development (MDD) of software systems has been a serious trend in dif-
ferent application domains over the last 15 years. While technologies, platforms, and
architectural paradigms have changed several times since model-driven development pro-
cesses were first introduced, their applicability and usefulness are discussed every time
a new technological trend appears. Looking at the rapid market penetration of smart-
phones, software engineers are curious about how model-driven development technologies
can deal with this novel and emergent domain of software engineering (SE).

Indeed, software engineering of mobile applications provides many challenges that model-
driven development can address. Model-driven development uses a platform independent
model as a crucial artifact. Such a model usually follows a domain-specific modeling
language and separates the business concerns from the technical concerns. These platform-
independent models can be reused for generating native program code for several mobile
software platforms. However, a major drawback of model-driven development is that
infrastructure developers must provide a fairly sophisticated model-driven development
infrastructure before mobile application developers can create mobile applications in a
model-driven way.

Hence, the first part of this thesis deals with designing a model-driven development in-
frastructure for mobile applications. We will follow a rigorous design process comprising
a domain analysis, the design of a domain-specific modeling language, and the develop-
ment of the corresponding model editors. To ensure that the code generators produce
high-quality application code and the resulting mobile applications follow a proper archi-
tectural design, we will analyze several representative reference applications beforehand.
Thus, the reader will get an insight into both the features of mobile applications and the
steps that are required to design and implement a model-driven development infrastruc-
ture.

As a result of the domain analysis and the analysis of the reference applications, we
identified context-awareness as a further important feature of mobile applications. Cur-
rent software engineering tools do not sufficiently support designing and implementing of
context-aware mobile applications. Although these tools (e.g., middleware approaches)
support the definition and the collection of contextual information, the adaptation of the
mobile application must often be implemented by hand at a low abstraction level by the
mobile application developers.

Thus, the second part of this thesis demonstrates how context-aware mobile applications
can be designed more easily by using a model-driven development approach. Techniques
such as model transformation and model interpretation are used to adapt mobile appli-
cations to different contexts at design time or runtime. Moreover, model analysis and
model-based simulation help mobile application developers to evaluate a designed mobile
application (i.e., app model) prior to its generation and deployment with respected to
certain contexts.

We demonstrate the usefulness and applicability of the model-driven development in-
frastructure we developed by seven case examples. These showcases demonstrate the
designing of mobile applications in different domains. We demonstrate the scalability of
our model-driven development infrastructure with several performance tests, focusing on
the generation time of mobile applications, as well as their runtime performance. More-
over, the usability was successfully evaluated during several hands-on training sessions by
real mobile application developers with different skill levels.

A
F
ra

m
e
w
o
rk

fo
r
M

o
d
e
l-D

riv
e
n
D
e
v
e
lo
p
m
e
n
t
o
f
M

o
b
ile

A
p
p
lica

tio
n
s
w
ith

C
o
n
te
x
t
S
u
p
p
o
rt•

S
te
ff
e
n
V
a
u
p
e
l

PHILIPPS-UNIVERSITÄT MARBURG

DISSERTATION

A Framework for Model-Driven
Development of Mobile Applications

with Context Support

vorgelegt von

Steffen VAUPEL, M.Sc.
geboren am 12. Oktober 1984

in Marburg a. d. Lahn.

Vom Fachbereich Mathematik und Informatik
der Philipps-Universität Marburg

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

Dr. rer. nat.

genehmigte Dissertation.

Gutachter:
Prof. Dr. Gabriele Taentzer, Philipps-Universität Marburg
Prof. Dr. Michael Goedicke, Universität Duisburg-Essen

Prüfungskommission:
Prof. Dr. Thorsten Thormählen, Vorsitzender
Prof. Dr. Gabriele Taentzer,
Prof. Dr. Michael Goedicke,
Prof. Dr. Bernhard Seeger,
Prof. Dr. Christoph Bockisch

als Dissertation eingereicht am: 26.10.2017
Tag der mündlichen Prüfung: 20.12.2017

erschienen: Philipps-Universität Marburg, Deutschland, 2018
Hochschulkennziffer 1180

A Framework for Model-Driven Development of
Mobile Applications with Context Support

Dissertation, Philipps-Universität Marburg (1180), 2018.

Steffen Vaupel

Curriculum vitae
2011, Master of Science (Informatik), Philipps-Universität Marburg.

Philipps-Universität Marburg, Deutschland
Fachbereich Mathematik und Informatik (FB12)
Arbeitsgruppe Softwaretechnik
Hans-Meerwein-Straße 6
35032 Marburg a. d. Lahn

swt@informatik.uni-marburg.de
https://www.uni-marburg.de/fb12/arbeitsgruppen/swt

Copyright/Urheberrecht: Steffen Vaupel, 2018

Cover Design/Umschlaggestaltung: S. Vaupel
Typesetting/Satz: S. Vaupel
Rendering date/Erstellungsdatum: 2018-07-13
Production/Druck: sedruck.de
Edition (Print run)/Ausgabe (Auflage): 1. (5)

1-330 Pages with 151 Figures (including 110 in color), 60 Tables
1-330 Seiten mit 151 Abbildungen (davon 110 in Farbe), 60 Tabellen

Printed on acid-free paper/Gedruckt auf säurefreiem Papier

Printed in Germany/Gedruckt in Deutschland

The electronic version of this document complies with the standard PDF/A-1b:2005.

Die elektronische Fassung dieses Dokuments erfüllt den Standard PDF/A-1b:2005.

All rights, also regarding the reprinting of extracts, the photomechanical reproduc-
tion, the translation and the storage and processing in electronic media and systems,
are reserved.

Alle Rechte, auch die des Nachdrucks von Auszügen, der fotomechanischen Wieder-
gabe, der Übersetzung und der Speicherung und Verarbeitung in elektronischen
Medien und Systemen, vorbehalten.

Reproductions of common names, brand names, trademarks etc. in this document
are not subject to the acceptance that these names could be regarded as free or could
be used by anyone, even without particular marking, in the sense of the trademark
and brand protection legislation.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenzeichen usw. in
diesem Dokument berechtigt auch ohne besondere Kennzeichnung nicht zu der
Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-
Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt
werden dürfen.

iii

v

Contents

Abstract 1

Kurzfassung 3

Acknowledgements 5

1 Introduction 7
1.1 Motivation . 9
1.2 Challenges . 11
1.3 Goals of This Work . 13
1.4 Approach . 13
1.5 Contributions . 16
1.6 Thesis-Related List of Publications . 17
1.7 Outline . 19

I Model-Driven Development of Mobile Applications 21

2 MDD and SE of Mobile Applications – Foundations and Definitions 23
2.1 Model-Driven Development . 23
2.2 Design of Model-Driven Development Infrastructures 26
2.3 Software Engineering of Mobile Applications 31
2.4 Mobile Software Platforms . 33

3 Agile Bottom-Up Development of IDEs for MDD 39
3.1 Agile Bottom-Up IDE Development Process 40
3.2 Three-Tier Agile Process Model . 43
3.3 Demonstration . 43

4 Requirements for MDD of Mobile Applications 47
4.1 Modeling Language Requirements . 47

4.1.1 Detailed Data Modeling . 48
4.1.2 Abstract and Detailed Behavior Modeling 48
4.1.3 Abstract Graphical User Interface Modeling 49
4.1.4 Well-Formedness of the App Model 49
4.1.5 Model Quality Assurance . 50

4.2 Architectural Requirements . 50
4.2.1 Data-Driven Mobile Applications 50
4.2.2 Single User System with Back-End Access 50

4.3 Tool Requirements . 51
4.3.1 Graphical Model Editor . 51
4.3.2 Code Generator . 51

4.4 Discussion . 52

5 Domain Analysis (MDD and SE of Mobile Applications) 55
5.1 Sources of Domain Knowledge . 56
5.2 Feature Identification and Definition 56
5.3 Feature Model . 59

vi

5.4 Focused Features . 60
5.5 Evaluation . 61

6 Domain-Specific Modeling Language and Model Editors 63
6.1 Design Decisions . 63
6.2 Eclipse Modeling Framework (EMF) 66
6.3 Domain-Specific Modeling Language Definition 66

6.3.1 Data Model . 67
6.3.2 Graphical User Interface (GUI) Model 69
6.3.3 Process Model . 70
6.3.4 Provider Model . 73
6.3.5 Well-Formedness Rules . 74

6.4 Domain-Specific Modeling Language Implementation 75
6.5 Graphical Modeling Framework (GMF) 76
6.6 Graphical Concrete Syntax and Edit Operations 78

6.6.1 Graphical Concrete Syntax for the Data Model 79
6.6.2 Graphical Concrete Syntax for the GUI Model 79
6.6.3 Graphical Concrete Syntax for the Process Model 84

6.7 Combining Textual and Graphical Editing 92
6.8 Graphical Model Editor Implementation 94
6.9 Further EMF-Based Tools and Frameworks 95
6.10 Evaluation . 97

7 Reference Applications, Code Generators, and Prototypes 101
7.1 Reverse Engineering of Reference Applications 102
7.2 Forward Engineering of Reference Applications 105
7.3 Construction of Code Generators . 109

7.3.1 Initialization of the IDEs . 109
7.3.2 Preprocessing an App Model 110
7.3.3 Processing an App Model . 111
7.3.4 Processing a Provider Model 117
7.3.5 Injection of Custom Code . 118
7.3.6 Code Generator Implementation 120

7.4 Evaluation . 122

8 Related Work: MDD of Mobile Applications 137
8.1 MDD vs. Non-MDD Cross-Platform Approaches 137
8.2 Comparison Criteria for MDD Approaches 138
8.3 Comparison with Related Approaches 139

II Context Support 143

9 Context Support – Foundations and Definitions 145
9.1 Context and Context-Awareness . 145
9.2 Mobility . 146
9.3 Platform-, Device-, and User Context Support 147
9.4 System Context Support . 148

10 Requirements for Context Support 163
10.1 Architectural Requirements . 163

10.1.1 Support of User Roles (User Context) 163
10.1.2 Heterogeneous Device Support (Device Context) 164
10.1.3 Interoperable, Multi-User Systems 164
10.1.4 Online and Offline Capability (System Context) 164

10.2 Modeling Language Requirements . 166
10.2.1 Declaration of Online- and Offline-Capable Data 166

10.3 Tool Requirements . 166
10.3.1 Provider Model Editor . 166

vii

10.3.2 Simulation System . 167
10.4 Discussion . 167

11 Domain Analysis (Mobile Contexts) 169
11.1 Feature Identification and Definition 169
11.2 Feature Model . 169
11.3 Focused Features . 172

12 User Contexts 173
12.1 Design Time Instantiation . 173
12.2 Runtime Instantiation . 176
12.3 Demonstration . 177

13 Device Contexts 187
13.1 Design Time Adaptation . 188
13.2 Runtime Adaptation . 192
13.3 Demonstration . 195

14 System Contexts 199
14.1 Design Process Overview . 200
14.2 Model-Based Analysis . 203

14.2.1 Conflict Definition and Conflict Levels 204
14.2.2 Explicating Data Object Access 205
14.2.3 Running the Model-Based Conflict Analysis 206

14.3 Model-Based Simulation . 208
14.3.1 Dynamic Conflict Analysis by Simulation 208
14.3.2 Running the Model-Based Simulation 209
14.3.3 Restricting Data Object Access 210
14.3.4 Design and Implementation of the Simulation System 211

14.4 Model-Driven Generation . 211
14.4.1 Introducing Online and Offline Capability 212

14.5 Evaluation . 213

15 Related Work: MDD of Context-Aware Mobile Applications 225
15.1 Middleware-Based Context-Aware Systems 225
15.2 MDD Techniques for Context-Aware System Design 227
15.3 MDD Frameworks for Context-Aware System Creation 229

16 Summary and Outlook 233
16.1 Summary . 233
16.2 Outlook . 234

viii

A Well-Formedness Rules 241
A.1 Constraints for the Data Model . 241
A.2 Constraints for the Process Model . 241
A.3 Constraints for the GUI Model . 243

B App Models 245
B.1 Phone Book App Model . 245

B.1.1 Data Model . 245
B.1.2 GUI Model . 246
B.1.3 Process Model . 247

B.2 Conference App Model . 252
B.2.1 Data Model . 252
B.2.2 GUI Model . 253
B.2.3 Process Model . 254

B.3 Word Trainer App Model . 259
B.3.1 Data Model . 259
B.3.2 GUI Model . 260
B.3.3 Process Model . 261

C Tutorial 271

D Miscellaneous 291
D.1 The Research Project PIMAR . 291
D.2 The Mobile Application key2guide . 292
D.3 The Mobile Application key2operate . 293

Bibliography 295

Index 321

ix

List of Figures

1.1 Web-based mobile banking application 11
1.2 Model-driven development approaches and their contextual coverage 12
1.3 Two-level modeling approach . 14
1.4 Extended client-server architecture vs. client-server architecture . . 15

2.1 Four-layer metamodel architecture 24
2.2 Common usage of software models in an MDD process 25
2.3 The class Address . 29
2.4 GUI model (showing a ProcessSelectorPage and StyleSettings) 30
2.5 Android software stack . 34
2.6 iOS software stack . 35
2.7 Architecture of an Apache Cordova application running on Android 37

3.1 Agile MDD process in action: fine-grained evolution steps 41
3.2 eLearning application for a safety instruction 42
3.3 Three-tier agile software development process model 43
3.4 Continuous language, IDE, and prototype extensions 44

5.1 Domain analysis with input and output artifacts 56
5.2 Feature model (Pt. I/III) . 57
5.3 Feature model (Pt. II/III) . 58
5.4 Feature composition rules (Pt. I/II) 59

6.1 Detailed multi-level modeling approach 64
6.2 Screenshots of the simple phone book application 67
6.3 Ecore metamodel (excerpt) used for data structures 68
6.4 Data model of the simple phone book application (excerpt) 68
6.5 Ecore model for defining the graphical user interface 69
6.6 GUI model of the simple phone book application 70
6.7 Ecore metamodel for defining the behavior (Pt. I/II) 71
6.8 Process model of the simple phone book application (excerpt) 72
6.9 Provider models of the simple phone book application 73
6.10 Standard model editors generated by EMF (showing the GUI model) 75
6.11 EMF/GMF process overview and involved models 77
6.12 The mapping between EMF, GMF, and GEF 78
6.13 The graphical concrete syntax for the model element Create 79
6.14 The extended process model (showing extension only) 85
6.15 Ecore metamodel for defining the behavior (Pt. II/II) 92
6.16 A textual entered condition of an IF element 93
6.17 The parsed conditional expression . 93
6.18 Expression editor for conditions and assignments (rhs) 94
6.19 Graphical model editor for app models (Process model being edited) 95
6.20 Detection of model smells . 96

7.1 Forward-engineered mobile application variants (Android/iOS) . . 107
7.2 Web-based model editor for runtime models (editing a GUI model) 108
7.3 System architectures of the generated mobile applications 112
7.4 Architecture of generated Android applications 115

x

7.5 The generated GUI of the process CRUDPerson 116
7.6 Architecture of generated iOS applications 116
7.7 Different GUIs for viewing a Person object 120
7.8 Caesar’s ciphered text “Knack den Code” (Break the code) 125
7.9 Traveling Salesman Problem “Deutschlandtour” (Germany Tour) . . 125
7.10 π Approximation “PI-Kreis” (PI-Circle) 126
7.11 The mobile application SmartPlug . 127
7.12 The mobile application TV Reminder 127
7.13 Sitemaps of the process CRUDPerson 131
7.14 Scalability of the code generators . 133
7.15 Scalability of Android runtime models 134

9.1 Considered contexts of mobile applications 146
9.2 Mobility of different subjects and objects 147
9.3 Extended client-server architecture 152
9.4 Working model of a local transaction manager 152
9.5 Generic extended client-server architecture 155
9.6 Keypool replication and synchronization 156
9.7 Escrow replication and synchronization 157
9.8 Modified working model of a local transaction manager 158
9.9 Data model of the payment app . 159
9.10 Data model of the course booking app 159

11.1 Feature model (Pt. III/III) . 170
11.2 Feature composition rules (Pt. II/II) 171

12.1 Actors and use cases of the company phone book application 174
12.2 Modified process model of the company phone book application . . 175
12.3 Resulting variants of the company phone book application 175
12.4 Main processes of the conference application 178
12.5 Conference Administrators view of the mobile application 179
12.6 Conference Participants view of the mobile application 181
12.7 Architecture and roles of the mobile learning application 182
12.8 Main processes of the word trainer application 183
12.9 Teachers create a word object starting from the main menu 183
12.10 Learners view of the mobile application 186

13.1 Rule #1 – Move containing class to container (rules and sub-rules) . 189
13.2 Rule #2 – Introduce search criteria pages before read tasks 190
13.3 Tablet/Notebook version of the phone book application 191
13.4 Non-GPS variant of the process NearToMe 192
13.5 Device-specific variants of the process NearToMe 193
13.6 Style model of the simple phone book application 194
13.7 Device-specific runtime adaptation of the mobile application’s style 194
13.8 Device-specific variant of the process CreatePicture 196
13.9 eBook variant of the word trainer application 196
13.10 Using device-specific styles to avoid ghosting effects on eBooks . . . 197

14.1 Design process of online- and offline-capable mobile applications . 201
14.2 App model of a simple payment application 202
14.3 The simple payment application working online-only 203
14.4 Access modes of the class Account . 206
14.5 The generated online- and offline-capable payment application . . . 207
14.6 Throughput of the payment application (Configuration 1) 209
14.7 Throughput of the payment application (Configuration 2) 210
14.8 Access modes and restrictions of the class Account 211
14.9 Air quality application WeSense . 215
14.10 Data model of the air quality application (without class methods) . 216
14.11 Air quality application process structure and CRUD processes . . . 217

xi

14.12 Process ShowMap . 218
14.13 Process CreateComment . 219
14.14 Process Init . 219
14.15 Pages and style of the air quality application (without attributes) . . 220
14.16 Generic extended client-server architecture with custom back end . 220
14.17 Re-engineered air quality application (Part I/II) 221
14.18 Re-engineered air quality application (Part II/II) 222
14.19 Transactional throughput of the application versions 222

15.1 The abstract layered architecture for context-aware applications . . 226
15.2 Comparison of the approaches . 228

B.1 Data model of the simple phone book application 245
B.2 GUI model of the simple phone book application 246
B.3 Process Main . 247
B.4 Process ViewPerson . 247
B.5 Process CreatePerson . 248
B.6 Process EditPerson . 248
B.7 Process DeletePerson . 248
B.8 Process AllPersons . 249
B.9 Process CRUDPerson . 249
B.10 Process SearchPerson . 249
B.11 Process CallPerson . 250
B.12 Process SelectAndShowPersonAddressOnMap 250
B.13 Process PersonsWithAddress . 251
B.14 Process ShowPersonAddressOnMap . 251
B.15 Process NearToMe . 251
B.16 Data model of the conference application 252
B.17 GUI model of the conference application 253
B.18 Process Main . 254
B.19 Process Favorites . 254
B.20 Standard CRUD processes . 255
B.21 Standard reading processes . 255
B.22 Process RRoom . 256
B.23 Process RVenue . 256
B.24 Process AddFavorite . 257
B.25 Process RemoveFavorite . 257
B.26 Process SearchPaper . 258
B.27 Process SearchPerson . 258
B.28 Data model of word trainer application (excerpt) 259
B.29 GUI model of word trainer application (excerpt) 260
B.30 Process Main . 261
B.31 Process Search referring to the search processes 261
B.32 Generic process structure Jobs . 262
B.33 Standard reading processes . 263
B.34 Process CreatePicture . 263
B.35 Process CreateAudio . 264
B.36 Process CAnswer . 264
B.37 Process CWord . 265
B.38 Process SearchWord . 266
B.39 Process ViewWord . 266
B.40 Process DeleteWord . 267
B.41 Process LearnAndTest . 268
B.42 Process FavoritesMyWords and sub-processes 269

D.1 key2guide front-end variants and shared back end (CMS) 292
D.2 Graphical user interface of key2operate 293

xii

List of Tables

4.1 Requirements of the MDD framework for mobile applications 52

5.1 Mapping of the focused feature groups to the requirements (Pt. I/II) 60

6.1 First set of plugins shaping the MDD infrastructure 75
6.2 Mapping of the abstract syntax element PageContainer 79
6.3 Mapping of the abstract syntax element StyleSetting 80
6.4 Mapping of the abstract syntax element RGBColor 80
6.5 Mapping of the abstract syntax element ListStyleSettings 80
6.6 Mapping of the abstract syntax element MenuStyleSettings 81
6.7 Mapping of the abstract syntax element SelectionStyleSettings 81
6.8 Mapping of the abstract syntax element PageStyleSettings 81
6.9 Mapping of the abstract syntax elements Page 82
6.10 Mapping of the abstract syntax element Menu 82
6.11 Mapping of the abstract syntax element MenuablePage 83
6.12 Mapping of the abstract syntax element ListablePage 83
6.13 Mapping of the abstract syntax element ProcessContainer 86
6.14 Mapping of the abstract syntax element Process 86
6.15 Mapping of the abstract syntax element Variable 87
6.16 Mapping of the abstract syntax element ProcessSelector 87
6.17 Mapping of the abstract syntax element Create 87
6.18 Mapping of the abstract syntax element Read 88
6.19 Mapping of the abstract syntax element Delete 88
6.20 Mapping of the abstract syntax element Assign 88
6.21 Mapping of the abstract syntax element InvokeOperation 89
6.22 Mapping of the abstract syntax element InvokeGUI 89
6.23 Mapping of the abstract syntax element InvokeProcess 90
6.24 Mapping of the abstract syntax element CRUDGui 90
6.25 Mapping of the abstract syntax element Permission 90
6.26 Mapping of the abstract syntax elements RefTrue and RefFalse 91
6.27 Mapping of the abstract syntax elements If1 91
6.28 Mapping of the abstract syntax elements IfElse1 91
6.29 Mapping of the abstract syntax elements While1 92
6.30 Second set of plugins shaping the MDD infrastructure 94
6.31 Third set of plugins shaping the MDD infrastructure 97

7.1 Focused features and mobile application features 105
7.2 Mapping the model elements to platform-specific constructs 114
7.3 Fourth set of plugins shaping the MDD infrastructure 120
7.4 Packages and content of the iOS code generator 121
7.5 Packages and content of the Android code generator 122
7.6 Focused features and coverage by the MDD infrastructure 124
7.7 Observation made during the user experience evaluation 130

8.1 Model-driven approaches to the development of mobile applications 142

9.1 Conflicts in the payment application 160
9.2 Conflicts in the course booking application 160

xiii

11.1 Mapping of the focused feature groups to the requirements (Pt. II/II) 172

12.1 Number of processes and LoC of the mobile application variants . . 175
12.2 Use cases for the conference administrators (Providing User) 178
12.3 Use cases for the conference participants (Mobile end user) 180
12.4 Use cases for the teachers (Providing User) 184
12.5 Use cases for the learners (Mobile end user) 185

13.1 Number of adapted elements at modeling and implementation level 191

14.1 Conflict matrix (C1, C2, C3) . 206
14.2 C3 configuration variants . 206
14.3 Independent simulation variables . 208
14.4 Dependent simulation variables . 209
14.5 Fifth set of plugins shaping the MDD infrastructure 211
14.6 Key data of considered mobile applications 213
14.7 Analysis results of considered mobile applications 214
14.8 Simulation results of considered mobile applications 214

15.1 Model-driven approaches for context-aware mobile applications . . . 232

C.1 List of Workshops . 272

xv

Listings

2.1 Template for POJO generation . 28
2.2 The compiled object Address (of type class) 29
2.3 The compiled object ProcessesOverview (excerpt) 30
2.4 The partly compiled object ProcessesOverview (excerpt) 30
6.1 Injection of custom code (Method callMobileNumber()) 68
6.2 Output constraints for ListablePage (Output) 74
6.3 Input constraints for SelectableListPage (Input) 74
6.4 Parser rules for an expression . 93
6.5 Metric function CVD_min . 96
7.1 Determination of data and transaction mode 113
7.2 Layout annotation of a custom page (excerpt) 119
14.1 Operation withdraw() . 206
D.1 Process description used in key2operate 293

xvii

List of Abbreviations

ACID Atomicity, Consistency, Isolation, Durability
ANTLR ANother Tool for Language Recognition
API Application Programming Interface
APK Android Application Package
AR Augmented Reality
ARM Advanced RISC Machine
AS Abstract Syntax
ATM Automated Teller Machine
BIS Business Information System
BPEL Business Process Execution Language
BPMN Business Process Model and Notation
BSD Berkeley Software Distribution
CAA Context-Aware Application
CIM Computation-Independent Model
CMS Content Management System
COM Context Ontology Model
CPIM Context Platform-Independent model
CRUD Create, Read, Update, Delete
CSCW Computer-supported Cooperative Work
CSS(3) Cascading Style Sheets (Level 3)
DAO Data Access Object
DB Database
DBMS Database Management System
dp Device-Independent Point
DSML Domain-specific Modeling Language
DVM Dalvik Virtual Machine
EBNF Extended Backus-Naur Form
EMF Eclipse Modeling Framework
EMOF Essential Meta Object Facility
FODA Feature Oriented Domain Analysis
GCS Graphical Concrete Syntax
GEF Graphical Editing Framework
GI German Association of Computer Science
GMP Graphical Modeling Framework
GPL General Purpose Language
GPML General Purpose Modeling Language
GPS Global Positioning System
GUI Graphical User Interface
HCI Human Computer Interface
HTML(5) Hypertext Markup Language (Version 5)
HUTN Human-Usable Textual Notation
IDE Integrated Development Environment
J2ME Java Platform 2 Micro Edition
JEE Java Platform Enterprise Edition
JPA Java Persistence API
JSE Java Platform Standard Edition
JSON JavaScript Object Notation
JVM Java Virtual Machine
M2C Model-to-Code (transformation)

xviii

M2M Model-to-Model (transformation)
M2T Model-to-Text (transformation)
MDA Model-Driven Architecture
MDBMS Mobile Database Management System
MDD Model-Driven Development
MDIA Model-Driven Integration Architecture
MMW My Mobile Web
MOF Meta Object Facility
MPIS Manufacturing and Production Information System
MTM Mobile Transaction Model
MVC Model-Controller-View
NFC Near Field Communication
NIB NeXT Interface Builder
OCL Object Constraint Language
OLTP Online Transaction Processing
OMG Object Management Group
OpenGL/ES Graphics Library for Embedded Systems
ORM Object-Relational Mapping
OWL Web Ontology Language
PervML Pervasive Modeling Language
PIM Platform-Independent Model
PIMAR Platform-Independent Mobile Augmented Reality
POJO Plain Old Java Object
PSM Platform-specific Model
RGB Red, Green, and Blue
RISC Reduced Instruction Set Computer
RTE Round-Trip-Engineering
SCXML State Chart XML
SAP Systeme, Anwendungen und Produkte in der Datenverarbeitung

(Systems, Applications & Products in Data Processing)
SDK Software Development Kit
SE Software Engineering
SGL Skia Graphics Library
SQL Structured Query Language
SSL Secure Sockets Layer
SVG Scalable Vector Graphics
SysML Systems Modeling Language
TM Transaction manager
UAT User Acceptance Tests
UML Unified Modeling Language
VPN Virtual Private Network
VR Virtual Reality
W3C World Wide Web Consortium
WAI Web Accessibility Initiative
WCAG Web Content Accessibility Guidelines
WebML Web Modeling Language
XMI XML Metadata Interchange
XML EXtensible Markup Language
XnU X is not UNIX

1

Abstract

Model-driven development (MDD) of software systems has been a serious trend
in different application domains over the last 15 years. While technologies, plat-
forms, and architectural paradigms have changed several times since model-driven
development processes were first introduced, their applicability and usefulness
are discussed every time a new technological trend appears. Looking at the rapid
market penetration of smartphones, software engineers are curious about how
model-driven development technologies can deal with this novel and emergent
domain of software engineering (SE).

Indeed, software engineering of mobile applications provides many challenges
that model-driven development can address. Model-driven development uses a
platform independent model as a crucial artifact. Such a model usually follows
a domain-specific modeling language and separates the business concerns from
the technical concerns. These platform-independent models can be reused for
generating native program code for several mobile software platforms. However,
a major drawback of model-driven development is that infrastructure developers
must provide a fairly sophisticated model-driven development infrastructure before
mobile application developers can create mobile applications in a model-driven
way.

Hence, the first part of this thesis deals with designing a model-driven development
infrastructure for mobile applications. We will follow a rigorous design process
comprising a domain analysis, the design of a domain-specific modeling language,
and the development of the corresponding model editors. To ensure that the code
generators produce high-quality application code and the resulting mobile applica-
tions follow a proper architectural design, we will analyze several representative
reference applications beforehand. Thus, the reader will get an insight into both
the features of mobile applications and the steps that are required to design and
implement a model-driven development infrastructure.

As a result of the domain analysis and the analysis of the reference applications,
we identified context-awareness as a further important feature of mobile applica-
tions. Current software engineering tools do not sufficiently support designing
and implementing of context-aware mobile applications. Although these tools (e.g.,
middleware approaches) support the definition and the collection of contextual
information, the adaptation of the mobile application must often be implemented
by hand at a low abstraction level by the mobile application developers.

Thus, the second part of this thesis demonstrates how context-aware mobile applica-
tions can be designed more easily by using a model-driven development approach.
Techniques such as model transformation and model interpretation are used to
adapt mobile applications to different contexts at design time or runtime. Moreover,
model analysis and model-based simulation help mobile application developers to
evaluate a designed mobile application (i.e., app model) prior to its generation and
deployment with respected to certain contexts.

We demonstrate the usefulness and applicability of the model-driven development
infrastructure we developed by seven case examples. These showcases demonstrate
the designing of mobile applications in different domains. We demonstrate the
scalability of our model-driven development infrastructure with several perfor-
mance tests, focusing on the generation time of mobile applications, as well as
their runtime performance. Moreover, the usability was successfully evaluated

2

during several hands-on training sessions by real mobile application developers
with different skill levels.

3

Kurzfassung

Die modellgetriebene Entwicklung von Softwaresystemen (MDD) ist in den let-
zten 15 Jahren in verschiedenen Domänen zu einem ernstzunehmenden Trend
geworden. Da sich Technologien, Plattformen und Architekturparadigmen seit
der Einführung des modellgetriebenen Ansatzes oftmals verändert haben, wird
dessen Anwendbarkeit und Nützlichkeit erneut für jeden neuen technologischen
Trend diskutiert. In Hinblick auf die zügige Marktdurchdringung von Smartphones
fragen Softwareentwickler, wie modellgetriebene Entwicklungstechniken in diesem
neuen und aufstrebenden Bereich der Softwareentwicklung (SE) eingesetzt werden
können.

Der modellgetriebene Ansatz deckt tatsächlich viele Herausforderungen ab, welche
die Softwareentwicklung von mobilen Anwendungen mit sich bringt. Elementarer
Bestandteil der modellgetriebenen Entwicklung ist ein plattformunabhängiges
Modell. Solch ein Modell folgt gewöhnlich einer domänenspezifischen Model-
lierungssprache und trennt die fachlichen Belange der Anwendung von den tech-
nischen Belangen. Das plattformunabhängige Modell wird bei der Generierung
von Programmcode für diverse mobile Plattformen wiederverwendet. Ein großer
Nachteil der modellgetriebenen Entwicklung ist allerdings die Notwendigkeit,
eine relativ ausgereifte modellgetriebene Infrastruktur durch Infrastrukturentwick-
ler bereitzustellen, bevor Entwickler von mobilen Anwendungen diese modell-
getrieben erstellen können.

Daher widmet sich der erste Teil dieser Arbeit dem Entwurf einer modellgetriebe-
nen Infrastruktur für mobile Anwendungen. Der konsequente Entwurfsprozess
beinhaltet eine Domänenanalyse, den Entwurf einer domänenspezifischen Mod-
ellierungssprache sowie entsprechender Modelleditoren. Zur Sicherstellung der
Codequalität und einer angemessen Architektur der durch die Codegeneratoren
erzeugten mobilen Anwendungen werden zuvor einige repräsentative Referenzan-
wendungen analysiert. Dadurch erhalten die Leser sowohl Einblick darin, welche
Schritte zum Entwurf und der Realisierung einer modellgetriebenen Infrastruk-
tur notwendig sind, als auch in die Merkmale und Anforderungen von mobilen
Anwendungen.

Die Domänenanalyse und die Analyse der Referenzanwendung zeigen, dass die
Erkennung von Kontexten ein weiteres wichtiges Merkmal von mobilen Anwendun-
gen ist. Gegenwärtige Softwareentwicklungswerkzeuge unterstützen den Entwurf
und die Realisierung von kontextabhängigem Verhalten nur unzureichend. Ob-
wohl diese Werkzeuge (z.B. Middlewarebibliotheken) die Definition und Sammlung
kontextrelevanter Informationen unterstützen, muss die Anpassung der mobilen
Anwendung üblicherweise manuell und auf einer niedrigen Abstraktionsschicht
programmiert werden.

Daher zeigt der zweite Teil dieser Arbeit, wie kontextabhängige mobile Anwen-
dungen mit dem modellgetriebenen Ansatz einfacher erstellt werden können. Es
werden Techniken wie Modeltransformation und Modelinterpretation benutzt, um
mobile Anwendungen zur Entwurfszeit oder Laufzeit anzupassen. Darüber hin-
aus hilft eine Modellanalyse und eine modellbasierte Simulation, eine erstellte
mobile Anwendung (d.h., ein Anwendungsmodell) vor der Generierung oder der
Bereitstellung zu beurteilen.

Die Nützlichkeit und Anwendbarkeit der entworfenen modellgetriebenen En-
twicklungsinfrastruktur wird in sieben Beispielszenarien demonstriert, welche

4

den Entwurf von mobilen Anwendungen in verschiedenen Domänen zeigen. Die
Skalierbarkeit wird durch Lasttests demonstriert, welche auf die Generierungs- und
Ausführungszeit der generierten Anwendungen abzielen. Darüber hinaus ist die
Bedienbarkeit innerhalb verschiedener praktischer Schulungen mit authentischen
Anwendern verschiedener Kenntnisstufen erfolgreich erprobt worden.

5

Acknowledgements

This work would have been impossible without the aid of many people, who
contributed to it in many ways.

First of all, I am very thankful to my supervisor, Prof. Dr. Gabriele Taentzer, who
helped me structure and organize my sometimes curious ideas. Her knowledge
and experience helped a lot in improving my working methods and to get to this
point in my academic career. Furthermore, I thank Prof. Dr. Michael Goedicke
for agreeing to be the second reviewer of this thesis. His suggestions helped me
improve its details.

Many thanks also to the members of the PIMAR research project team and the
colleagues and students who implemented parts of the model-driven develop-
ment infrastructure and/or carried out other valuable preliminary work. I would
like to thank (in no special order) Tillmann Heigel, Christian Konrad, Michael
Bernhardt, Tobias Zülch, Konstantin Jäger, Manuel Wolf, Alexander Eifler (Do-
main Analysis, Reverse Engineering, and Forward Engineering), Jan Peer Harries,
Samuel Becker (Android code generator), Kevin Kaiser, Felix Pape, Patrick Hof-
mann, Cui Xiaolin (Forward engineering and iOS code generator), Raphael Stroh,
Parisa Moosavinezhad (Model editors), Jonas Kelbert (Model quality), Manuel
Fleischer (Model-based simulation), Damian Wlochowitz, Stefan Schulz, Anneke
Walter (Android code generator/case examples), Katharina Muth, Maria Wilfing,
and Bilal Belafkir (Reverse Engineering, Test, and Assessment). Without their work,
the system would not have been operational, and I thank them for their engagement.
Prof. Dr. Michael Guckert and René Gerlach helped me with the coordination of
the many students who were involved in this project.

The work carried out in this thesis is partly funded by the LOEWE - State Offensive
for the Development of Scientific and Economic Excellence (funding line 3: promot-
ing SME collaborative projects) and by the German Research Council (Deutsche
Forschungsgemeinschaft – DFG). I would like to thank both organizations for their
financial support.

During the practical assessment of the model-driven development infrastructure
within the word trainer case study, Susanne Krauß and Kirill Dorofeev provided
many helpful suggestions and helped me improve the usability of the model-driven
development infrastructure.

I want to thank our research partners in Norway, Prof. Yngve Lamo, Prof. Lars
Michael Kristensen, Dr. Volker Stolz, and Dr. Florian Mantz, for their hospitality
during our visits at the Høgskolen i Bergen, Norway in 2014 and 2015.

Several discussions with Dennis Priefer, Wolf Rost, and Dieudonne Timma Mey-
atchie of the iCampus/JooMDD team (Technische Hochschule Mittelhessen – THM)
helped me to position my work regarding the general design principles of model-
driven development infrastructures.

My colleagues in the software engineering group, Dr. Daniel Strüber, Kristopher
Born, Stefan John, Nebras Nassar, and Felix Rieger, participated in the evolution of
this work, and I thank them for their encouragement and their critique. Additionally,
I would like to thank the anonymous reviewers of the published work related to
this thesis. Many of their useful suggestions were adopted in this thesis.

6

Felix Rieger read an earlier version of the thesis, and supported me in improving my
English. But, of course, he is not responsible for all the errors and weak constructions
I introduced afterward.

Finally, I would like to thank my family and friends, who showed amazing patience
and understanding while I was writing this thesis.

Marburg, 2018-07-13

Steffen Vaupel

7

Chapter 1

Introduction

The market penetration of smartphones is one of the fastest in technological history. 1.1
In the U.S. market, the maturation (time from 10% to 40% market penetration) of
smartphones was two times faster than other technologies such as the introduction
of personal Internet access. In 2011, the U.S. market for smartphones could be
considered as matured [27]. This phenomenon of rapid smartphone adoption could
be observed globally. The Ericsson mobility report of 2016 [Eri16] estimates a world
market penetration of 5.1 billion devices and expects an increase to 6.1 billion
devices in 2022. Top adopters in 2016 were consumers in South Korea (88%) and
Australia (77%) [Pou16].

Moreover, the software market volume for these kinds of devices and hardware is 1.2
even much higher. In 2013, an average smartphone user has installed 26 mobile
applications [49]. Thus, we calculate an overall market penetration of over 112
billion [Eri13] installed mobile applications in 2013. Besides, the research company
StatCounter [48] reports that in October 2016, for the first time in history, the majority
(51.3%) of website requests were done through mobile devices. This indicates that a
lot of web-based applications are used by mobile clients (e.g., web browsers).

A special feature of smartphones is their ability to detect contexts (e.g., location), 1.3
which also drives the popularity of mobile applications [Tan08, Chap. 8.2]. While
most smartphone users always carry their devices with them (or wear them), mobile
applications could detect contexts of different kinds and act in a situation-dependent
way. Such context-aware mobile applications may provide information tailored
to the user and situation context, which is generally known as smart behavior.
Novel device features (e.g., sensors) support the sensing of contexts. Context-
awareness allows a lot of new mobile applications in industrial, health-care, and
social application scenarios. Unfortunately, technical context changes (e.g., loss of
connection) may affect the reliably of mobile applications in a negative way.

To sum up, mobile devices and mobile applications nowadays are just as important 1.4
as traditional personal computer systems and standalone applications. In the
near future, they will be the primary personal and professional computer systems.
Context-awareness gives rise to new business cases. Lack of context-awareness
can cause negative effects during mobile application operation. Hence, context-
awareness of mobile applications is an important and relevant area for academic
research.

The rapid evolution of mobile computing creates a heterogeneous landscape of 1.5
software and hardware platforms, versions [Gro+14], and architectural designs.
Considering the market shares of the different software and hardware platforms
over the years, no software platform or vendor has such a majority that the remain-
ing platforms can be ignored. The consensus is that multiple platforms and devices
need to be considered further while developing a mobile application.

After selecting a platform (e.g., Android), the heterogeneity continues. For exam- 1.6
ple, to reach at least 90% of Android users currently requires creating a mobile
application supporting versions of the Android platform spanning from version
4.2 (API 17) to version 7.1 (API 25) [11]. In addition, individual device features are

8 Chapter 1. Introduction

very heterogeneous. Sensor availability and screen sizes may further reduce the
potential user group. For example, the previously mentioned share of 90% Android
users will be reduced to approximately 11% when requiring a large or extra-large
screen for the developed mobile application. Additionally, current software engi-
neering approaches do not provide the automatic adaptation or translation of a
platform-specific implementation (e.g., Java used by Android) to another platform
(e.g., Objective-C/Swift used by iOS). Hence, software engineering technology and
development processes of mobile applications are not yet able to keep pace with
the sudden rise of mobile platforms and the related heterogeneity.

Thus, developing mobile applications requires a development process that is dif-1.7
ferent in many ways from the development process of traditional client-server
applications or rich-client applications running on a single workstation. This de-
velopment process, especially the labor-intensive implementation tasks, must be
repeated for multiple software platforms (e.g., Android, iOS) to cover different user
groups acceptably. For example, approximately 60% of the mobile applications were
developed across different platforms [Joo+13]. Additionally, the test efforts will
also increase for any additionally supported platform, version, or device (if tested
at all). To mitigate or avoid these multiple native implementations, cross-platform
solutions are often used.

Many existing frameworks and tools for mobile application development focus on1.8
cross-platform development as opposed to native application development. A na-
tive application has a single codebase that is written for one specific target platform
and device type while using a software development kit (SDK). The codebase is
translated by the appropriate target compiler and the resulting binaries run only on
devices having the target platform. Requiring additional device-specific sensors
limits the distribution of the application to devices of the same type. Developers
must create and maintain multiple codebases to support diverse software platforms
or device types. Thus, an obvious approach is to reuse a single codebase as a speci-
fication of the software system for different platforms [Hei+12]. This approach is
known as cross-platform development. Heitkötter et al. distinguish three approaches
for implementing cross-platform development: (i) runtime-based approaches, (ii)
cross-compiling approaches, and (iii) model-driven development approaches (cf.
Allen et al. [All+10]).

First, runtime-based approaches use a runtime environment to execute platform-1.9
independent program code or translated programs. For example, the Java Vir-
tual Machine (JVM) is a well-known runtime environment executing compiled
programs, while web browsers are good examples of program interpreters, e.g.,
JavaScript/HTML (Hypertext Markup Language.)1

Cross-compiling approaches use a cross compiler in order to translate platform-inde-1.10
pendent program code into a platform-specific or native code. Usually, they do not
translate Java (favored in Android) into Objective-C (favored in iOS) or vice versa
(except [Pud10]), but rather use source languages allowing program specifications
in a more declarative way. This approach requires cross compilers for each of the
desired software platforms. Additionally, there is often no or little abstraction
between the source language and the native target language.

The last approach is the model-driven development approach. The model-driven de-1.11
velopment approach translates domain-specific models with high abstraction into
platform-specific native program code. This approach also requires a model com-
piler (M2C), i.e. code generator, for each of the desired software platforms.

Web-based applications are a very popular example for runtime-based cross-platform1.12
development. Web-based and native applications follow opposing architectural ap-
proaches: web-based applications follow the traditional client-server paradigm and
are multi-platform capable (e.g., Android, iOS). They provide good transactional

1 This usually requires back-end systems e.g., application servers with rich functionality.

1.1. Motivation 9

support based on the underlying database management systems, but they generally
lack offline capability and cannot fully access the devices’ sensors/hardware.

Although web-based mobile applications are multi-platform capable, their devel- 1.13
opment approach could not be considered as platform-independent. The issue
with web-based mobile applications is that functionality (if any) is located mostly
on the server-side. Thus, mobile web-based applications could be considered as
mobile services rather than autonomous mobile applications. In contrast, native
applications can work autonomously and exploit device features (e.g., sensors,
memory) very well. They usually lack platform portability due to their nativeness
and platform- and device-tailored implementation. In case that native applications
act as interoperable mobile clients of a multi-user system, conflict-free operation
cannot be guaranteed. Different system contexts (e.g., loss of connection) cause
problems in conflict detection while mobile clients are offline.

Apparently, it is a problem to combine the advantages of the architectural designs 1.14
and get rid of the disadvantages. While initiating a mobile application development
project, teams often have to make an architectural and software platform choice (e.g.,
heading either towards a native and standalone mobile application architecture in
Android/iOS or a platform-independent web-based mobile application) [Puv+16]
[Bre+14], which thereafter dominates or limits the development process. Hence,
software vendors and mobile application developers are increasingly asking for a
development process and tools that help them to tackle the problem of the software
platform and device heterogeneity and unleash the domain-specific opportunities
of mobile computing (e.g., context-awareness) at the same time. Their goal is to
roll out native mobile applications of high quality on the one hand, but avoid the
development and test effort for all desired software platforms on the other hand.
The mobile applications to be developed should additionally support different
contexts, which is a specific requirement of the mobile computing domain.

This leads to several general questions that are addressed in this thesis: 1.15

• What are the features of mobile applications and the different platforms?

• What is supported by current (platform-independent) development approach-
es for mobile applications? What is missing?

• How do a development approach and tooling that covers missing parts look
like?

• How can mobile applications support different contexts and how can a devel-
opment approach support this aim?

• Which architectures of mobile applications are appropriate with respect to the
domain-specific requirements (e.g., context-awareness)?

In the following, we provide the motivation for this work. Then we point out 1.16
the challenges of mobile application development. Subsequently, the goals, the
approach, and the contributions of this work are presented. This contains references
to already published work. Finally, the remainder of this thesis is outlined.

1.1 Motivation

As sketched in the preceding section, the main problem faced while developing 1.17
mobile applications is the heterogeneity of platforms. Hence, platform-independent
development approaches for mobile application development are generally useful
to tackle this problem.

This thesis builds on the model-driven development approach. “Model-driven 1.18
development is simply the notion that we can construct a model of a system that
we can then transform into the real thing.” (Mellor et al. [Mel+03]) In terms of

10 Chapter 1. Introduction

mobile applications development, a model describes several aspects of a mobile
application in an abstract manner, whereas the transformation creates a concrete
implementation. This approach has many advantages (cf. den Haan [21] and
Selic [Sel03]) compared to a traditional development process and fits well into the
domain of mobile application development:

The model-driven development approach uses a (domain-specific) modeling lan-1.19
guage, expressing software systems on a higher abstraction level compared to the
codebase; the development might be faster and thus more cost-effective. A model-
ing element might be transformed into several lines of code or other artifacts. In the
same time span, modeling allows expressing more functionality than writing code
traditionally. Moreover, in case that the model-driven development toolset contains
multiple code generators for different platforms, the leverage effect will be even
stronger.

Another advantage of the model-driven development approach is its focus on1.20
business aspects as opposed to technical aspects. A model-driven development
process can potentially be applied by domain experts rather than only by technical
experts. This separation of concerns and skills empowers domain experts while
technical experts focus on the needed toolset for model-driven development.

An increased quality of the resulting mobile application could be ensured by the1.21
model-driven development approach. The quality of traditionally developed mo-
bile applications depends on the overall and architectural design, the skills, and
discipline of the mobile application developers, and the used test and review pro-
cess. Model-driven development frameworks provide automatic model validation
and model quality analysis. Generated native program code follows established
design patterns and has a high quality by design.

The model-driven development approach also resonates well with the high market1.22
pressure in the mobile sector. Technical changes between platform versions (plat-
form evolution) can be concealed by the code generators. Migration of existing
mobile applications, i.e., models, to a higher version of the software platform is
well supported. In particular, beginners with less experience in mobile application
development have a lot of trouble to find adequate architectural designs which meet
their requirements. In the worst-case scenario, the selected architectural design
is contradictory to the requirement specification. The model-driven development
approach relieves the mobile application developers at this point and provides an
adequate architecture. Besides, the model-driven development approach enables
changes in an agile way because the application model can be improved and refined
during the development process.

Finally, the model-driven development approach supports many use cases related1.23
to software engineering. For example, complex and error-prone program analysis
tasks (e.g., concurrency problems such as deadlocks) on the level of code could be
lifted to the model level [Sho+08]. Ideally, domain-specific model-driven develop-
ment tools support mobile application developers while inspecting a problem of
interest. With this support a manual review of the whole codebase to extract the
relevant information will no longer be necessary.

To sum up, the model-driven development approach seems to be a promising1.24
approach in the domain of mobile application engineering, not only driven by the
argument of multi-platform support. Although the model-driven development
approach meets many software engineering requirements for mobile applications,
a closer look at the different model-driven development approaches will reveal that
there are further challenges.

1.2. Challenges 11

1.2 Challenges

Several frameworks and tools that support model-driven development of mobile 1.25
applications, such as Applause [Beh10] [05], MD2 [Hei+13], JUSE4Android [SA14b],
[SA14a], [Sil+14], Modagile [08], and Mobl [HV11b] [HV11a], have been presented
in the literature. Their features will be discussed in detail later. With respect to
these solutions, one might ask: why do we need an additional framework for the
model-driven development of mobile applications?

The answer is related to the genesis of mobile application development. The genesis 1.26
of mobile application started with web-based applications that are executed on
mobile devices. Web application developers usually deal neither with heteroge-
neous sets of platforms and devices nor with system contexts such as network
interruptions. They assume a standardized platform (e.g., a web browser) without
high variability of hardware or sensors and a stable network connection to the
server. Accordingly, the mobile clients are minimal in terms of architectural design,
while the servers are full-featured. Current model-driven development approaches
for mobile applications adopt this concept: most frameworks and tools generate
mobile applications that follow a client-server architecture. Without certain exten-
sions, this architecture is generally insufficient to deal with changing system or
device contexts. A look at the landscape of existing web-based mobile applications
shows that the loss of network connection (system context) very often stops mobile
applications unexpectedly. Additionally, the web-based mobile applications do not
always provide an appropriate graphical user interface for the particular mobile
device used (device context).

(A) Login page (B) Insufficient scaling
(transfer order templates)

(C) Error message
(transfer order)

FIGURE 1.1: Web-based mobile banking application

Example (Web-based banking software). Since online banking is the most popular 1.27
way to make bank transactions, an increasing number of banking customers use
mobile devices to access online banking services. Figure 1.1 shows a banking
transaction order and the typical problems that may occur while using a web-based
mobile application. A customer starts a banking session by entering the credentials
at an initial login page (Figure 1.1a). S/he may have a list of transfer order templates
from which one can be selected to make a money transfer. The first issue of this
web-based mobile application is the inappropriate presentation of this data on the
chosen device. Due to different device types, the web browser scales the graphical
user interface to the devices’s display size or density. As shown in Figure 1.1b, the
text could thus be truncated. Besides, text may exceed the space inside the scaled

12 Chapter 1. Introduction

widget elements. Hence, different device contexts are not fully supported by the
shown web-based mobile application. Second, if the customer starts a transaction
and meanwhile the network connection to the server is interrupted, the transaction
will fail (Figure 1.1c). Even short interruptions will stop the transaction permanently
because customers are usually required to log in again after every interruption of
the network connection. A restart of the transaction is often not possible due to
security reasons. Thus, web-based mobile applications support system contexts
such as the connection context insufficiently. �

Dehlinger and Dixon [DD11] identified context-awareness as one of the major re-1.28
search directions for mobile applications software engineering. Consequently, a
challenge of today’s research in model-driven development for mobile applications
lies in dealing with contexts. A context is the interrelation of a mobile application
to other objects/subjects. These interrelated objects/subjects can be the platform
on which the mobile application is deployed, the device on which the platform is
operated, the mobile user which uses the mobile application, the different system
environments (e.g., available/interrupted network service), and many others. Fig-
ure 1.2 shows the two main model-driven development approaches (Web-based
approach and native approach) and the level of context-awareness they can reach
within different contextual dimensions.

Model-driven
development
approaches:

System
context

Platform
context

User
context

Device
context

Web-based
(Client-Server)

Native
(Rich-Client)

Ideal

FIGURE 1.2: Model-driven development approaches and their contextual coverage

Web-based approaches are generally suitable for covering platform contexts. They1.29
also partly provide access to the features of a device. In turn, web-based approaches
support system contexts such as the connection context poorly.

Native implementations cover device and system contexts in a better way. It should1.30
be noted that native approaches completely cover web-based approaches in terms
of the contextual evaluation, but the effort to implement a native approach is much
higher.

Web-based model-driven development approaches usually require one code gener-1.31
ator, whereas a native model-driven development approach needs a code generator
for every desired native platform. Hence, web-based model-driven development
approaches also seem justified regarding development costs.

The advantages and disadvantages of native and web-based target languages are1.32
still subject of discussion [CL11].

Book et al. [Boo+05] discuss how the degree of mobility (which causes different1.33
system contexts) affects the architectural requirements. In turn, only an appropriate

1.3. Goals of This Work 13

architectural design of a mobile application enables context-awareness, particu-
larly with respect to different system contexts. Several model-driven development
frameworks do in fact support the generation of native program code; however,
they follow a rich-client architecture (Applause [Beh10] [05]) or a client-server
architecture (Modagile [08]). Thus, they are either only offline-capable or only
online-capable.

To sum up, we face the challenge of context-awareness and propose a model-driven 1.34
development approach to create mobile applications that can deal with different
contextual dimensions.

1.3 Goals of This Work

A fundamental goal of this work is to show that model-driven development can 1.35
deal with the novel and emergent domain of mobile application development.
Domain experts should be able to develop mobile applications quickly and easily
with a model-driven development approach. Moreover, since the model-driven
development approach is usually understood and implemented as a one-level
approach, i.e., using only a design model to generate a static implementation,
this work will demonstrate that a two-level approach comprising a design model
and a runtime model is more flexible in terms of different contextual dimensions.
Our generated native mobile applications contain both a static part and a part for
interpreting runtime models. Hence, these mobile applications are no longer only
static but can also be configured at runtime using runtime information. This hybrid
architecture of the generated mobile applications supports different contexts, as
demonstrated by four selected contextual dimensions, i.e., platform, device, user, and
system context. The generated mobile applications are context-aware because the
two-level model-driven development approach can handle these contexts very well.

Moreover, an additional goal of this work is to provide architectural flexibility of 1.36
the generated mobile applications depending on the type of mobile application.
Using existing model-driven development frameworks for mobile applications, de-
velopers cannot change the architecture of the mobile application. The architecture
is prescribed by the code generators of the used frameworks. Hence, the generated
mobile application may not always meet the requirements (e.g., not online- and
offline-capable, not interoperable with a back end system). Thus, an additional
goal of this work is to provide different architectural designs, i.e., variants, for sup-
porting different connection contexts, which are in turn part of the system context.
These architectural variants enable different operation modes (only offline-capable,
only online-capable, and online- and offline-capable) of the mobile applications.
Additionally, a model-based simulation system (cf. [Bal+04]) supports mobile ap-
plication modelers at design time to evaluate their design models by estimating
the transactional throughput (number of successful transactions) for a particular
architecture.

1.4 Approach

Regarding Figure 1.2, we address the first three dimensions – platform, device, and 1.37
user context – using a two-level model-driven development approach. This approach
uses design-time models for code generation and runtime models to adapt already
generated mobile applications at runtime. The approach is based on the generation
of native mobile applications, as web-based solutions are generally unable to work
offline and limited in hardware access.

Supporting different system contexts (e.g., connection context) requires additional 1.38
architectural features (cf. Book et al. [Boo+05]) as part of the generated mobile

14 Chapter 1. Introduction

applications. However, mobile application modelers should not be involved in
specifying the detailed architecture of the resulting mobile applications because we
cannot assume that they are technical experts. Thus, mobile application modelers
just declare the kind of the architecture (e.g., online- and offline-capable, only offline-
capable, only online-capable), and the code generators configure the architectural
components depending on the given requirements. The general architectural design
is based on a generic extended client-server architecture supporting context-aware
data and transaction management for mobile applications.

This overall approach has three major advantages. First, the model-driven de-1.39
velopment approach covers the platform context very well since different code
generators can be used to generate platform-specific implementations from the
platform-independent design models. Second, the flexibility of design models (e.g.,
through model transformation) allows the generation of device- and user context-
specific versions of the mobile application. Moreover, runtime models enable some
of this flexibility even during runtime. Finally, the approach makes domain experts
capable of creating system context-aware mobile applications without requiring a
special expertise in architectural design and the technical requirements. These
advantages are evaluated by several case examples.

1.4.1 Design Models and Runtime Models

In order to support platform, device, and user contexts better, we propose a two-level1.40
modeling approach as a first fundamental difference from the existing one-level
modeling approaches.

 iOS project Android project

Provider model
(M0)

App model (M1)

single deploy (2)

C
o

m
p

ile
 t

im
e

R

u
n

ti
m

e

Android platform iOS platform

instance of

interpreted

in (3)

generated

to (1)

generated

to (1)

interpreted

in (3)

single deploy (2)

FIGURE 1.3: Two-level modeling approach

Figure 1.3 shows this novel approach in detail. A mobile application developer (not1.41
necessarily a technical expert) creates an app model. The app model conforms to
a domain-specific modeling language (DSML) for mobile applications, which is
developed during the course of this work. The mobile application developer can
generate mobile application projects including source code and further artifacts
(e.g., platform-specific graphical user interface descriptions, external libraries) for
different platforms (Step 1). This already covers the platform context. After compil-
ing these projects, a mobile application can be deployed to the mobile device of the
respective platform (Step 2).

Using a traditional model-driven development approach, the deployed applications1.42
are usually not reconfigurable and must be remodeled, generated, and deployed

1.4. Approach 15

again in order to realize the modification. They could not provide many configu-
rations for different user groups or platform types at the same time. Hence, our
approach uses a second modeling level. A providing user may create one or more
provider models. A configuration given through this provider model is interpreted at
runtime by the deployed mobile applications (Step 3). Hence, redeployment is not
necessary. The provider model may modify the appearance, behavior, or data used in
the mobile applications. This architecture implements a hybrid approach because
runtime models are used as well as static application code [Ben+11]. The resulting
applications provide runtime adaptability [Flo+06] but are not solely interpreted.
This provides user and device contexts in an appropriate way, as shown later in
detail by several case examples.

1.4.2 Extended Client-Server Architecture

As a second fundamental difference, we abandon the strict client-server and rich- 1.43
client paradigm used by many existing model-driven development approaches.
Based on the work of Satyamaran [Sat96] (cf. also Fuchß [Fuc09]), we follow an
architectural paradigm called blurred roles. Blurred roles denote a relaxation of the
commonly used client-server architecture. Parts of the server are duplicated on the
client-side.

Extended Client (EC)

Application GUI

Application logic

Local transaction
manager (TM)

Replication manager

Synchronization/Re-
integration manager

Log

offline online

Local
DBMSDB

Client (C)
Application GUI

Application logic

Server (S)

Central transaction
manager (TM)

DB

Central DBMS

FIGURE 1.4: Extended client-server architecture vs. client-server architecture

A mobile application that follows the traditional client-server architecture, as is 1.44
shown on the right-hand side of Figure 1.4, cannot operate when the connection of
the client C and the server S is interrupted: required services, such as the database
(DB), are no longer available. In turn, an extended client EC (left-hand side of
Figure 1.4) can provide replicated data and transaction logging as part of a local
transaction manager (TM). These facilities can be used while the extended client
(EC) is disconnected from the server S. Moreover, the architecture of the extended
client exploits a particular mobile transaction model (affects the implementation of the
gray colored areas in the figure). Such mobile transaction models are required to avoid
and resolve conflicts in multi-user environments. As we see later, the generated
architecture of the mobile application plays an important role in increasing the
transactional throughput of mobile applications.

16 Chapter 1. Introduction

1.5 Contributions

The main contribution of this thesis is a framework for the model-driven devel-1.45
opment of mobile applications. Based on the particular design of this framework
comprising more than state-of-the-art concepts, further contributions were made.
These contributions deal with different contextual dimensions. The resulting main
contributions are clustered in two parts: i) the model-driven development infras-
tructure and ii) the context support of mobile applications using this infrastructure.
Moreover, the evaluation of each contribution constitutes an additional contribution
of this work.

1.5.1 Model-Driven Development Infrastructure (Contribution 1)

The first main contribution is the model-driven development infrastructure itself.1.46
The development of the model-driven development infrastructure starts with a
requirements elicitation and definition. The requirements are separated into mod-
eling language requirements, architectural requirements, and tool requirements. A
domain analysis of the target domain was subsequently carried out. We created a
feature model describing the domain, even if this work does not support all identi-
fied features. After becoming more acquainted with the domain the model-driven
development infrastructure should be designed for, we develop a domain-specific
modeling language and corresponding graphical model editors. This includes
the creation of an abstract syntax (AS) and a graphical concrete syntax (GCS).
Since a model-driven development infrastructure consists of both a domain-specific
modeling language and code generators, the facilities for code generation are also
a major contribution. In order to find appropriate architectural patterns of the
mobile applications to be generated, we examined selected mobile applications
and re-engineered reference applications that later serve as blueprints for the
code templates and the architectural variants. This work supports the creation of
platform-specific code generators [Vau+14] [Vau+18b] for Android and iOS. Such
code generators for different software platforms support a platform-independent
development process of mobile applications. Hence, the model-driven development
infrastructure supports the dimension of platform context. Finally, based on the
domain-specific modeling language and the code generators, several prototypes of
mobile applications could be created. These contributions were developed while
following an agile bottom-up development process of domain-specific IDEs for
model-driven development [Vau+15]. The main components (i.e., the domain-
specific modeling language and the code generators) of our model-driven develop-
ment infrastructure are evaluated using different evaluation methods (i.e., design
guidelines regarding the domain-specific modeling language, user experience eval-
uation, etc.).

1.5.2 Context Support for Mobile Applications (Contribution 2)

The second main contribution builds on the model-driven development infras-1.47
tructure and deals with the support of different contextual dimensions. As in the
first contribution, a list of requirements is given beforehand. The domain analysis
is cycled again to come up with a feature model that respects additionally the
context-related features of mobile applications.

Based on the two-level modeling approach (cf. Section 1.4.1), we implemented user-1.48
and device context support for mobile applications.

The model-driven development process and the generated mobile applications1.49
provide design time instantiation and runtime instantiation of application fea-
tures (i.e., certain use cases) and provide manifold versions of mobile applications

1.6. Thesis-Related List of Publications 17

[Vau+14] [Vau+16b]. In case of runtime instantiation, a regeneration or redeploy-
ment is not required. Mobile applications may be configured flexibly after deploy-
ment to certain user contexts. Hence, the model-driven development infrastructure
supports the user context dimension. Moreover, considering the re-configurability
of mobile applications in general, it might be interesting to also find more suitable
mobile application variants related to their usability and ergonomics. For example,
Lindner et al. [Lin+14] provide an efficient evaluation of the usability of Android
applications by exploiting cognitive models.

The support of device contexts is also enabled by the two-level modeling approach. 1.50
Particularly, a design time adaptation (model transformation) and runtime adap-
tation can adapt mobile application at design time or runtime to certain device
contexts. Different device types can be supported by adapting the graphical user in-
terface (GUI) automatically to different device contexts. This contribution supports
also the device-specific adaptation of behavioral aspects of mobile applications.
Hence, the model-driven development infrastructure supports the dimension of
device context in many respects.

Finally, to support different system contexts, we contribute a design process for 1.51
the design of online- and offline-capable mobile applications. This design process
is based on model-based analysis, model-based simulation , and model-driven
generation. Moreover, the support of different system contexts requires modifying
the code generators contributed in the first part of this thesis. In order to support
online- and offline-capable mobile applications, the generated mobile application
must follow the generic extended client-server architecture (cf. Section 1.4.2). A
preliminary evaluation of the proposed design process is carried out. It shows that
our design process is useful when it comes to evaluating app designs by their offline
capability and that the mobile application developers can easily apply our design
process.

Apart from these contributions, the generated mobile applications provide fea- 1.52
tures for augmented reality (AR), which is not discussed in this work [Guc+15]
[Vau+18b].

1.6 Thesis-Related List of Publications

The following papers relate to the contributions of this thesis and have been pub- 1.53
lished in publications which provide a scientific peer-review process (in chronologi-
cal order):

1. [Vau+14]: Steffen Vaupel, Gabriele Taentzer, Jan Peer Harries, Raphael Stroh,
René Gerlach, and Michael Guckert. “Model-Driven Development of Mobile
Applications Allowing Role-Driven Variants”. In: Model-Driven Engineering
Languages and Systems - 17th International Conference, MODELS 2014, Valencia,
Spain, September 28 - October 3, 2014. Proceedings. Ed. by Jürgen Dingel,
Wolfram Schulte, Isidro Ramos, Silvia Abrahão, and Emilio Insfrán. Vol. 8767.
Lecture Notes in Computer Science. Springer, 2014, pp. 1–17

2. [Lin+14]: Stefan Lindner, Philippe Büttner, G Taenzer, Steffen Vaupel, and
Nele Russwinkel. “Towards an efficient evaluation of the usability of android
apps by cognitive models”. In: Proceedings 3. Interdisziplinärer Workshop
Kognitive Systeme: Mensch, Teams, Systeme und Automaten, Magdeburg, 25.-27.
März 2014. Ed. by A. Wendemuth, M. Jipp, A. Kluge, and D. Söffker. Otto von
Guericke Universität Magdeburg, 2014

3. [Guc+15]: Michael Guckert, Cornelius Malerczyk, René Gerlach, Gabriele
Taentzer, Steffen Vaupel, and Michael Fatum. “Plattformunabhängige En-
twicklung mobiler Anwendungen mit Augmented Reality-Funktionalität”.

18 Chapter 1. Introduction

In: Anwendungen und Konzepte in der Wirtschaftsinformatik – AKWI 3 (2015),
pp. 14–18

4. [Vau+15]: Steffen Vaupel, Daniel Strüber, Felix Rieger, and Gabriele Taentzer.
“Agile Bottom-Up Development of Domain-Specific IDEs for Model-Driven
Development”. In: Proceedings of the Workshop on Flexible Model Driven Engi-
neering co-located with ACM/IEEE 18th International Conference on Model Driven
Engineering Languages & Systems (MoDELS 2015), Ottawa, Canada, September
29, 2015. Ed. by Davide Di Ruscio, Juan de Lara, and Alfonso Pierantonio.
Vol. 1470. CEUR Workshop Proceedings. CEUR-WS.org, 2015

5. [Vau+16b]: Steffen Vaupel, Gabriele Taentzer, René Gerlach, and Michael
Guckert. “Model-driven development of platform-independent mobile ap-
plications supporting role-based app variability”. In: Software Engineering
2016, Fachtagung des GI-Fachbereichs Softwaretechnik, 23.-26. Februar 2016, Wien,
Österreich. Ed. by Jens Knoop and Uwe Zdun. Vol. 252. LNI. GI, 2016, pp. 99–
100

6. [Ger+16]: René Gerlach, Michael Guckert, Cornelius Malerczyk, Hans Chris-
tian Arlt, Steffen Vaupel, Gabriele Taentzer, and Michael Fatum. “Mod-
ellgetriebene Entwicklung mobiler Anwendungen mit Augmented Reality
Funktionalität”. In: Mobile Anwendungen in Unternehmen. Ed. by Thomas
Barton, Christian Müller, and Christian Seel. Springer, 2016, pp. 193–211

7. [Vau+16a]: Steffen Vaupel, Damian Wlochowitz, and Gabriele Taentzer. “A
generic architecture supporting context-aware data and transaction manage-
ment for mobile applications”. In: Proceedings of the International Conference on
Mobile Software Engineering and Systems, MOBILESoft ’16, Austin, Texas, USA,
May 14-22, 2016. ACM, 2016, pp. 111–122

8. [TV16]: Gabriele Taentzer and Steffen Vaupel. “Model-Driven Development
of Mobile Applications: Towards Context-Aware Apps of High Quality”. In:
Proceedings of the International Workshop on Petri Nets and Software Engineering
2016, including the International Workshop on Biological Processes & Petri Nets
2016 co-located with the 37th International Conference on Application and Theory of
Petri Nets and Concurrency Petri Nets 2016 and the 16th International Conference
on Application of Concurrency to System Design ACSD 2016, Toruń, Poland, June
20-21, 2016. Ed. by Lawrence Cabac, Lars Michael Kristensen, and Heiko
Rölke. Vol. 1591. CEUR Workshop Proceedings. CEUR-WS.org, 2016, pp. 17–
29

9. [Kri+17]: Lars Kristensen, Gabriele Taentzer, and Steffen Vaupel. “Towards
Verification of Connection-Aware Transactions Models for Mobile Applica-
tions”. In: Petri Nets and Software Engineering. International Workshop, PNSE’17,
Zaragoza, Spain, June 25-26, 2017. Proceedings. Ed. by Daniel Moldt, Lawrence
Cabac, and Heiko Rölke. Vol. 1846. CEUR Workshop Proceedings. CEUR-
WS.org, 2017, pp. 227–228

10. [Vau+18b]: Steffen Vaupel, Gabriele Taentzer, René Gerlach, and Michael
Guckert. “Model-driven development of mobile applications for Android and
iOS supporting role-based app variability”. In: Software and System Modeling
17.1 (2018), pp. 35–63

11. [Vau+18a]: Steffen Vaupel, Gabriele Taentzer, and Michael Guckert. “Model-
Driven Design of Connectivity-Aware Mobile Applications”. In: Mobile
Apps Engineering: Architecture, Design, Development and Testing. Ed. by Ghita
Kouadri Mostefaoui, Mitul Shukla, and Faisal Tariq. (To appear). CRC Press,
2018

1.7. Outline 19

1.7 Outline

The remainder of this thesis is structured as follows: the first part deals with the de- 1.54
velopment of the model-driven development infrastructure for mobile applications.

• The basic concepts and terms of the model-driven development approach and
the foundations of mobile applications and their engineering will be presented
in Chapter 2.

• Chapter 3 describes the chosen software development process model used
while developing the framework for the model-driven development of mobile
applications.

• Together with our domain experts, we collect the requirements of the model-
driven development infrastructure and present these in Chapter 4.

• The domain analysis in Chapter 5 characterizes the target domain of mobile
applications. As a result, a feature model describes the variants of mobile
applications occurring in this domain.

• In Chapter 6, we describe the core of the model-driven development infras-
tructure, which is the domain-specific modeling language. We sketch the
design decisions and define the domain-specific modeling language by a
declarative metamodel. This metamodel is divided into data-, process-, and
GUI sub-models. Besides, we provide well-formedness rules and graphical
concrete syntax leading to the graphical model editor for app models. We also
consider model quality. Finally, the domain-specific modeling language is
evaluated with respect the modeling language requirements, existing guide-
lines for domain-specific modeling languages, and the guidelines for user
interface description languages.

• Chapter 7 starts with the qualitative analysis of reference applications. We
consider a mobile application that represents an information system and
another mobile application that realizes a transactional system. A represen-
tative reference application was created subsequent to this analysis. Based
on this representative reference application, the architectural design and the
code can be abstracted and transferred to code generators. Additionally, the
construction of code generators deals with the project and platform-specific
initialization for the used IDEs, the architecture of the generated mobile appli-
cations, and the mapping of the model elements to platform-specific types.
Subsequently, the processing of runtime models is explained. Finally, these
contributions are evaluated.

• In Chapter 8, we present related work on model-driven development frame-
works for mobile applications.

The second part of the thesis deals with the context support and demonstrates how 1.55
the already provided or added functionality supports context-awareness.

• The basic concepts and terms of context-awareness and the open issues will
be presented in Chapter 9.

• In Chapter 10, we present the requirements related to the contexts of mobile
applications.

• In Chapter 11, we continue the domain analysis to add context-related features
to the feature model. As a result, the extend feature model describes, in
addition, the properties of context-aware mobile applications.

• In Chapter 12, we show how the generated mobile applications deal with user
contexts through design and runtime instantiation of role-specific processes.
The evaluation includes two case examples.

20 Chapter 1. Introduction

• In Chapter 13, we explain how design time adaptation (e.g., model transfor-
mation) and runtime adaptation support different types of mobile devices.
The mechanisms are demonstrated by a case example.

• Chapter 14 presents the design process for the design of online- and offline-
capable mobile applications. To this, the model-driven analysis, model-based
simulation, and model-driven generation are presented. These contributions
are evaluated by an analysis of different app models. In the second part of
the evaluation, we will report on the re-engineering of an existing real-world
mobile application while using the proposed design process.

• Chapter 15 discusses the related work according to existing model-driven
development frameworks for context-aware mobile applications.

In Chapter 16, we summarize this thesis. We give an outlook on possible future1.56
research related to this work.

This thesis contains also different appendices with further material: Appendix A1.57
(Well-Formedness Rules), Appendix B (App Models), Appendix C (Tutorial), and
Appendix D (Miscellaneous).

21

Part I

Model-Driven Development of
Mobile Applications

23

Chapter 2

Model-Driven Development
and SE of Mobile Applications –
Foundations and Definitions

The following sections exemplify the process and the components used in model- 2.1
driven development approach. Since we are heading towards the construction of a
model-driven development infrastructure in this work, we give a short introduction
how these components can be designed. Subsequently, we present the state-of-the-
art software engineering processes that are used to develop mobile applications
and point out the open issues. Finally, we present several mobile platforms and
their key concepts.

2.1 Model-Driven Development

Compared to the document-centric and technology-dominated traditional software 2.2
process models (e.g., V-Model [Boe79], Waterfall model [Roy87]), the model-driven
development process [Mel+03] differs considerably. Model-driven development
uses software models at all stages of the development process and is, therefore, a
model-centric approach. This approach supports maintainability of software systems
in such a way that modifications are made through modifications in the software
models (cf. Lientz [Lie83], Lientz and Swanson [LS81] [LS80], and Lientz et al.
[Lie+78]). Portability can be ensured by different code generators which generate
native program code for different software platforms. In general, model-driven
development increases the abstraction of software development and leaves most
technical details up to the code generators.

As stated before, the model-driven development approach uses a software model 2.3
as the primary artifact. The term model is ambiguous, as it is used widely in general
sciences and may differ considerably across different disciplines. Stachowiak [Sta73]
defines that a model has the following properties: it represents an original (mapping),
it reduces details of the original (reduction), and it has a purpose, i.e., is used
instead of the original (pragmatic). Thus, models are usually descriptive in traditional
scientific disciplines [Sei03]. However, Seidewitz states that models can be used
to specify non-existing software systems, which is relevant to the model-driven
development process. Thus, software models can be used both prescriptively and
descriptively in the software engineering discipline.

In this work, we adopt the term model from Kleppe et al. [Kle+03, p. 16]. They state 2.4
“A model is a description of (part of) a system written in a well-defined language. A
well-defined language is a language with well-defined form (syntax) and meaning
(semantics), which is suitable for automated interpretation by a computer.” This
definition gives rise to the question to how a language can be defined well.

In general, there are two fundamentally different [WK05] approaches to defining 2.5

24 Chapter 2. MDD and SE of Mobile Applications – Foundations and Definitions

languages: the (i) grammarware and (ii) modelware approach.

The grammarware approach uses the Extended Backus-Naur Form (EBNF) as a2.6
metalanguage to define (programming) languages. Graph grammars are similar to
Chomsky grammars which are used in formal language theory. The main idea of
graph grammars is a rule-based transformation of graphs modeling and representing
different kinds of systems (e.g., software systems) [Ehr+06]. Graph grammars will
not be further pursued within this thesis.

In contrast, the modelware approach uses a meta-modeling approach in order to2.7
define metamodels describing again a set of models. We use the modelware approach
in this work because a metamodel-based definition of languages provides several
features, such as the creation of well-formed models, model transformation, model
synthesis (code generation), and model comparison [Pai+12]. These features are
essential for the model-driven development methodology.

Metamodels describe the permitted structure for models themselves. The terms2.8
metamodel and (domain-specific) modeling language will be used synonymously in
this work because the domain-specific modeling language is defined by a meta-
model. Moreover, we often will not differentiate between modeling languages and
programming languages, but we are aware that modeling languages raise the level of
abstraction and will, in general, not have the same expressiveness as programming
languages (cf. Neubauer et al. [Neu+14]). The permitted structure of metamodels
can be described again by metamodels, which is known as the metaisation [Str98]
principle. Metamodels can be self-descriptive in order to avoid an endless metai-
sation. In this work, we follow a four-layered architecture (cf. Figure 2.1 left-hand
side). The Object Management Group (OMG) standards Meta Object Facility (MOF)
[34] and Unified Modeling Language (UML) [36]; [37] can be mapped (cf. Figure
2.1 right-hand side) to this four-layer architecture.

describes

Meta-metamodel

describes

MOF

describes describes

Metamodel UML Metamodel

describes describes

Model UML Model

describes describes

User data Instances

M3

M2

M1

M0

FIGURE 2.1: Four-layer metamodel architecture

The modelware approach covers the definition of an abstract syntax but disregards2.9
other aspects such as concrete syntax and semantics (cf. [Küh05]). A concrete syntax
can be defined textually or visually [Fon07] by mapping the visual elements or
textual tokens to the elements of the abstract syntax [Mul+08]. The concrete syntax
may be derived automatically [Gar+06] from metamodels and kept synchronized
[Rát+10] to the metamodel during changes. Since semantics specification is still
a widely discussed topic [HR04] in the modeling community, we notice that the

2.1. Model-Driven Development 25

semantic of a model and model elements are often specified informally in practice
(e.g., in UML).

Authors such as Ludewig [Lud03], Aktinson [AK03], and Kühne [Küh05] presented 2.10
more sophisticated definitions of models and metamodels that contain a discussion of
linguistic and ontological aspects.

Having defined the crucial artifact – the model – of the model-driven development 2.11
process, we can turn toward the usage of the model. According to the taxonomy
of model transformations provided by Mens and Van Gorp [MG06], model trans-
formation can be horizontal/vertical and exogenous/endogenous. A horizontal model
transformation will not lower/increase the abstraction level of the source and the
target model, but a vertical transformation will do so (cf. Stachowiak’s reduction
aspect). Exogenous transformations have different source and target languages.
Source and target language of an endogenous transformation are identical. Model
refactoring is an example of an endogenous transformation. The model-driven
development process shown in Figure 2.2 exemplifies different instantiations of
these kinds of model transformations.

The process starts with a computation-independent model (CIM). The vocabulary 2.12
of the CIM follows the respective application domain (e.g., business) and contains
no technical or computational aspects. The first model-to-model (M2M) transfor-
mation transforms the CIM into a platform-independent model (PIM). This kind
of transformation can be classified as exogenous and horizontal transformation. The
resulting PIM represents the structure and behavior of the specified software sys-
tem. Instances of PIM models are usually UML models or other kinds of models
which are used typically in the software engineering domain (e.g., Business Process
Model and Notation – BPMN, Web Services Business Process Execution Language –
(WS)-BPEL, and Systems Modeling Language – SysML).

M2M M2M M2C
CIM PIM PSM

Code

exogeneousexogeneousexogeneous

M2M
endogeneous

M2M
endogeneous

M2M
endogeneous

FIGURE 2.2: Common usage of software models in an MDD process

Using such models as a technical but platform-independent definition of the system, 2.13
another M2M transformation creates the platform-specific model (PSM) as a result
of an exogenous and horizontal transformation. A PSM expresses the structure and
functionality provided by the PIM in a platform-specific modeling language. For
example, a class model may define the data structure of a software system (as part
of a PIM). The transformation from PIM to PSM may deliver a relational model, in
case that a relational database is the target platform. While CIM and PIM are unique
artifacts, a PSM may occur more than once, depending the number of platforms to
be supported.

The last transformational step transforms the PSM to native program code, which is 2.14
called model-to-code transformation (M2C). This kind of transformation is an exoge-
nous and vertical transformation. The generation of code is a vertical transformation
because code generators usually add a lot of information and technical details and

26 Chapter 2. MDD and SE of Mobile Applications – Foundations and Definitions

lower the level of abstraction. Endogenous and horizontal model-to-model transfor-
mations can be performed on all models (CIM, PIM, and PSM) and represent a
refactoring of the model.

Based on the automation of the different model transformations, we will clarify2.15
that model-driven development is usually tool-supported and (semi)-automated.
Domain specialists use a textual or graphical model editor providing a familiar
vocabulary. The model editors also provide functions for validating and optimizing
(e.g., evaluation and refactoring) created models. Quality-assured and validated
CIM models are translated into PIM models. Technical specialists may add com-
putation information to the PIM models using, again, model editors. The level
of automation can be differentiated by the terms -based and -driven. Streitferdt et
al. [Str+08] state that model-based development uses a model once for only one
desired platform, while model-driven development reuses the model artifact in an
automated process for several platforms.

As Figure 2.2 shows, the process is forward-oriented, i.e., the CIM will be trans-2.16
formed in a unidirectional way to the native program code. Consequently, modifi-
cations of the system are in general only possible by changing the initial artifact,
the CIM. However, some frameworks [AC06] provide bidirectional transformations
and keep the artifacts consistent irrespective of which artifact was modified. This
concept is called round trip engineering (RTE). Indeed, RTE is not feasible for the
model-driven development process as a whole, since it seems hard to recognize
and map high-level constructs (e.g., model elements) to constructs of a lower level
(code statements).

The final result of the model-driven development process is native program code,2.17
as Figure 2.2 shows. Further artifacts, such as program documentation and test
cases can also be generated. Compiled native program code is executable on
(native) runtime environments. In contrast to this model-to-code synthesis, other
approaches directly execute platform-specific models on runtime environments
[VG14]. This approach needs a runtime environment that can execute the PSM.
Thus, we call the traditional model-to-code synthesizer a model compiler and the
runtime approach a model interpreter. Each of these approaches offer advantages
and disadvantages, respectively, which will be discussed in the next section.

One difference of the model-driven development process to the model-driven2.18
architecture (MDA) initiative [33] of the OMG is that the model-driven develop-
ment process is generally not limited to the OMG standards (cf. Favre [Fav04]).
The model-driven development process may contain domain-specific modeling
languages which are developed for domains where they should be applied.

Based on the presented MDD techniques, we select the modelware approach to2.19
define our domain-specific modeling language. Our metamodel architecture has
three layers, namely Metamodels, Models, and Instances. Moreover, our model-
driven development infrastructure supports PIMs and PSMs.

2.2 Design of Model-Driven Development Infrastructures

In the previous section, we describe the artifacts and components (i.e., modeling2.20
languages and model editor; code generators) which are used inside a model-driven
development infrastructure during the model-driven development of a software
system. However, in order to introduce a model-driven development approach to a
new domain, a corresponding model-driven development infrastructure must be
first created by infrastructure developers. Although there is no comprehensive state-
of-the-art process or automation for the systematic development of domain-specific
model-driven development infrastructures, best practices have been proposed by
several authors (e.g., by Kelly and Tolvanen [KT08, Pt. IV], Völter et al. [Völ+13,
Pt. II], Völter [Völ09]). We want to clarify that these best practices do not describe

2.2. Design of Model-Driven Development Infrastructures 27

a general software development process on how model-driven development in-
frastructures could be created, but rather provide guidance on how individual
components should be designed. Therefore, we contribute our agile bottom-up de-
velopment process for domain-specific model-driven IDEs. Based on the following
building blocks this process will be described in the next chapter.

2.2.1 Design of Modeling Languages and Model Editors

The hardest part during the development of a domain-specific model-driven devel- 2.21
opment infrastructure may possibly be the identification of concepts, i.e., domain-
specific language elements. Various authors, such as Deursen et al. [VD+00], Hudak
[Hud96], Spinellis [Spi01], and Luoma et al. [TK05] carried out research pertaining
to the domain-specific modeling language construction. They propose different
methods for concept identification in new domains.

Mernik et al. [Mer+05] describe a detailed approach to construct a domain-specific 2.22
modeling language. This approach consists of the steps decision, analysis, design, and
implementation. The decision motivates the development of the new domain-specific
modeling language. The main reasons to develop a domain-specific modeling
language are notational improvement, task automation, and description of product lines.
Within the analysis step, the problem domain is identified and domain knowledge is
gathered. Sources of knowledge are the technical documents, knowledge provided
by domain experts (interviews), customer surveys and existing implementations,
i.e., native program code in general-purpose languages (GPL). Mernik et al. point
to two variation points within the design step. First, the designed domain-specific
modeling language can exploit other modeling or programming languages. In
this case, the domain-specific modeling language is embedded (piggyback) in an-
other language. Otherwise, the domain-specific modeling language is developed
and used in an isolated fashion (language invention). Second, the degree of for-
malism denotes whether the domain-specific language is described informally or
with formal methods (e.g., grammars). Finally, the implementation steps describe
how a domain-specific language can be implemented. Based on the assumption
that models of a domain-specific modeling language are executable, Mernik et
al. propose several implementation patterns for such languages. Three important
implementation patterns are the interpreter, compiler, and hybrid approach, which
are discussed in the next section in more detail.

A domain-specific modeling language which is developed with the techniques 2.23
mentioned before is not ready for use. The domain-specific modeling language
needs a least one concrete syntax. Although the design of a textual or graphical
concrete syntax is also a very creative part which affects the usability and acceptance
of a modeling language in many respects, this task is supported well by tools. Many
state-of-the-art frameworks support the semi-automated generation of textual and
visual model editors.

2.2.2 Design of Model Compilers

Technically, a code generator realizes a model-to-code (M2C) transformation. Since 2.24
the input and output follow a well-defined language, the term model compiler is also
often used in literature. Two alternative approaches are proposed in literature to
create model compilers:

2.2.2.1 Visitor-Based Approach

A visitor-based approach processes every model element and generates a stream of 2.25
corresponding native program code. The framework Jamda (Java Model-Driven

28 Chapter 2. MDD and SE of Mobile Applications – Foundations and Definitions

Architecture) [Boo03] [41] follows this approach. It provides the creation of meta-
modeling elements and corresponding Java classes and an application program-
ming interface (API) for modifying these models. A visitor mechanism traverses the
model and invokes code synthesis (CodeWriters) for the considered model element.
The Jamda framework manipulates metamodel elements as long as possible by
using cumulative transformations. A disadvantage of this framework is its focus
on a top-down model compiler development. Having, as in our case, reference
applications, it seems not feasible to decompose them into single transformation
steps. Nevertheless, this approach will be applied partially to expand and deco-
rate the input model with additional model elements (cf. Section 7.3.2) during a
preprocessing step.

2.2.2.2 Template-Based Approach

Most model compiler frameworks (e.g., JET [67], FUUT-je, Codagen Architect,2.26
AndroMDA [24], ArcStyler, MetaEdit+ [TR03], and OptimalJ [Lon03]) follow a
template-based approach. A template represents a unit of static code with meta-
code gaps. These meta-code gaps are filled during the model compilation, using
information from the app model as an instance of the domain-specific modeling
language. Hence, template extraction is aimed at identifying which parts of a
program are static, which parts are schematically recurring (e.g., declaration of
attributes and corresponding getters and setters), and which parts depend on the
modeled information. In contrast to the visitor-based approach, the template-based
approach fits well to the bottom-up creation of a code generator.

Since the model-driven development infrastructure should generate runnable mo-2.27
bile applications, all related resources, i.e., layouts, mobile application project
properties, and icons, must be generated as well, since the mentioned artifacts
can also generated by a template-based approach. Hence, we deal not only with
model-to-code transformation but also with a more general model-to-text (M2T)
transformation. Actually, this would not affect the template-based approach. Both
code generators to be developed are written in Xtend [Bet13] using the template-
based approach.

Example (Native Program Code Template). Listing 2.1 shows a native program2.28
code template for the generation of POJOs (Plain Old Java Object). The main
template function (lines 1-8) gets the modeling element class and generates the
native program code of this class comprising the local field declarations and the
accessor methods (getter and setter).

LISTING 2.1: Template for POJO generation

1 <<DEFINE Root FOR Class >>
2 public c l a s s <<name>> {
3 <<FOREACH a t t r s AS a>>
4 private <<a . type . name>> : <<a . name> >;
5 <<ENDFOREACH>>
6 <<EXPAND AccessorMethods FOREACH a t t r i b u t e >>
7 }
8 <<ENDDEFINE>>
9

10 <<DEFINE AccessorMethods FOR Attr ibute >>
11 public <<type . name>> get <<name . toFirstUpper > >() {
12 return t h i s .<<name> >;
13 }
14 public void set <<name . toFirstUpper >>(<<type . name>> <<name>>)

{
15 t h i s .<<name>> = <<name> >;
16 }
17 <<ENDDEFINE>>

2.2. Design of Model-Driven Development Infrastructures 29

The first static code occurs in line 2 outside the meta-code tags («...»). This code
will be generated without modification. The static code in line 4 may occur several
times because it is part of the for-each-iteration. As seen in line 6, other template
functions can be called again in order to generate native program code. This native
program code appears at the location of template method invocation.

Using the class Address (cf. Figure 2.3) as input, the generated code is shown in 2.29
Listing 2.2. From a developer’s perspective, it is often not possible to distinguish
between generated and manually written program code. We follow this attitude
when generating human-readable code. Although models are the primary artifacts
within the model-driven development approach, it is advisable to keep generated
artifacts human-readable regarding labels and structure.

Address

City:String
ZIP:String
Street:String
Number:Integer

FIGURE 2.3: The class Address

LISTING 2.2: The compiled object Address (of type class)

1 public c l a s s Address
2 private S t r i n g : City ;
3 . . .
4 private I n t e g e r : Number ;
5

6 public S t r i n g getCi ty () {
7 return t h i s . City ;
8 }
9 public S t r i n g s e t C i t y (S t r i n g City) {

10 t h i s . City = City ;
11 }
12
13 }

This encourages the manual extension of generated software prototypes (as required
by our agile bottom-up development approach) as well as the maintainability of
the code templates. �

A very common practice is the creation of code templates (cf. Listing 2.1) from 2.30
existing code samples (cf. Listing 2.2) gained by reference applications. We will also
follow this common practice of model compiler construction, but it should also be
clarified how this approach is affected by model interpreter requirements.

2.2.3 Model Compiler vs. Model Interpreter

As shown by the preceding example, the model compiler replaces the meta-code 2.31
statements by the corresponding static information (e.g., class name, type names).
The following two examples show the difference of a model compiling approach
from a model interpreter approach:

Example (Model compiler). Given the GUI model in Figure 2.4, the Page Process- 2.32
esOverview (ProcessSelectorPage) and its style settings can be translated into the
native program code shown in Listing 2.3.

30 Chapter 2. MDD and SE of Mobile Applications – Foundations and Definitions

FIGURE 2.4: Excerpt of a GUI model (showing a ProcessSelectorPage and StyleSettings)

LISTING 2.3: The compiled object ProcessesOverview (excerpt)

1 . . .
2 public c l a s s MainProcessesAct iv i ty extends A c t i v i t y {
3 . . .
4 private void c r e a t e P r o c e s s L i s t () {
5 . . .
6 m a i n _ l i s t . se tFontColor (. . . (2 5 5 , 2 5 5 , 2 5 5)) ;
7 . . .
8 }
9 }

The corresponding code template evaluates the meta-code statement «styleSet-2.33
ting.getFontColor().getRed()» and generates the specified color value
(=255) to the native program code in line 6. A program-code compiler processes
the generated native program code, and the resulting mobile application shows the
modeled behavior, i.e., the specified font color. �

Assume now the installation of the generated mobile application on different de-2.34
vices. For example, the mobile application is deployed to an eBook reader that
only provides a monochrome color scheme. The mobile application may not be
usable because of the unfavorable style scheme. A common practice when using the
model-driven development approach is to modify the GUI model and to generate a
new mobile application variant that fits better to the desired device type. By follow-
ing this approach, to deal with the device heterogeneity, a countless set of mobile
applications and app models will result. According to the proposed approach (cf.
Section 1.4.1) to use design models and runtime models, a better solution seems to
be the configuration of some values at runtime. This is what a model interpreter
realizes.

Example (Model interpreter). Given the same setting as in the preceding example, a2.35
slightly changed code template produces the native program code shown in Listing
2.4. The code template generates static code that works similarly to the meta-code
statement shown in the preceding example.

LISTING 2.4: The partly compiled object ProcessesOverview (excerpt)

1 . . .
2 public c l a s s MainProcessesAct iv i ty extends A c t i v i t y {
3 . . .
4 private void c r e a t e P r o c e s s L i s t () {
5 . . .
6 m a i n _ l i s t . se tFontColor (. . . (
7 RuntimeModel . g e t S t y l e S e t t i n g () . getFontColor () . getRed () ,
8 . . .)) ;
9 . . .

10 }
11 }

2.3. Software Engineering of Mobile Applications 31

The introduced statement in line 7 loads a runtime model at runtime (provided
by the class RuntimeModel) and inserts the corresponding color value. Thus, the
resulting mobile application can be configured at runtime by a runtime model.
Modification of the design model, regeneration of the mobile application, and
redeployment are not necessary. �

The question that may arise now is: why construct a model compiler instead of a 2.36
model interpreter? Similar to the traditional discussion regarding interpreters and
compilers, both have advantages and disadvantages.

Model compiling has the following advantages (cf. den Haan et al.1) over model 2.37
interpretation:

Model compilers capture a lot of technical domain knowledge in the shape of 2.38
generation rules. The generated mobile applications can be generated in such a way
as to look like manually coded mobile applications. Model instances and generation
rules remain hidden to the mobile end user. Thus, compiled model-based mobile
applications do not reveal too much knowledge about the domain and are easier to
understand compared to a model interpreter.

From an infrastructure developer’s perspective, a model compiler approach is easier 2.39
to start with because reference applications can be used for code extraction and
concept analysis. Besides, the model compiler approach is more iterative. A number
of meta-code statements inside a code template could be increased or refined
during the creation of the model-driven development infrastructure. Another
great advantage consists in debugging support. The generated native program code
can be easily debugged using conventional debugging approaches, while model
interpreters are hard to debug.

In contrast, model interpreters have the following advantages over model compilers: 2.40

Model interpreters enable changes at runtime, which is of great importance regarding 2.41
the issue of context-awareness. Regarding platform portability, model interpreters
may abstract from concrete platforms and execute platform-independent models.
Finally, a model interpreter usually needs to be deployed only once and can then be
used for runtime modifications of the mobile application using the runtime model.

Although the model interpreter approach sounds very flexible, not all platforms 2.42
fully support such flexible instantiation. For example, the Android platform does
not support the programmatic access to all graphical user interface elements due to
a static resource management. Thus, the implementation of the model interpreter is
sometimes limited by the runtime behavior of a software platform.

Based on the presented design variants for the different components of a model- 2.43
driven development infrastructure, we developed a domain-specific modeling
language as a self-contained language that depends on no other language. We
initially focus on a graphical concrete syntax for this language, even if a concrete
textual syntax might be useful for certain groups of users (i.e., technically-skilled
developers). The code generators follow a template-based approach since most
meta-tools support this kind of approach. Moreover, a template-based approach
allows a bottom-up construction of code generators. Finally, we followed both a
model compiler approach and a model interpreter approach in this thesis, particu-
larly to benefit from the advantages of each of the approaches. Later on, we will
describe which information can be modeled and evaluated at runtime (cf. Section
7.3.4).

2.3 Software Engineering of Mobile Applications

Next, we turn our attention to the software engineering process of mobile applica- 2.44

1 http://www.theenterprisearchitect.eu/blog/2010/06/28

32 Chapter 2. MDD and SE of Mobile Applications – Foundations and Definitions

tion. Empirical studies reveal that software engineering of mobile applications is
dominated by agile methods, as 86% of survey participants confirm that the agile
methods are appropriate for the development of mobile applications [Flo+14a].
Scrum was the most closely followed approach. Apart from these empirical find-
ings, Abrahamsson shows that agile methods fit very well to the traits observed in
mobile software development [Abr05]. Agile methods match well because of small
development teams (41% have 5-15 members [Flo+14b]), short development cycle
durations (57% projects have a project duration of 6-18 months [Flo+14b]), and high
product release frequency (46% of the projects have a monthly release), whereas tra-
ditional software engineering processes need more lead time for up-front analysis
and design.

Although general agile methods can be applied, the existing agile methods were2.45
refined in order to optimize them for the particular requirements of mobile applica-
tion development. Proposed approaches are Mobile-D [Abr+04] from Abrahamsson
et al., Hybrid Method Engineering (HME) [RR08] by Rahimian and Ramsin, the
Mobile Application Software Agile Methodology (MASAM) [Jeo+08] by Jeong et
al., and the Scrum and Lean Six Sigma (SLeSS) approach [Cun+11] by Cunha et al.
In this context, the work from Rahimian and Ramsin is noteworthy because they
map the main characteristics of agile software development to the traits observed
in mobile software development. Hence, agile principles and mobile application
development match well. Unfortunately, most of these development processes have
not been evaluated or tested in practice.

The community still considers a number of open issues: in 2007, a GI2 Dagstuhl2.46
Research Seminar on Software Development Methodologies for Mobile Applications
defined three main challenges of mobile application software engineering. The
main research dimensions identified by the participants are i) the architecture of
the device, ii) the data and context management, and finally iii) the user interface
heterogeneity [Kön09]. Wasserman [Was10] confirms the mentioned issues but also
explains that non-functional requirements, such as battery lifetime or exceptional
events such as the loss of connectivity, are yet to be covered well by current software
engineering approaches. He also mentions portability as an open issue and sketches
different research directions to solve the problem. Additionally, Dellinger and
Dixon [DD11] propose the use of self-adaptive mechanisms to better support the
dynamism in mobile applications at runtime. Muccini et al. [Muc+12] highlight
the insufficient methods to test mobile applications. Besides these well-separated
research directions, Alencar and Cowan [Ale12] point to several additional issues
and emergent applications.

2.3.1 Model-Driven Development of Mobile Applications

As already shown in Figure 1.2, the existing model-driven development frameworks2.47
show only a low contextual coverage, even if the generated mobile applications
follow a web-based or native implementation. The state-of-the-art of model-driven
development of mobile applications has two major shortcomings: first, the tradi-
tional model compiler approach hardly allows any configuration of the mobile
applications at runtime. Consequently, a mobile application cannot be configured
properly to a specific device- or user context. Second, the architecture of the gener-
ated mobile applications is defined by the code generators. Hence, the architecture
cannot be changed or modified according to the current requirements of the mobile
applications.

2 German Association of Computer Science

2.4. Mobile Software Platforms 33

2.4 Mobile Software Platforms

This section presents the state-of-the-art concepts and technologies that are provided 2.48
or used by the major mobile software platforms. We select two native platforms
(Android and iOS) for this presentation since they are the most common mobile
platforms. Additionally, we present a cross-platform technology, since the cross-
platform approach is (due to its platform-independence) closely related to the model-
driven development approach. We take a closer look at Apache Cordova [03] since
it is a representative state-of-the-art framework for cross-platform development of
mobile applications. Apache Cordova is available for many software platforms.

2.4.1 Android – Concepts and Technology

The first commercial version of the Android operating system was released in 2008 2.49
by the Open Handset Alliance and Google. The operating system is open-source
(Apache License 2.0/GNU GPL v2 for the Linux kernel), but may have proprietary
third-party components. It targets smartphones, tablet computers, TVs, eBooks
and different consumer electronics devices from a huge set of different vendors. It
runs on 32/64 bit ARM (Advanced RISC Machines), x86, x86-64, MIPS and MIPS 64
(MIPS Technologies) hardware architectures. A graphical multi-touch user interface
serves as the default user interface.

The internal software stack of the Android operating system (see Figure 2.5) is 2.50
based on a Linux kernel. The kernel provides process and memory management
and connects the hardware of the device to the application-oriented upper layers.
Several libraries inside the Libraries layer provide, for example, HTML rendering
(WebKit), persistence (SQLite), C-language support (libc), security functionality
(Secure Sockets Layer – SSL), media/graphics support (Open Graphics Library for
Embedded Systems – OpenGL/ES; Skia Graphics Library – SGL), and other built-in
functionality. The sub-layer Android Runtime is particularly relevant in the context
of our work, as it used to execute Java-based programs. Its Dalvik Virtual Machine
(DVM) is the counterpart to the Java Virtual Machine (JVM). The core libraries
provide different Android-specific classes and Java core classes (e.g., android.*,
java.*, and javax.*). However, this library does not contain all standard Java
SDK classes. The Dalvik virtual machine is designed for limited resources (e.g.,
CPU, RAM avg. 10MB, max. 64 MB) and works based on registers (instead of using
a stack). The Application Framework layer provides many higher-level services to
Android applications. Finally, the Applications layer comprises the installed mobile
applications. This includes standard applications (e.g., Home Screen, Browsers, and
E-Mail reader) and user-installed applications. The latter ones are distributed over
a mobile application store. Mobile applications which are to be distributed through
this store must be signed by the publishing authority.

From a mobile application developers’ perspective, an Android application is 2.51
comprised of Java executable files (in Dalvik format), XML (EXtensible Markup
Language) files that describe resources and layouts, and different mobile application
resources like videos, images, and audios. All artifacts are bundled to an .apk-File
(Android Application Package – APK). An essential file of this package is the
Manifest file, which contains meta-information about the developed application.
The APK contains, amongst standard Java SDK classes, classes which are part of
the Android SDK library. This library reflects the application framework layer
shown in Figure 2.5. For example, Activities can be used to create a screen that can
interact with the user. In turn, Activities can interact with each other using Intents.
Functionality that has no user interaction through the graphical user interface
can be provided by non-visible Services. As an example, a music player might be
realized with a service. Since every mobile application runs in its own instance of

34 Chapter 2. MDD and SE of Mobile Applications – Foundations and Definitions

Applications
Home Contacts Phone Browser ...

Application Framework
Activity
Manager

Window
Manager

Content
Providers

View
System

Notification
Manager

Package
Manager

Telephony
Manager

Resource
Manager

Location
Manager

XMPP
Service

Libraries
Android Runtime

Core Libraries

Dalvik Virtual
Machine

Surface
Manager

Media
Framework SQLite

OpenGL/ES FreeType WebKit

SGL SSL libc

Linux Kernel
Display
Driver

Camera
Driver

Bluetooth
Driver

Flash Mem-
ory Driver

Binder (IPC)
Driver

USB
Driver

Keypad
Driver

Wi-Fi
Driver

Audio
Drivers

Power
Management

FIGURE 2.5: Android software stack

the virtual machine, Content Providers and Broadcast Receivers are used to establish a
communication between mobile applications.

A model-driven development infrastructure designer must keep in mind that the2.52
Android platform neither provides full support in terms of the Java SE specification
nor the Java JEE libraries. Any functionality which is taken from a third party
library must be bundled to the developed mobile application. Moreover, the Dalvik
virtual machine is also limited in many respects (e.g., the overall number of methods
in a mobile application).

2.4.2 iOS – Concepts and Technology

The first version of iOS (formerly known as iPhone OS) was released in 2007 by2.53
Apple Inc. The operating system is closed-source. It exclusively targets devices
from Apple, such as smartphones (iPhone), tablets (iPad), and multimedia devices
(iPod Touch). It runs on different versions of ARM hardware architectures. The
user interface is graphical and multi-touch capable.

The internal software stack of iOS (see Figure 2.6) is based on the XnU3 kernel2.54
which is, in turn, an incarnation of the Mach kernel (Carnegie Mellon University).
Moreover, the Darwin operating system and Berkeley Software Distribution (BSD)
are also ancestors of iOS. The Kernel and Device Drivers layer provides additionally
the device drivers. The Core OS layer provides frameworks for realizing process
intensive calculations (Accelerate Framework), interaction with wireless devices
3 X is not UNIX

2.4. Mobile Software Platforms 35

Applications
Phone Browser Messenger ...

Cocoa Touch
Notification Center

Framework
EventKit

Framework
MessageUI
Framework

UIKit
Framework

MapKit
Framework

GameKit
Framework

...

Media
Graphics Audio Video AirPlay

Core Services

Objective-C
public

Frameworks

Address Book
Framework

Core Location
Framework

...

Objective-C
private

Frameworks
...

iOS Runtime
Objective-C

Runtime

Core OS
Network Exten-
sion Framework

External Acces-
sory Framework

Generic Security
Services Framework

Local Authentifi-
cation Framework

Security
Framework

Accelerate
Framework

Core Bluetooth
Framework

Kernel and Device Drivers
System Memory File system Network 64-Bit

FIGURE 2.6: iOS software stack

(Core Bluetooth Framework), accessing external devices which are connected via
the docking interface (External Accessory Framework), secure applications (Generic
Security Services Framework/Security Framework), local authentication (Local Au-
thentication Framework), and connections and configurations (Network Extension
Framework) of Virtual Private Networks (VPN). The Core Services layer provides
the Objective-C runtime and the Objective-C private and public frameworks. The
public frameworks can be accessed by every third-party application while the
private frameworks are reserved for manufacturer applications, i.e., Apple’s own
applications. The Media layer provides many frameworks for processing media of
different kinds. The Cocoa Touch layer contains the key frameworks for building iOS
applications. These frameworks (e.g., the UIKit Framework) provide the basic appli-
cation infrastructure such as user interface management, the model-view-controller
stubs, graphics and windowing support, etc. Finally, the Applications layer contains
the pre-installed mobile applications as well as the user-installed applications. The

36 Chapter 2. MDD and SE of Mobile Applications – Foundations and Definitions

latter ones are distributed over a mobile application store.

From a mobile application developers’ perspective, an iOS application contains2.55
compiled and executable files (prepared for ARM architecture), NIB files (NeXT
Interface Builder) which contain the layouts, and resources like videos, images, and
audios. All artifacts are bundled to an .app file (Application bundle file) which in
turn is enveloped by an .ipa-File (iOS application archive file). An essential file of
this archive is the Info file (Info.plist), which contains the meta-information of the
particular mobile application. The archive may contain standard Objective-C classes
which are not specific to iOS, as well as classes which relate to the frameworks
shown in Figure 2.6. Typical iOS-specific classes are UIViewController which are
used to interact with the user through the graphical user interface. A transition
between view controllers can be realized with Seques.

A model-driven development infrastructure designer must keep in mind that the2.56
generation and code compilation of iOS applications requires the proprietary XCode
building tool in order to seal and encrypt the resulting binary. Moreover, the set-up
of a project structure inside or outside XCode might be not supported as XCode is a
proprietary IDE.

2.4.3 Comparing Android and iOS

As shown in Figures 2.5 and 2.6, the architectures of both platforms follow a layered2.57
architecture containing similar components. The biggest difference according to
the software platform is the underlying hardware platform. iOS is limited to
proprietary devices (e.g., iPhone and iPad), whereas Android can be found on
devices manufactured by different vendors.

From a software developer’s perspective, both platforms follow a declarative editor-2.58
based definition of the graphical user interface (XCode - iOS/XML - Android). Busi-
ness logic can be specified in commonly-used programming languages (Objective-C
– iOS/Java and C – Android). However, mobile applications for iOS can only be
developed with the XCode IDE, which runs only on macOS (Apple). In turn, differ-
ent IDEs (Eclipse, Android Studio) for the development of Android applications
are available for different operating systems (e.g., macOS, Windows, and Linux).
Since both platforms generally follow the same concepts, the market shows no clear
leader.

Hence, the selection of a native platform depends more on individual factors2.59
(e.g., personal technical skills, license budget, and targeted user group). However,
Android is often considered as more cost-effective and used widely in an academic
context. For more details, please refer to Goadrich & Rogers [GR11] and Gronli et
al. [Grø+10].

2.4.4 Cross-Platform Technologies

As shown in the introduction, the cross-platform approach follows the credo “write2.60
once, run everywhere” whereas the model-driven development approach sound
“model once, run everywhere”. These statements show that both approaches are
very strong competitors and mobile application developers, especially technical
experts, often have difficulties to choose between these approaches. Hence, we
also present the concepts of cross-platform development based on a current cross-
platform development framework. Additionally, one not pursued possibility of the
model-driven development approach is the generation of cross-platform program
code. Indeed, model-driven development could cover the cross-platform approach
in case that the model-driven development infrastructure provides a code gener-
ator for cross-platform languages. The implementation of a cross-platform code
generator is advised, provided high platform coverage is pursued but a moderate

2.4. Mobile Software Platforms 37

hardware access can be accepted. Thus, the implementation of one cross-platform
code generator could be more cost-effective than the implementation of one or more
native code generators.

A popular, state-of-the-art cross-platform technology is Apache Cordova [03] (for- 2.61
merly PhoneGap). Apache Cordova uses CSS3 (Cascading Style Sheets – Level
3), HTML5 (Hypertext Markup Language Version 5) and JavaScript as a platform-
independent programming language. The framework supports different platforms,
such as Android, iOS, Blackberry, and Windows Phone. An Apache Cordova appli-
cation contains HTML5 and JavaScript. It can make calls to native application code
of the particular platform it is running on. Thus it follows both a runtime approach
by executing the web-based parts and a cross-compiling approach by providing the
ability to execute native application parts. Native routines must be implemented
beforehand on all targeted platforms by the IDE developers. These functions are
stored in API libraries. Mobile application developers that need further functional-
ity may create their own plugins. Similar to the traditional development approach,
these plugins must be manually implemented for each target platform (e.g., iOS
and Android).

Figure 2.7 shows the architecture of an Apache Cordova application running on the 2.62
Android platform. The implementation looks similar for other software platforms.
The application is separated into a Web Architecture part (left-hand side) and an An-
droid Cordova Container (right-hand side). The HTML Android Application container
contains the developed application, which is separated into a UI Layer (HTML, CSS,
and JavaScript; cf. Oehlman and Blanc [OB11]) and an Application Logic layer. The
HTML Android Application makes HTML/JavaScript and Cordova JavaScript API
calls to the Android WebView component that in turn make Android-API calls to
the Android platform. Moreover, the Android WebView component delegates the
Cordova JavaScript API calls to the responsible Cordova plugins. These plugins
make Android API calls to the Android platform. Thus HTML Android Application
can reach any native functionality either by preexisting or custom plugins.

W
eb

A
rc

hi
te

ct
ur

e

HTML Android App

UI Layer (HTML, CSS, JS)

Application Logic in JS

H
TM

L5
/J

S
A

PI

C
or

do
va

JS
A

PI

Android WebView
Cordova

Native API

A
nd

ro
id

A
PI

s

A
nd

ro
id

C
or

do
va

C
on

ta
in

er
Cordova Plugins

Vibration

In-App Browser

Device Motion

Geolocation

Media

Network

File

Camera

Custom Plugins

A
nd

ro
id

A
PI

s

Android Platform

FIGURE 2.7: Architecture of an Apache Cordova application running on Android
(cf. Brucker and Herzberg [BH16])

From a mobile application developer’s perspective, the core of a Cordova applica- 2.63
tion is provided by the HTML, CSS, and JavaScript code inside the folder www. The
meta-information is stored in the config.xml file. These core artifacts are platform

38 Chapter 2. MDD and SE of Mobile Applications – Foundations and Definitions

independent. Mobile application developers might add platform-specific code
inside the folder plugins. The platform-independent program code is wrapped into
a hybrid and platform-specific mobile application.

Even though the development of a cross-platform code generator is not intended2.64
by this work, a model-driven development infrastructure designer must keep
in mind that the cross-platform approach might limit the architectural design of
a mobile application. For example, different architectural patterns (e.g., Model-
View-Controller) are not feasible since the cross-platform approach follows a flat
architectural design by putting the application logic only to one single layer which
in general seems not to be adequate.

As mentioned in the introduction, we focus on native application development due2.65
to their full capability in terms of hardware access. In particular, we contribute
code generators for both Android and iOS platforms. However, using a model-
driven development process, we are potentially able to provide code generators for
cross-platforms (e.g., Apace Cordova).

2.4.5 Comparing Cross-Platform Technologies and MDD

A common characteristic of both approaches is the abstraction of the software plat-2.66
form. Cross-platform technologies reuse mostly web-based languages, whereas
the model-driven development approach reuses existing general-purpose mod-
eling languages or domain-specific modeling languages. From the developers’
perspective, cross-platform approaches provide no abstractions in terms of techni-
cal concerns. Hence, cross-platform approaches are suitable for technical experts.
The model-driven development approach might also be useful for domain experts
with less technical skill. Moreover, cross-platform approaches are limited when it
comes to accessing hardware. Such device-specific parts cannot be implemented in
cross-platform languages, but can be realized using native languages.

39

Chapter 3

Agile Bottom-Up Development
of Domain-Specific IDEs for
Model-Driven Development

While developing the model-driven development infrastructure1, the chosen soft- 3.1
ware development process once again employs a model-driven development model
[Völ+13] as well as agile software development methods [09]. We align domain-
specific, platform-independent abstractions provided by model-driven develop-
ment with agile principles such as quick response and early delivery. Experience has
shown that model-driven and agile practices complement each other well [Kul+11]
[ZP11]. Having developed a domain-specific modeling language, the development
of corresponding model editors and code generators is facilitated by a wealth of
meta-tools: GMF [65], Sirius [70] and Xtext [72] for model editor development, and
Xtend [Bet13] and EGL [61] for generator development.

In the state-of-the-art process of using these meta-tools, the developer analyzes 3.2
one or several reference applications completely and extracts knowledge to specify
the domain-specific IDE components, namely the domain-specific modeling lan-
guage, corresponding model editors, and code generators. This approach, referred
to as bottom-up development [BS13], assumes that full reference applications are
provided upfront, which is reasonable if the involved technologies and user re-
quirements are stipulated at the start of the project. In rapidly evolving software
domains, however, this assumption does not hold anymore: due to changing user
demands and underlying technologies, a domain-specific modeling language is
exposed to evolution during its whole lifespan. Additionally, a domain-specific
modeling language may change due to refinement and extension steps. Hence,
enabling the co-evolution of the domain-specific modeling language and depending
artifacts, such as the textual or graphical model editor and the code generators,
poses a challenge. The following research question arises: how can domain-specific
IDEs be developed systematically in the presence of modeling language evolution?

Based on these experiences and existing tools, we apply a modified software devel- 3.3
opment process called the agile bottom-up development process of domain-specific IDEs
for model-driven development [Vau+15]. This process focuses on the co-evolution of a
domain-specific modeling language, its model editors, and code generators. The
key is to organize language evolution into fine-grained evolution steps: in each step,
prototype models are employed to generate one or several application prototypes.
The mobile application developer manually modifies the prototypes as required
for the evolution step. The IDE developer then identifies aspects concerning the
domain-specific modeling language, model editors, and code generators. These as-
pects are used as input for their synchronous evolution. Afterward, the application

1 Not to be confused with the software development of mobile applications itself while using the
model-driven development infrastructure.

40 Chapter 3. Agile Bottom-Up Development of IDEs for MDD

prototype is no longer required. The process is not designed for any specific agile
methodology, but can be aligned with agile methodologies, e.g., Scrum.

3.1 Agile Bottom-Up IDE Development Process

The agile bottom-up IDE development process applied in this thesis consists of3.4
three steps: first, to define an initial domain-specific modeling language and IDE,
a domain analysis is carried out, involving the extraction of domain concepts and
generator templates from existing reference applications.

Second, in the course of continuous language and IDE development, infrastructure3.5
developers, as well as mobile application developers, perform evolution steps,
including the generation and modification of prototypes and successive evolution
of the domain-specific modeling language and IDE.

Third, evolution steps may require a follow-up migration step to reconcile incon-3.6
sistencies introduced in existing prototype app models during the evolution step.
These app models are model-based descriptions of prototypes. For each of these
activities, we outline the involved manual and automated tasks, and the tools
supporting these tasks.

3.1.1 Domain Analysis

Different factors can cause a change to the model-driven development approach:3.7
first, in large software projects, a lot of boilerplate code may exist due to similar use
cases. Second, a number of separate unrelated applications might show similarities
in structure and behavior. Third, it may be required to deploy one individual
application to several target platforms. In each of these scenarios, the abstraction
level of development can be lifted by using domain-specific modeling languages
with code generation facilities. The initial step to establish such a domain-specific
modeling language is called domain analysis, which is based on one or several
reference applications.

Domain analysis involves three steps: quality assurance, domain concept identification,3.8
and template extraction. Quality assurance means ensuring that the existing applica-
tions exhibit high quality, rendering them suitable as reference applications for code
generation. This task involves the identification of anti-patterns and refactoring
toward design patterns. During domain concept identification, concepts recurring
throughout the reference applications are identified; they are reflected in the model
elements of the domain-specific modeling language. The aim of template extraction
is to specify generator templates: a generator template represents a unit of code
with gaps. The gaps are filled during application development by the generator, us-
ing application-specific information derived from instances of the domain-specific
modeling language.

Quality assurance can be partly automated using static analysis tools supporting3.9
the detection of anti-patterns and code smells [Nov+10]. A promising technology to
detect recurring concepts is automated clone detection [Roy+09]. To our knowledge,
there is no specific tool to manage the extraction of templates based on reference
applications, thereby leaving it a fully manual step.

3.1.2 Continuous Language and IDE Development

We propose to develop IDE components, notably textual or graphical model editors3.10
and code generators, in fine-grained iterations (cf. Figure 3.1): first, infrastruc-
ture and mobile application developers decide on the next feature that should be

3.1. Agile Bottom-Up IDE Development Process 41

supported by the domain-specific modeling language and its IDE. The mobile appli-
cation developer then goes on to generate one or more prototypes from app models
and to manually extend these prototypes creating the code required to implement
this feature. The extension is then analyzed by the infrastructure developer, which
results in a synchronous evolution step of the domain-specific modeling language
and its IDE.

Reference
application(s)

Development of domain-specific IDE

Development of concrete application
(prototypes)

extend

generateabstract

App model

Domain-specific
modeling language

/code generators

Mobile application

FIGURE 3.1: Agile MDD process in action: fine-grained evolution steps

In this approach, the mobile application developer is required to inspect the gen- 3.11
erated prototypes and then extend them to incorporate new features. Therefore,
it is essential that generated mobile applications are working software systems
and that the generated code is of good quality, i.e., well-structured and easy to
understand. As an aid to support the comprehension of the generated code, we
provide a mapping between domain-specific modeling language elements and the
individual code generator templates involved in implementing these elements. In
our experience, such a mapping has proven itself valuable.

Example (Language design and development iteration). To illustrate an evolution 3.12
step, we implement an eLearning application for safety instructions. The eLearning
application, illustrated in Figure 3.2, comprises two use cases: the first use case,
called learning mode, concerns learning using different media types (e.g., videos,
pictures, and sound recordings). The second use case, called testing mode, allows
practicing learned content using assignment tasks.

The developed metamodel includes style settings and generic page types serving 3.13
different purposes. For example, there is a ViewPage for displaying objects and an
EditPage for modifying them. To offer the eLearning functionality, we introduced
an eLearningPage into the metamodel. As Figure 3.2 shows, the purpose of the
eLearningPage is to present learning content (learning mode) or provide a self-test
format (testing mode). The eLearningPage hides the technical details (e.g., playing the
sound file, loading media files) from the mobile application modeler. Adding the
eLearningPage was the only domain-specific modeling language extension required
to implement this application.

After having extended the domain-specific modeling language, the graphical model 3.14
editor was regenerated. The code generators had to be then adapted to the new
language elements. In order to process the new eLearningPage element, a new tem-
plate (eLearningPageGenerator) was added to the generator. This template initially
generated an empty Android activity or iOS view. We then extended the empty
mock class with the required code. After testing, we abstracted the inserted code
to code templates. The iteration ended when the regenerated application fulfilled

42 Chapter 3. Agile Bottom-Up Development of IDEs for MDD

Radiation

(A) Learning mode

 Radiation
 Pressure
 Voltage

(B) Testing mode

FIGURE 3.2: eLearning application for a safety instruction

the same requirements as the extended prototype. The prototype is then no longer
required. �

Various meta-tools allow specifying model editors, transformations, and further3.15
tools. GMF, Xtext, and Sirius support high-level specification of textual and graphi-
cal model editors. ATL [58], Henshin [66], ViaTra [VB07], and many more support
the specification of model translations, simulations, and optimizations. There are
further meta-tools for IDE components such as EMF Refactor [63] for model quality
assurance, and EMF Compare [62] and SiLift [Keh+13] to support version man-
agement features. Since continuous language evolution results in continuous IDE
evolution, co-evolution processes are important to be considered and supported by
tools. Therefore, meta-tools are needed. All dependent artifacts such as instance
models, model transformations, especially code generators, model editor specifi-
cations, model quality assurance, and version management tools can be migrated
with those tools. Future research is needed to automate these migrations.

3.1.3 Migration of App Models

Since app models are directly dependent on the evolution of their domain-specific3.16
modeling language, they have to be kept consistent with the domain-specific mod-
eling language. One possibility is to only make changes that do not necessitate
adapting the software systems on lower layers. However, this might lead the solu-
tions to get compromised in language design. The alternative is to migrate them
accordingly, hence to allow the free development of domain-specific modeling
languages.

Co-evolution tools such as Edapt [60] and Flock [Ros+10] are available, but they still3.17
show some limitations: for instance, Edapt supports the evolution of metamodels
using predefined operations and the automatic deduction of a suitable migration
script for all instance models. However, integrating these predefined operations
requires a significant adoption of existing modeling workflows and tools. Con-
sequently, migration processes are currently performed manually, which can be
tedious and error-prone. In the future, we aim to provide tool support for the
automated co-evolution of app models. We intend to base these tools on results
concerning the co-evolution of language metamodels and instance models [Gru+07]
[Cic+08].

3.2. Three-Tier Agile Process Model 43

3.2 Three-Tier Agile Process Model

From a global perspective, considering all processes and tools involved in the 3.18
model-driven development of domain-specific IDEs leads to three tiers of soft-
ware development: the development of concrete applications, the development of
domain-specific IDEs for model-driven development, and the development of meta-
tools to specify IDE components. Readers should carefully differentiate between
these various tiers of development. For example, the generation of a model editor
from a metamodel using meta-tools should not be confused with the generation of
a mobile application from an app model by the domain-specific IDE.

Although the main contribution of this thesis is a domain-specific IDE for model- 3.19
driven development of mobile applications, we also state that concrete applications
and meta-tools shall be developed based on agile principles as well. To quickly
respond to new user demands and technologies, all involved software systems
should be developed continuously, their development incorporating short feedback
cycles based on running software.

This set of requirements leads to the stipulation of a three-tier agile development 3.20
process model, as outlined in Figure 3.3. In the domain of mobile applications, for
example, a concrete application is a mobile application that is developed using
an IDE for model-driven development of mobile applications. Meta-tools such as
model editor generators or model-to-code transformation approaches can be used
to specify model editors and code generators of these IDEs.

Meta-
tool

Evaluatio
n

Im
plem

en-

tation D
es

ig
n

Analysis

Domain-
specific

IDE

Evaluatio
n

Im
plem

en-

tation D
es

ig
n

Analysis

Appli-
cation

Evaluatio
n

Im
plem

en-

tation D
es

ig
n

Analysis

Feedback

Specified or generated
IDE component

Feedback

Generated application

FIGURE 3.3: Three-tier agile software development process model

The interplay of three different kinds of software projects leads to challenges: 3.21
changes in one software project can affect the other projects. These challenges
are intensified by different life cycles and change frequencies. While applications
are quickly developed by the model-driven development process, IDE development
is much slower, and meta-tools are usually developed completely independently of
concrete IDEs.

3.3 Demonstration

The preceding sections demonstrate an iteration of a process that claims to support 3.22
infrastructure developers in developing a domain-specific model-driven IDE under
constantly evolving modeling languages. Referring back to the initial research ques-
tion “How can domain-specific IDEs be developed systematically in the presence
of model language evolution?” we will evaluate this research question and the
corresponding contribution by answering two sub-questions: given the proposed
process of agile bottom-up development of domain-specific model-driven IDE de-
velopment, we are interested in a) whether the process is applicable at all (Question
1) and b) how useful is such a process (Question 2).

44 Chapter 3. Agile Bottom-Up Development of IDEs for MDD

#EClass

LoC

LoC(Android)/
LoC (iOS)

#EClass +
#Process +

#Task + #Page

#Use case

1. (Rev. 896)

DSML
(25)

Editor
(68129)

Generator
(10484/1419)

Prototype app
model (12)

Prototype
app (1)

6. (Rev. 1304)

DSML
(30)

Editor
(80211)

Generator
(23203/1415)

Prototype app
model (30)

Prototype
app (6)

12. (Rev. 1809)

DSML
(39)

Editor
(108033)

Generator
(23629/2767)

Prototype app
model (53)

Prototype
app (12)

19. (Rev. 2351)

DSML
(46)

Editor
(217458)

Generator
(30141/11121)

Prototype app
model (83)

Prototype
app (19)

FIGURE 3.4: Continuous language, IDE, and prototype extensions

3.3.1 Setup

We evaluate our research questions based on the data collected during our research3.23
project (cf. Chapter D.1), thereby we have no controlled experiment with external
test subjects. We collect data (from 19 iterations) from our own research project’s
code repository system. Figure 3.4 shows four milestones achieved during the
development of the model-driven development infrastructure. We can see the
incremental growth of both the domain-specific IDE and the prototype (generated
from the app model). Each iteration realizes an additional use case. During the first
six iterations (Rev. 1304), the core functionalities were implemented, followed by
the enhanced functionalities. We changed the domain-specific modeling language
26 times within a period of about 18 months to cover the 19 use cases of two
reference applications (cf. Sections D.2 and D.3). Most of the changes were pure
extensions of the domain-specific modeling language (from 25 up to 46 elements),
but they often affect existing language elements. We developed several example
mobile applications of different kinds simultaneously through the course of the
development of the domain-specific IDE as case studies.

3.3.2 Applicability of the Approach (Question 1)

In order to show the applicability of the proposed agile bottom-up development3.24
process for domain-specific IDEs, we want to emphasize that during the complete
implementation of the model-driven development infrastructure only the proposed
process was applied. The resulting model-driven development infrastructure is
indeed no product of an incremental non-agile development process, which is
the state of the art. Based on the early delivery of the model-driven development
infrastructure after the first initial revision (Rev. 896) the infrastructure developers
get a response from the users, i.e., mobile application developers. This response
(cf. Section 6.7 for an example) leads to new requirements or refinements of the
existing requirements. In order to react to these requirements, the infrastructure
developers must act in an agile way. Moreover, other infrastructure extensions such
as eLearning features (cf. Section 12.3.2) as well as online and offline capability of
mobile applications (cf. Section 14.5.2.1) were not an initial goal of the research
project and subsequently added. The implementation of these additional features
requires steady adaptation and refactoring of existing components in an agile way.
During the implementation of the model-driven development infrastructure for
mobile applications, the different infrastructure developers apply agile methods. In
this way, they follow the agile bottom-up development process for domain-specific
IDEs. To sum up, by using our proposed methodology to develop our own IDE

3.3. Demonstration 45

used for our research, we demonstrate that at least one larger MDD infrastructure
has been successfully developed using this approach.

3.3.3 Usefulness of the Approach (Question 2)

Regarding the second research question, we want to discuss how beneficial the 3.25
proposed agile bottom-up development process for domain-specific IDEs is. Unfor-
tunately, we cannot compare our agile bottom-up development process to non-agile
bottom-up development processes due to deviations regarding the considered
domain, project size, and many other factors.

However, through the acquisition of the key data (e.g., model elements of the DSML, 3.26
lines of code, number of realized use cases, etc.) during our research project (see
Figure 3.4), some conclusions can be drawn. We assume that the model-driven
development infrastructure’s artifact sizes can be compared and look similar to
the artifact sizes at the end of a (typical) non-agile development process. We
found the early delivery of the model-driven development infrastructure compared
to a non-agile process to be very useful. In particular, the early delivery of the
graphical concrete syntax inside the graphical model editor has proven useful.
Non-agile methods are limited to known facts that are given in the literature (e.g.,
design guidelines) and the experience of technical experts. In addition to this, our
approach benefits from the mobile application developers’ opinions and suggestions.
Another advantage of an early delivery in the area of model-driven infrastructure
development is the provision of test models. Test models can be created with the
already working model-driven development infrastructure in order to test the code
generators.

Even if the same result can be reached by a non-agile process, the agile method 3.27
allows the infrastructure developer to focus on the current task and reduces the
overall complexity of development process. In contrast to traditional application
development tasks, the development tasks of infrastructure developers are more
complex. A typical task consists of many steps (introducing a new language el-
ement in the domain-specific modeling language, modifying and extending the
graphical model editor, modifying and extending the code generators, extending
and changing existing test models, testing the generation process, and testing the
runtime behavior of the mobile application) and thus the agile and incremental
development process relieves an infrastructure developer. During a typical in-
cremental step, approximately 4,000 lines of code are added to the model-driven
development infrastructure.

We evaluate the use of meta tools and found a positive impact on productivity. After 3.28
each domain-specific modeling language modification, the graphical model editor,
a key component of the domain-specific IDE, was regenerated. Figure 3.4 shows
the growth in size of the graphical model editor and the Android code generator: in
terms of lines of code, the graphical model editor was at least three times larger than
the code generator during all iterations. The generation of this large percentage of
the codebase helped to shorten the development cycles: changes to the domain-
specific modeling language were immediately available in the graphical model
editor. This is very useful according to the different infrastructure developers who
worked on the model-driven development infrastructure. Instead of spending a lot
of time to become familiar with the architectural structure of the graphical model
editor, they could make changes to the domain-specific modeling language after
a short introduction and generate the graphical model editor anew immediately.
This enabled many infrastructure developers to contribute over the course of the
research project.

47

Chapter 4

Requirements for Model-Driven
Development of Mobile Applications

The majority of research products of this thesis are components of a software system, 4.1
here the model-driven development infrastructure for mobile applications. The
corresponding requirements must be defined both to specify the system upfront
and to evaluate the system at a later stage. To avoid a subjective bias introduced by
using requirements defined by ourselves, we ask domain experts from industry for
their support regarding the requirements of the model-driven development infras-
tructure. As part of a research project1, they discuss and define the requirements
for a model-driven development infrastructure.

As well as collecting requirements in cooperation with these domain experts, we 4.2
review existing mobile applications from our project partner from industry and ex-
tract general features of these manual-coded mobile applications. Our model-driven
development approach should be able to provide the features we thus identify. At
the time of this requirement elicitation, we only conduct a high-level review of these
existing mobile applications2. However, the same mobile applications later serve as
reference applications for code extraction (cf. Section 7.1).

In difference to a traditional non-iterative application of requirement engineering 4.3
that delivers a very detailed and complete requirement specification upfront, we
could not specify the system completely in advance. The main reasons for this
are the complexity and the high number of specifications needed to describe the
model-driven development infrastructure completely. Hence, the domain experts
contribute just the following requirements to frame the desired model-driven de-
velopment infrastructure. They also provide the mentioned reference applications
as a kind of running specification of the desired output of the model-driven devel-
opment infrastructure (i.e., generated mobile applications). It was agreed that the
used software development process model (cf. Chapter 3) should provide steps to
refine the requirements and evaluate intermediate results (e.g., the domain-specific
modeling language) in an agile way.

The following three paragraphs present the requirements according to the modeling 4.4
language, the architecture of the generated mobile applications, and the tools which
should be implemented. These requirements focus only on the model-driven
development infrastructure, while further requirements dealing with the context
support of mobile applications are presented in the second part of this thesis (cf.
Chapter 10).

4.1 Modeling Language Requirements

We generally require a meta-modeling approach in order to define the domain- 4.5

1 Refer to Section D.1 for the key data of the research project.
2 Refer to Sections D.2 and D.3 for a short explanation of the considered mobile applications.

48 Chapter 4. Requirements for MDD of Mobile Applications

specific modeling language for mobile applications. We use the term meta-model
synonymously with the domain-specific modeling language to be designed for the
domain of mobile applications. The following three aspects sketch the content and
purpose of app models described with the domain-specific modeling language:

4.1.1 Detailed Data Modeling

Description: In order to design mobile applications for different domains, the4.6
domain-specific modeling language should facilitate the modeling of an application-
specific data model.

Explanation: The domain experts require a mobile application to have an individ-4.7
ual and non-generic data model similar to one of the applications used later as a
reference application. The advantage of an individual data model over a generic
data model is that user entries are better structured and can be validated automat-
ically. Nevertheless, the question arises whether the data model should be fixed
before runtime (at design time) or flexibly configured while the mobile application
is already deployed. The latter variant poses serious problems because allowing
the definition of the data model to change at runtime requires the migration of data
and other dependent artifacts (e.g., generated graphical user interfaces, database
schemes). Hence, the domain experts agree that the data model is a detailed design
model.

Acceptance: The requirement is fulfilled if the domain-specific modeling language4.8
– especially the data modeling part – allows an appropriate modeling of various
domains where the mobile application should be used. The targeted domains are
eLearning, touristic and educational applications (e.g., digital guides for conference,
exhibition and museum visitors), as well as environmental and manufacturing
information systems.

4.1.2 Abstract and Detailed Behavior Modeling

Description: Similar to the detailed modeling of data, the domain-specific modeling4.9
language should provide application-specific behavior modeling in order to specify
application logic. However, the individual modeling of standard behavior (e.g.,
CRUD3) should be optional.

Explanation: The ability to model custom behavior is an essential requirement4.10
to create mobile applications with an application-specific function and behavior.
However, it should not be necessary for mobile application developers to model
standard behavior (e.g., CRUD). Instead, it should be possible to use predefined
standard processes accessible by abstract modeling language elements. Besides,
the question arises whether or not the behavior model should be interpreted at
runtime. Since the paradigm of model-driven development is to translate an app
model into an implementation, an exclusive interpretative approach would be
contradictory to the paradigm of code generation. Although domain experts favor
an interpretative usage of the app model, we agree to change the requirement to
support a so-called hybrid approach. In this approach, mobile application developers
can model individual behavior inside a design model. Afterward, using the model-
driven development approach the code generators will translate the behavior model
into a static implementation. The providing users (cf. Section 1.4.1) might use a
runtime behavior model and determine which parts of the implementation should
be instantiated or not, but they cannot add additional functionality to the generated
mobile applications. A behavior model can be an abstract or detailed design model
since it facilitates both detailed modeling and modeling of standard behavior. If

3 CRUD stands for Create, Read, Update, Delete, and describes the generic set of operations that can
be performed on an entity of the data model.

4.1. Modeling Language Requirements 49

mobile application developers require only standard behavior (e.g., CRUD) and
standard design, they can use abstract modeling elements. In turn, application-
specific behavior (e.g., calculating an order discount) can only be modeled with non-
abstract model elements, i.e., detailed modeling of the application-specific process
is required. Additionally, it can be used as a runtime model with the mentioned
limitations.

Acceptance: The requirement is fulfilled if the domain-specific modeling language 4.11
– especially the behavior modeling part – provides individual process definitions.
The defined processes must be configurable at runtime as described before. The
domain-specific modeling language should provide abstract modeling elements
with a standard behavior (e.g., CRUD).

4.1.3 Abstract Graphical User Interface Modeling

Description: Mobile application developers should be able to model the graphical 4.12
user interface (GUI) of a mobile application in an abstract way. Since the abstraction
level is very high, mobile application developers only specify the purpose of a
graphical user interface, e.g., editing an object, showing a map, and taking a picture.

Explanation: Following the opinion of the domain experts, we will not pursue the 4.13
requirement to develop a novel domain-specific modeling language for specifying
graphical user interfaces. Hence, the graphical user interface model will need to
ensure that mobile application developers can specify user interaction at a very
abstract level. They should only specify which types of dialogs appear within
a process (e.g., edit an object, show a list of objects). The navigation between
dialogs and the internal structure should be derived automatically from the other
model parts, i.e., data and behavior model. However, mobile application developers
should be able to define default and individual styles of the graphical user interfaces.
With regards to whether the GUI model should be a design time or runtime model,
we agree with the domain experts to use this model in both variants. Hence, the
GUI model is used as an abstract design model as well as a runtime model.

Acceptance: The requirement is fulfilled if the domain-specific modeling language 4.14
– especially the GUI modeling part – provides abstract modeling elements for the
modeling of the graphical user interface, which can also be interpreted at runtime
by the generated mobile applications.

The following requirements deal with improper model structures or models with 4.15
quality defects:

4.1.4 Well-Formedness of the App Model

Description: Well-formedness rules restrict improper model structures to prevent 4.16
incorrect code generation.

Explanation: To get consistent app models, well-formedness rules must be defined 4.17
in addition to the declarative metamodel. For example, they forbid using a white
font color on a white background. Before translating the app model into native
program code, the code generators should validate the app models automatically
with respect to the structural consistency provided by the metamodel and the
additional well-formedness rules. The well-formedness rules should be specified
in the Object Constraint Language (OCL) in accordance with the object-oriented
meta-modeling approach. In practice, an initial set of well-formedness rules will be
gradually built up by incorporating insights from improper, but positively validated,
app models.

Acceptance: The requirement is fulfilled if a mobile application developer does not 4.18
run into compile or runtime errors due to an improper app model.

50 Chapter 4. Requirements for MDD of Mobile Applications

4.1.5 Model Quality Assurance

Description: Quality assurance in the form of metric functions and model smell4.19
definitions, as well as refactoring proposals should be provided for the domain-
specific modeling language.

Explanation: Although an app model may be well-formed and consistent, it may4.20
still contain quality defects. For example, an extensive data class in the data model
leads to a confusing dialog with a lot of input fields. Metrics functions should count
this and indicate adverse conditions.

Acceptance: The requirement is fulfilled if a quality assurance technique can be4.21
provided for app models.

4.2 Architectural Requirements

The architectural requirements of mobile applications to be generated reflect the4.22
main features of the reference applications. These could be categorized as data-
driven, single user applications, which are able to work in a standalone mode. A
general architectural feature of the mobile applications to be generated is that they
are implemented as native applications.

4.2.1 Data-Driven Mobile Applications

Description: The generated mobile applications should be able to store acquired4.23
data permanently.

Explanation: The generated mobile applications focus on data processing. The4.24
available entities and their relations are modeled by the individual domain or data
model. We require the mobile applications to be generated to reflect this data
model and to provide corresponding data structures (e.g., POJOs). Moreover, the
architecture should provide an abstract data access layer that provides mechanisms
such as serialization and deserialization of application data. This access layer should
encapsulate the particular technology used for serialization and deserialization
(e.g., file-based, relational local database).

Acceptance: The requirement is fulfilled if the generated mobile applications can4.25
serialize the acquired data. The data should be available even after a restart of the
mobile application or system.

4.2.2 Single User System with Back-End Access

Description: The generated mobile applications should be able to work either4.26
in an offline mode (i.e., permanently offline) or in a permanently online mode.
Additionally, mobile users who are usually working offline should be able to
acquire existing data from a back end.

Explanation: At first, the mobile applications should be able to operate indepen-4.27
dently from a network connection. However, it is often required that preexisting
data be distributed to different mobile clients. Hence, the mobile applications
should be capable of accessing a back end (e.g., a web server) and of downloading
data records or media files. In turn, it is not required that mobile users reintegrate
modifications to the back end or work concurrently (e.g., as a multi-user system) on
the data at the back end. In such a case the generated mobile application must be

4.3. Tool Requirements 51

permanently online. Besides, the generated mobile applications could be equipped
with the data prior to their deployment.

Explanation: The requirement is fulfilled if the generated mobile applications are 4.28
able to work either (i) in an offline mode where data records can be retrieved from
a back-end server or (ii) permanently online.

4.3 Tool Requirements

Finally, the tool requirements describe the requirements for the tools that support the 4.29
model-driven development process of mobile applications. The main requirements
deal with the modeling and the code generation.

4.3.1 Graphical Model Editor

Description: In order to create app models, mobile application developers need a 4.30
model editor that provides the domain-specific modeling language. A model editor
requires a concrete syntax, which can be textual or graphical.

Explanation: Based on the domain-specific modeling language, mobile application 4.31
developers want to create valid instances of this metamodel. This task should be
supported by a model editor implementing the domain-specific modeling language
and the well-formedness rules. The requirement is to create a graphical model
editor, while an alternative approach for a model editor could be a textual model
editor. The kind of syntax (i.e., textual or graphical concrete syntax) will be often
determined by the kind of desired user group. A textual syntax might be very
useful for technically-skilled modelers because they are probably familiar with
textual programming languages. However, as we focus on business experts, a
graphical syntax visualizes the modeled application in a better way, and developers
do not have to learn textual syntax. A graphical model editor requires a graphical
concrete syntax, sometimes called visual language. The graphical model editor
should reflect the different aspects of modeling (e.g., data, behavior, and graphical
user interface) and provide a freehand-editing mode (cf. [Bar+99]). Additionally,
the graphical model editor should partially provide textual inputs, e.g., for logical
expressions inside the process model, because, according to the domain experts, a
visual modeling of logical expressions is not very convenient.

Acceptance: The requirement is fulfilled if a graphical model editor facilitates 4.32
freehand-editing, the creation of app models, and the validation of the created app
models.

4.3.2 Code Generator

Description: One or more code generators should provide the generation of native 4.33
mobile application for specific platforms (e.g., Android, iOS). However, cross-
platform solutions do not have to be taken out here. A corresponding code generator
could be developed as future work.

Explanation: Following the model-driven development approach, the platform is 4.34
no longer relevant if a code generator is available for the targeted software plat-
form. Thus, model-driven development can generally support platform contexts (cf.
Figure 1.2). After considering the domain experts and the available reference appli-
cations, we decide to support Android and iOS. The scope of generation comprises
all the artifacts of mobile applications for the desired platforms including project
structure for the relevant IDE (e.g., Eclipse ADT, Android Studio, and XCode). The
mobile applications should be completely generated and directly runnable without

52 Chapter 4. Requirements for MDD of Mobile Applications

manual completion or extension by the mobile application developer. This includes
the generation of application logic, the graphical user interface (layouts), a data and
persistence layer, and other resources. The generated mobile application should
follow the Model-View-Controller (MVC) architecture. Besides, the generated ap-
plication versions for different platforms (e.g., Android, iOS) should be as similar
as possible concerning the architecture and their graphical user interfaces.

Acceptance: The requirement is fulfilled if a representative set of app models has4.35
been used for the generation of runnable mobile applications for different platforms.

4.4 Discussion

Finally, we verify and validate the requirements summed up in Table 4.1. Please4.36
note that this table also contains the requirements that will be defined in the second
part of this thesis. According to the chosen agile software development process
model, we cannot completely pass-through the traditional process phases, such as
requirement elicitation, analysis, and validation [Pae+03]. That is because some of
the already defined requirements (e.g., architectural requirements) are intended
to be abstract and become tangible as soon as they pass the various iterations of
the agile bottom-up development process (cf. Figure 3.4). Despite this, the pre-
sented requirements can be considered as robust because they were proposed and
developed by external domain experts with a lot of experience. However, we will
check four general points according to Boehm’s guidelines to verify and validate
software requirements [Boe84] – (i) completeness, (ii) consistency, (iii) feasibility,
and (iv) testability – to certify that the defined requirements offer an acceptable
initial description of the system to be implemented. We have to remember that the
requirements concern two levels. First, from a bottom-up perspective, we have
to consider the requirements that refer to the output of the model-driven devel-
opment infrastructure, which is a mobile application. Second, the model-driven
development infrastructure itself must satisfy several requirements. Therefore,
modeling and tooling requirements refer to the infrastructure, whereas architecture
requirements refer to the resulting mobile application.

TABLE 4.1: Requirements of the MDD framework for mobile applications

Part Require-
ment No. Aspect Requirement name

I 4.1.1 Modeling Detailed Data Modeling
I 4.1.2 Modeling Abstract and Detailed Behavior Modeling
I 4.1.3 Modeling Abstract Graphical User Interface Modeling
I 4.1.4 Modeling Well-Formedness of the App Model
I 4.1.5 Modeling Model Quality Assurance
I 4.2.1 Architecture Data-Driven Mobile Applications
I 4.2.2 Architecture Single User System with Back-End Access
I 4.3.1 Tooling Graphical Model Editor
I 4.3.2 Tooling Code Generator
II 10.1.1 Architecture Support of User Roles (User Context)
II 10.1.2 Architecture Heterogeneous Device Support (Device Context)
II 10.1.3 Architecture Interoperable, Multi-User Systems
II 10.1.4 Architecture Online and Offline Capability (System Context)
II 10.2.1 Modeling Declaration of Online- and Offline-Capable Data
II 10.3.1 Modeling Provider Model Editor
II 10.3.2 Tooling Simulation System

Completeness: Boehm stated that a specification is complete if all parts of a system4.37
are presented, and each part is also fully presented according to its requirements.

4.4. Discussion 53

The initial presentation of the model-driven development process (cf. Section 2.1
and 2.2) indicates all parts of a model-driven development system. Hence, we can
say that the requirements cover all the parts mentioned therein. Each part is covered
by several requirements, which implies a complete presentation of the requirements
according to the component itself.

Consistency: Consistency has two dimensions. First, internal consistency needs the 4.38
requirements not to be contradictory to each other. So far, this is not critical because
there is only a small set of requirements. However, while using an iterative approach
and adding more requirements in a following iteration, we must always consider
the existing requirements. Second, external consistency needs the requirements
to correctly fit to the referenced specifications, standards, and technologies. For
example, the required freehand-editing mode of the graphical model editor must
be compatible with the chosen meta-tools for creating graphical editors. Otherwise,
the external consistency is violated.

Feasibility: Boehm gave a wide definition of feasibility. He did not only consider the 4.39
feasibility of the software system, but also its feasibility in terms of maintainability
and changeability. This is as relevant as ever since the domain of mobile applications
is very volatile and fast-moving. An agile bottom-up development process deals
with the feasibility criterion very well, because it matches the fast-changing domain
and the maintainability of the resulting system.

Furthermore, Boehm stated that the requirements should be evaluated on the basis 4.40
of the human-, resource-, and program engineering factors. The human engineering
factor asks whether the specified system provides a satisfactory way for the users to
perform their tasks. Unfortunately, there is little knowledge about how to evaluate
the design of a model-driven development infrastructure upfront. Hence, the
intention is to deliver the model-driven development infrastructure, especially the
graphical model editor, as soon as possible, and refine the requirements based on
user feedback, if needed. The resource engineering factor is a classical cost factor
[BP88] and must be considered while defining the requirements. The last factor,
program engineering, concerns portability and maintainability. Since we build on
an existing framework (Eclipse Modeling Framework – EMF [Ste+09]), we can
positively evaluate the program engineering factor because the chosen platform is
well-known and used widely in industry and academia.

Testability: We have to admit that the presented requirements are not specific enough 4.41
for the derivation of test cases that are appropriate for a pass/fail acceptance
test. Besides, they are not complete according to the chosen iterative approach.
Despite, every contribution is evaluated separately. Due to the different kinds of
contributions, the evaluation methods must be chosen carefully, i.e., the testability
and the test approaches might differ. For example, the evaluation of the domain-
specific modeling language involves, among other techniques, user interviews
and observations because human interaction plays a role when domain-specific
modeling languages and the corresponding model editors are developed. On the
other hand, accurate code generation from different (randomly created) app models
can be tested automatically using unit tests.

55

Chapter 5

Domain Analysis (Model-Driven
Development and SE of Mobile
Applications)

The term domain analysis was defined by Neighbors [Nei80] as “the activity of 5.1
identifying the objects and operations of a class of similar systems in a particular
problem domain.” Our problem domain deals with mobile applications and their
development. Hence, we should not only consider the features of mobile applica-
tions but also the features of existing and future development environments (e.g., a
model-driven development environment).

Figure 5.1 shows the input and output artifacts of a general domain analysis activity. 5.2
In the course of this work, we will use most sources of domain knowledge, namely
technical literature, existing implementations (reference applications), expert advice, and
current requirements for our domain analysis. Based on this analysis, we develop
several novel contributions. The output of a domain analysis activity consists of
one or more domain models of different types. Domain models might be taxonomies,
standards, functional models, and domain languages. These products of the domain
analysis can again serve as an input of a domain analysis, indicated by the cycle in
Figure 5.1. Hence, domain analysis is an iterative process, which will be applied
again in the second part of this thesis to extract and implement further features of
the desired domain (cf. Chapter 11).

Based on the different domain analysis approaches listed by Frakes and Kang 5.3
[FK05]1, we select the feature-oriented domain analysis (FODA) approach proposed
by Kang et al. [Kan+90]. The feature-oriented domain analysis approach consists
of the following steps: (i) context analysis, (ii) domain modeling, and (iii) architecture
modeling. To develop a model-driven development infrastructure, especially at first
a domain-specific modeling language, we focus only on the domain modeling step
and ignore the other steps. One result of the domain modeling step is a feature model
lending the name to the feature-oriented domain analysis. Feature models represent
the mobile end-user’s perspective of the capabilities of the mobile applications in a
domain or the mobile application developer’s perspective of available architectures
and development techniques. A feature model is very useful to develop the domain-
specific modeling language at a later time. The feature model will be developed
during the following feature analysis.

According to Kang et al. [Kan+90], the feature analysis has the following five 5.4
steps: (1) collecting sources of domain knowledge (Section 5.1), (2) identifying
features (Section 5.2), (3) abstracting and classifying the identified features as a
model (Section 5.3), (4) defining the features, and (5) validating the model (Section
5.5). We join the steps (2) and (4) because feature identification and definition are
strongly related.

1 The authors originally worded them as domain engineering approaches.

56 Chapter 5. Domain Analysis (MDD and SE of Mobile Applications)

domain
analysis

sources of
domain

knowledge

technical
literature

existing im-
plementations

customer
surveys

expert
advice

current
and future

requirements

taxonomies

standards

functional
models

domain
languages

Domain
models

domain analysis methods management procedures

problem domain experts

domain analyst

domain engineer

FIGURE 5.1: Domain analysis with input and output artifacts (taken from [PD90])

5.1 Sources of Domain Knowledge

As Figure 5.1 shows, taxonomies might be an output of a domain analysis. Since5.5
the literature already provides several taxonomies related to mobile applications
(e.g., [Nic+07] [KEG12] [Emm+13] [Abo+14]), to software engineering of mobile
applications/ubiquitous computing (e.g., [Abo+99], [Mod+06], [Lup+09], [Jeo+07],
[Mad+02]), and to model-driven development and model transformation (e.g.,
[MG06], [Deg+14]), we could use them as an input for a feature-oriented domain
analysis. Using the literature as a source of domain knowledge will simplify the
validation of the feature model later because scientific literature is an external source
of knowledge and quite robust against a subjective bias. However, some features
are proposed by us independently from the existing literature. Thus, the resulting
feature model will reflect more than the state-of-the-art features.

5.2 Feature Identification and Definition

The feature identification delivers initially only a non-hierarchical and non-interre-5.6
lated collection of features. Using different sources of domain knowledge sometimes
makes a clarification and alignment of the vocabulary (e.g., in a domain terminology
dictionary) necessary, but we will not provide such a domain dictionary as the
referred literature is homogeneous and generally free of overlaps with respect to
the used terms.

The following feature list starts with a root element followed by the features. We5.7
call features with sub-features feature groups (Batory [Bat05] calls them compound
features) and otherwise primitive features. Moreover, not all features can be mapped
to an implementation artifact because they might be focused on methodical aspects
(e.g., the mobile application development process). Following Thüm et al. [Thü+11],
we will call these features abstract and otherwise concrete.

The following feature definitions listed the main features of a development environ-5.8

5.2. Feature Identification and Definition 57

Appli-
cation
type

Soft-
ware

platform

Hard-
ware

platform

Applica-
tion ar-

chitecture

Applica-
tion de-

velopment

Data and
transaction

management

Context-
aware-

ness

Graphical
User

Interface

Software engineering
of mobile applications

(A) Root element of the feature model and sub-features

Application
type

Stand-
alone

system

Informat-
ion sys-

tem

Transac-
tion sys-

tem

Commu-
nication
system

(B) Application type feature group

Software
platform

Runtime
Environ-

ment
Android iOS

Windows
Phone

Web-
based

...

(C) Software platforms

Screen Actors Sensors Processor

Hardware
platform

Interfaces Battery Memory

Resolution Touchable GPS Camera ... USB Bluetooth Wi-Fi ... Built-in SDCard ...

(D) Features of the hardware platform

Mandatory Optional Alternative Or

FIGURE 5.2: Feature model (Pt. I/III)

ment for mobile applications and mobile applications.

Software engineering of mobile applications: This is the root element of the fea- 5.9
ture model. It comprises the features mentioned hereafter that characterize the
engineering of mobile applications, as well as the features of the engineered mobile
applications itself.

Application type: the feature group application type holds high-level classifications 5.10
of the mobile applications concerning the data usage. A standalone system (e.g., a
calculator application or gaming application) usually does not require any data
from other systems. An information system feature denotes that a mobile application
reads remote data (e.g., passenger information system, dictionary, encyclopedia),
while a transaction system is an interoperable mobile application reading and writing
information from/to a back-end server. Usually this involves more than one mobile
application, i.e., transaction systems are multi-user systems. Finally, communication
systems are also interoperable but require additional real-time services. The items
of the feature group application type depend on and influence other features (e.g.,
replication, synchronization of data) as defined by the feature composition rules.

Software platform: The choice of the software platform has a major effect on the 5.11
development process (e.g., available IDEs, programming languages, technologies,
available hardware devices). According to the feature group software platform, a

58 Chapter 5. Domain Analysis (MDD and SE of Mobile Applications)

Application
architecture

Native
appli-
cation

Interpret-
er appli-

cation

Web-
based ap-
plication

Hybrid
appli-
cation

(A) Architectures of applications

Docu-
ment-
driven

Model-
driven

Unstructured
(XP, Rapid

prototyping)
Agile ...

Application
development

(B) Approaches for application development

Model-
driven

Design
model

Runtime
model

Abstract Detailed

(C) Model-
driven features

Local Central

Data and
transaction

management

(D) Data and
transaction man-
agement features

Graphical
User Interface

Static Dynamic

(E) Graphical User
interface features

...
Platform
context-

awareness

Context-
awareness

...

(F) Context features

FIGURE 5.3: Feature model (Pt. II/III)

mobile application developer may select iOS, Android, Windows Phone, a cross-
language runtime environment or any web-based platform.

Hardware platform: The feature group hardware platform is by far the group with5.12
the most conceivable features. For a mobile application developer, the available
sensors, the screen size, the available interfaces, the memory size, and the processor are
relevant.

Application architecture: The application architecture of a mobile application can be5.13
native, interpretive, web-based or hybrid. Native architectures may also support the
interpretation of runtime information.

Graphical User interface: A graphical user interface is either static or dynamic. Static5.14
graphical user interfaces cannot be changed at load- or runtime, while dynamic
graphical user interfaces can be adapted to device properties or user needs. Addi-
tionally, dynamic graphical user interfaces may be self-adaptive.

Data and transaction management: The feature group data and transaction man-5.15
agement provides local or central data and transaction management. This feature
indicates whether a mobile application operates offline or needs permanent network
connection (online).

Application development: The development of a mobile application is usually no5.16
feature of the final product. However, Kang et al. [FK05, Sec. 5.1.4.1] argue that
application features can also be implementation techniques. Hence, document-driven
development and model-driven development can be the features of the feature group
Application development. According to the presented approach, the feature model-
driven development deals with design models and runtime models. In turn, design
models and runtime models can be abstract or detailed.

Context-awareness: The feature group context-awareness comprises different con-5.17
texts. Within the first part of this thesis, we will only deal with the platform context

5.3. Feature Model 59

due to complexity reasons. Further contexts will be introduced in the second part
of this thesis (cf. Chapter 11).

Platform context-awareness: The feature platform context-awareness requires differ- 5.18
ent software platforms if instantiated.

5.3 Feature Model

We propose the hierarchical feature model shown in Figures 5.2 and 5.3 as a domain 5.19
model reflecting mobile applications and their development. The gray colored
feature groups or features form the focus of this thesis. Moreover, the feature
analysis will be refined in the second part of the thesis; hence, the feature model of
this chapter only shows the first two parts of the overall feature model.

5.3.1 Feature Composition Rules

Using the feature model in its initial state may deliver misleading characterizations 5.20
of mobile applications and development processes because features may still be
contradictory. Hence, the features of a feature model need additional relations
between each other. A requirement relation between two features indicates that a
feature requires another one. In turn, an exclude relation indicates that a feature
excludes another one. Figure 5.4 shows the composition rules which are relevant in
the context of this work. The composition rule set will be also refined in the second
part of this thesis.

For example, the software platform feature Android requires the native application 5.21
feature. Although it was not proposed in the literature to model relations with a
higher multiplicity than one, we found some cases where such a notation is helpful.
For example, a native application does not necessarily require a design model feature.
However, platform context-awareness and nativeness (Native application) can only be
ensured by a design model, i.e., a model-driven development process.

Design
model

Model-
driven

Platform
context-

awareness

Android

iOS

...

Windows
Phone

Native
application

...

Appli-
cation
archi-
tecture

Software
platform

(A) Composition rules for the feature groups Platform context-awareness, Software platform,
Model-driven, and Application architecture

Required Excluded

FIGURE 5.4: Feature composition rules (Pt. I/II)

60 Chapter 5. Domain Analysis (MDD and SE of Mobile Applications)

5.3.2 Feature Binding

Considering the features given in the feature model, the question arises as to when5.22
a mobile application developer or mobile user is able to establish or use a feature.
Traditionally, feature models describe product configurations of software products
that have to be configured beforehand. Hence, the resulting features of the software
product are called compile-time features, because they can only be instantiated at
design time. Another group, load-time features might be selected at the start-up time
of the application but remain fixed during its execution. As shown in Figure 1.3,
our modeling approach should support load-time features. Finally, runtime features
may be changed during the execution of a mobile application.

5.4 Focused Features

In this part of the thesis we are heading toward the model-driven development5.23
of native mobile applications for different software platforms (e.g., Android, iOS).
Generated mobile applications are kinds of standalone-, information- or transaction
systems, rather than communication systems. According to the model-driven devel-
opment approach, the mobile application developer specifies mobile applications
by creating an app model at design time (design model). The mobile application
developer can either use predefined abstract model elements (e.g., CRUD) or com-
pose different modeling elements to create more detailed functionality that better
matches the requirements. This enables rapid prototyping, while still ensuring the
possibility of later refinement. Finally, the requirement of working either online or
offline leads to a local or central data and transaction management.

TABLE 5.1: Mapping of the focused feature groups to
the requirements of the MDD framework (Pt. I/II)

Part Require-
ment No. Requirement name Feature group/s

I 4.1.1 Detailed Data Modeling Model-driven
I 4.1.2 Abstract and Detailed Behavior Modeling Model-driven

I 4.1.3 Abstract Graphical User Interface Modeling
Model-driven,
Graphical User
Interface

I 4.1.4 Well-Formedness of the App Model Model-driven
I 4.1.5 Model Quality Assurance Model-driven

I 4.2.1 Data-Driven Mobile Applications Data and transac-
tion management

I 4.2.2 Single User System with Back-End Access Application type
I 4.3.1 Graphical Model Editor Model-driven

I 4.3.2 Code Generator

Context-awareness
(Platform context),
Software platform,
Application
architecture

The rationale behind this selection of features is given by the challenges presented5.24
in Section 1.2. This work aims to cover issues that are not covered satisfactorily
by the state-of-the-art solutions (cf. Chapter 8). Since our first goal consists in pro-
viding a model-driven development infrastructure for different native platforms,
our primary features are platform context-awareness and model-driven application
development. Since existing model-driven development approaches provide code
generation for different native platforms, our model-driven development infras-
tructure also focuses on different application types (e.g., permanently offline or

5.5. Evaluation 61

permanent online mode) with different architectures. Due to the composition rules
of the feature model (see Figure 5.4), we have to additionally consider all required
features. Moreover, the focused features can be mapped to the requirements given
in the preceding chapter and the requirements which will be introduced in the
second part of this thesis. Table 5.1 shows which requirement (from the preceding
chapter) can be addressed through which feature group.

5.5 Evaluation

In order to evaluate a feature model, there are two approaches: first, Lee et al. 5.25
[Lee+02, Sec.4] propose several guidelines (e.g., domain selection and scoping,
feature identification and categorization, feature organization, feature refinement)
to validate a feature model and propose refactorings to improve insufficient feature
models. These guidelines guarantee the quality and structural integrity of feature
models. However, the characterizing power of a feature model can be tested and
ensured only by the second evaluation method: Kang et al. [Kan+90, Sec. 5.1.4.3]
propose using domain experts, who are not consulted while creating the feature
model, and existing mobile applications, which should be characterized by the
feature model. Similar to the domain experts, the selected mobile applications
should not be used earlier for the derivation of the particular features of the feature
model.

While we apply already Lee’s guidelines and refactorings already during the con- 5.26
struction of the feature model, we can nonetheless report that the feature model
was successfully reviewed by external domain experts from academia (cf. Vaupel et
al. [Vau+18b]) as well.

63

Chapter 6

Domain-Specific Modeling
Language and Model Editors

The core of our model-driven development infrastructure is the domain-specific 6.1
modeling language captured in a metamodel. In this chapter, we first present the
main design decisions that guided us during the design of our domain-specific
modeling language for mobile applications. Thereafter, we present the defining
metamodel including selected well-formedness rules restricting allowed model
structures. To illustrate the domain-specific modeling language, we show selected
parts of a simple phone book app model, which will be used as a running ex-
ample in this chapter. Furthermore, we provide a description of an application
programming interface of the domain-specific modeling language that serves as
a language library for all further components of the model-driven development
infrastructure (e.g., textual or graphical model editors, model quality tools, code
generators). Subsequently, the facilities to create app models by a graphical model
editor will be presented. Finally, the presented domain-specific modeling language
and its model editors are evaluated with respect to the requirements, the design
guidelines for domain-specific modeling languages and the guidelines for user
interface description languages.

6.1 Design Decisions

Based on the results of our domain analysis, we want to support the generation 6.2
of mobile applications that can be flexibly configured by providing users. This
requirement is reflected in our modeling approach by distinguishing two levels
of modeling: app models specify all potential facilities of mobile applications, and
provider models define the actual variants of the mobile applications. We illustrate
this general modeling approach in Figure 6.1. While app models are used to generate
Android and iOS projects (Step 1) to be deployed afterward (Step 2), provider
models are interpreted at runtime by the generated Android and iOS applications
(Step 3). Provider models can therefore be used to change functionality without
redeployment of the mobile application. Provider models can be executed in two
ways: usually, a provider model is interpreted at runtime, since it does not have
to exist at design time. However, it is also possible to make it available at design
time by adding it to the resources of its generated mobile application projects. It
will then be considered in the build process.

64
C

hapter
6.

D
om

ain-Specific
M

odeling
Language

and
M

odelEditors

Object
model

Style
model

Process
instance
model

Provider model (M0)

Data
model

GUI
model

Process
model

App model (M1)

Data
meta

model

GUI
meta

model

Process
meta

model

Metamodel (M2)

interpreted
in iOS
App (3)

uses is instance of

End
user

Providing user

Application
developer

Infrastructure
developer

Android
Project

iOS
Project

C
om

pile
tim

e
R

un
tim

e

generated to (1)

generated to (1)

single
deploy (2)

single
deploy (2)

interpreted in
Android App (3)

FIGURE 6.1: Detailed multi-level modeling approach

6.1. Design Decisions 65

The general approach to the domain-specific modeling language is component- 6.3
based: an app model consists of a data model defining the underlying class structure,
a GUI model containing the definition of pages and style settings for the graphical
user interface, and a process model that defines the behavior of a mobile application in
form of processes and tasks. The data model and the GUI model do not have a direct
link. However, the process model includes dependencies to both sub-models (see
Figure 6.1) by referring to their elements. The GUI model just contains an abstract
definition of pages (see Figure 6.6), instead of detailed layout descriptions. The data
model indirectly defines the structure and the default layout of the graphical user
interface. We will see later, during the explanation of the code generators, how the
data model is used for the automatic generation of the graphical user interface (cf.
Figure 7.5).

A provider model contains an object model defining an object structure as an instance 6.4
of the data model. It also contains a style model defining explicit styles and pages
for customized graphical user interfaces. Finally, it contains a process instance model
selecting a subset of processes and providing them to specify the behavior of the
intended variant of the mobile application. Similar to the app model, object and
style models are independent of each other but used by the process instance model.

For the design of the domain-specific modeling language, we follow the overall 6.5
credo: “Model your mobile application as abstract as possible and as concrete as
needed.” This means that the standard design and behavior of a mobile application
can be modeled in an abstract way. This can be very useful for the rapid prototyping
of mobile applications. A mobile application with a large share of custom behavior
needs an app model with more details than a mobile application with a large share
of standard behavior. In fact, all special styles, pages, and processes that may be
used in the intended mobile application have to be defined in the app model. Since
the provider model will be defined by domain experts, these are already completely
domain-specific and follow the predefined app model. Provider models support the
development of software product lines in the sense that a set of common features are
shared and some variability is supported. Differences between mobile application
variants are modeled separately by different provider models.

The GUI model specifies views along with their purposes, e.g., viewing and editing 6.6
an object, searching objects from a list and showing search results, doing a login,
and choosing a process from the set of available processes. A GUI model is not
usually intended to specify the inherent hierarchical structure of graphical user
interface components as in rich layout editors like the Interface Builder [Pip10],
Android Common XML Editor [GR11], and Android Studio [Zap13]. However, the
model can be gradually refined to obtain more specificity in the generated mobile
application. Style settings are specified independently from views and follow the
same design idea, i.e., the more default the look and feel, the more abstract the
model.

Processes and tasks covering usual purposes such as CRUD functionality including 6.7
searching, choosing processes, as well as invoking graphical user interface compo-
nents, operations and processes. The modeling of custom behavior is supported
by more specific model elements such as control structures and assignment tasks.
More specific purposes may be covered by utilizing the well-known concept of
libraries, i.e., a basic language is extended by language components for different
purposes, as is done for LabView [Bis11].

To support the security and permission concepts of mobile platforms, the process 6.8
model includes platform-independent permission levels. The permission concept
is fine granular (i.e., on the level of single tasks). However, some platforms like
Android support only coarse granular permissions (i.e., on the level of applications).
Another security-related feature is the user-specific instantiation of processes. Po-
tentially, features of an application can be disabled by a restricted process instance
model.

66 Chapter 6. Domain-Specific Modeling Language and Model Editors

6.2 Eclipse Modeling Framework (EMF)

Prior to the definition of the domain-specific modeling language by the metamodel,6.9
we introduce the Eclipse Modeling Framework on which the metamodel devel-
opment and the software development process of the model-driven development
infrastructure are based. Our development goal is an Eclipse-based model-driven
development infrastructure shaped by different plugins created by EMF and further
frameworks that are introduced later. Using EMF serves three goals: first, EMF pro-
vides meta-modeling facilities that can be used to model metamodels. EMF uses an
object-oriented meta-modeling language called Ecore, which conforms to the Essen-
tial Meta Object Facility (EMOF). Second, EMF provides a code generation facility
for building tools (e.g., Eclipse plugins) and general application code. Tools can be
standard model editors such as tree- or table-based model editors. This generative
approach of EMF fits well to the chosen software development process model (cf.
Chapter 3). Modifications and extensions of the domain-specific modeling language
become effective immediately after a regeneration step of the plugin. While gener-
ating code, EMF follows the model-driven development approach (cf. Figure 2.2),
i.e., transforms platform-independent models into platform-specific models (cf. GenModel
model in Figure 6.11). Configuring the latter ones provides a customization on some
points. Finally, EMF includes an Eclipse-based runtime component that enables the
execution of generated tools (e.g., standard or customized model editors).

6.3 Domain-Specific Modeling Language Definition

After having presented the main design decisions for our domain-specific modeling6.10
language and technological setting, we will now focus on the metamodel and apply
the modeling features of EMF in order to create our domain-specific modeling
language PIMAR (Platform Independent Mobile Augmented Reality), which is also
the project name of the thesis-related research project. While the data model is
defined by the original Ecore model, two new Ecore models have been defined to
model behavior and graphical user interfaces of mobile applications. We present
the metamodel stepwise in accordance with the three sub-models (data-, GUI- and
behavior- model part). An instance model is presented subsequently to each sub-
model to demonstrate the modeling process of mobile applications. The app model
of a simple phone book application introduced hereafter serves as the running
example application for this chapter. We focus on selected model parts of this
example application; the whole app model can be found at the end of this thesis in
Appendix B.1.

Example (Simple phone book application). One of the core applications for smart-6.11
phones are phone books for managing personal contacts. In this example, we
show a simple phone book application for adding, editing, and searching contact
information about persons. Figure 6.2 shows selected screenshots of the phone
book application, generated by our model-driven development infrastructure. The
arrows indicate the order of views shown. The first sub-figure (Figure 6.2a) shows
the main menu leading to a standard CRUD process (Manage Persons) to create, edit,
and delete persons. The standard behavior and graphical user interface for this
task have been generated from a simple CRUD process (see Figure 6.8b), which the
mobile application modeler has created before. Instead of using standard CRUD
processes, the mobile application modeler may create more customized processes
(see Figure 6.8c for a custom creation process) to cover further requirements (e.g.,
customized navigation and styles). Figure 6.2b shows customized CRUD processes
from the mobile user’s perspective. These variants can be instantiated at runtime.
Moreover, the generated mobile application considers the user location context
to find contacts near the current location of the mobile user (Figure 6.2c). Phone

6.3. Domain-Specific Modeling Language Definition 67

numbers are connected with the phone app in such a manner that whenever the
mobile user selects a phone number, it automatically starts dialing (Figure 6.2d). �

(A) Main Menu with Manage Persons Process (CRUD functionality)

(B) Main Menu with customized Create, Edit, Delete Person Process

(C) NearToMe Process (D) Call Person Process

FIGURE 6.2: Screenshots of the simple phone book application

6.3.1 Data Model

Figure 6.3 shows the core elements of the Ecore metamodel. Mobile application 6.12
modelers can create classes with typed attributes and connect them with different
types of references (e.g., inheritance, aggregation, association). Additionally, a
given data model is equipped with domain-specific semantics. Data models are not
only used to generate the underlying object access facilities but also influence the
presentation of data through the graphical user interface. Sub-objects, for example,
result in a tabbed presentation of objects, attribute names are shown as labels (if
not redefined), and attribute types define the appropriate edit elements such as text
fields, check boxes, and spinners. Furthermore, data models determine the behavior
of predefined CRUD processes in the canonical way (cf. Figure 7.5). Class and

68 Chapter 6. Domain-Specific Modeling Language and Model Editors

attribute names are not always well-suited to be viewed in the generated mobile
application. For example, an attribute name has to be a string without blanks and
other separators, while labels in mobile application views may contain several
words, e.g., “Mobile phone number”. In such a case, an attribute may be annotated
by the intended label.

EPackage

name:String
nsURI:String

EClassifier

name:String

EClass

abstract:boolean EDataType

EStructuralFeature

name:String
lowerBound:int
upperBound:int

EReference

containment:boolean
EAttribute

0..* eStructuralFeatures

0..* eClassifiers

0..* eSuperTypes

1 eReferenceType

eOpposite 0..1

eOpposite
0..1

1
eAtttributeType

FIGURE 6.3: Ecore metamodel (excerpt) used for data structures

Example (Data model of the simple phone book application). Figure 6.4 shows a6.13
simple data model as an Ecore model1. Splitting the contact data into the classes
Person and Address has advantages. As generic data views are automatically gen-
erated for all classes, it makes sense to minimize the number of attribute per class.
This ensures that not too much information is presented in one view. PhoneBook is
just a container for Persons and not intended to be viewed.

Person
ForenameB:BEString
SurnameB:BEString
MobileNumberB:BEString
OfficeNumberB:BEString
callMobileNumber
toString

Address
CityB:BEString
ZIPB:BEString
StreetB:BEString
NumberB:BEString

PhoneBook

address

0..1

allPersons

0..*

FIGURE 6.4: Data model of the simple phone book application (excerpt)

LISTING 6.1: Injection of custom code (Method callMobileNumber())

1 S t r i n g u r i = " t e l : " + t h i s . getMobileNumber () ;

1 This figure already uses the graphical concrete syntax that will be presented in detail later.

6.3. Domain-Specific Modeling Language Definition 69

2 I n t e n t i n t e n t = new I n t e n t (I n t e n t .ACTION_CALL) ;
3 i n t e n t . setData (android . net . Uri . parse (u r i)) ;
4 i n t e n t . addFlags (I n t e n t . FLAG_ACTIVITY_NEW_TASK) ;
5 contex t . s t a r t A c t i v i t y (i n t e n t) ;

Listing 6.1 shows a custom code annotation, which implements the method callMo- 6.14
bileNumber() of the class Person. The annotated code is adopted automatically by
the code generator. �

6.3.2 Graphical User Interface (GUI) Model

The metamodel for GUI models is shown in Figure 6.5. Different kinds of graphical 6.15
user interfaces are modeled by different kinds of pages (e.g., ViewPage, EditPage, and
MapPage). Each of theses pages has a predefined (generic) structure of graphical
user interface components and follows a specific purpose. For example, the purpose
of the EditPage is to edit an object (e.g., Address). Our GUI model reuses the existing
data model that holds a description of the objects. Additionally, mobile application
modelers can set style and presentation properties. The different style setting
elements of our GUI model provide this aspect of presentation. These elements
influence the style of Pages (PageStyleSetting) in general and in particular of Menus
(MenuStyleSettings), Lists (ListStyleSettings), and Selections (SelectionStyleSettings). A
dialog sub-model (cf. Trætteberg [Træ02]) does not exist in our modeling approach.
This conversational aspect of the graphical user interface is covered by pages that
implicitly contain the necessary dialogs.

StyleSetting

MenuStyleSettings

menuStyle:MenuStyle
fixedMenu:EBoolean

ListStyleSettings

listStyle:ListStyle
showSeparator:EBoolean

RGBColor

green:EInt
blue:EInt
red:EInt

SelectionStyleSettings PageContainer

Menu

PageStyleSettings

imagePosition:EInt
textPosition:EInt
frame:EInt

SelectablePage

multiSelection:EBoolean

SelectableListPage

ListablePage

ListPage

Page

MenuablePage

CustomPage

LoginPage

MediaPage

MapPage ARPage

eLearningPage

RecordAudioPage

ViewPage

EditPage

ProcessSelectorPage

TakePicturePage

≪enum≫
MenuStyle

TILE
GRID

≪enum≫
ListStyle

GRID
LIST

1
fontColor

1
backgroundColor

selectionColor 1

rgbColors
0...*

1
pageStyle

frameColor
1

menuStyle 0..1

listStyle 0..1

selectionStyle 0..1
styleSettings 1..*

menues 0..*

0..*
listablePages

menuStyle 1

selectablepageStyle 0..* selectablePages
0..*

listablepageStlye
1

1
pageStyle

pages 0..*
menu
0..1

menuablePages 0..*

separationColor
1

FIGURE 6.5: Ecore model for defining the graphical user interface of mobile applications

70 Chapter 6. Domain-Specific Modeling Language and Model Editors

Example (GUI model of the simple phone book application). The graphical user6.16
interface of our simple phone book application is modeled in Figure 6.6.

PROCESSSELECTORPAGE

ProcessesOverview

EDITPAGE

EditPerson

VIEWPAGE

ViewPerson

SELECTABLELISTPAGE

SelectPerson

MAPPAGE

ShowAddress

MenuyMenu

StyleSetting

ColoryBLACKyU020205

ColoryLIGHTBLUEyU5121...

ColoryWHITEyU25522552...

StyleListSettings

StyleMenuSettings

StylePageSettings

StyleSelectionSettings

(A) GUI model of the simple phone book application

(B) Properties of ProcessSelectorPage (C) Properties of EditPage

FIGURE 6.6: GUI model of the simple phone book application

This part of the app model is simple; it just contains a style setting, a menu, and five6.17
pages, namely a ProcessSelectorPage, an EditPage, a ViewPage, a SelectableListPage for
Person objects, and a MapPage for Address objects. Note that we just add these pages
to the model and use them to specify behavior but do not specify their structure.
Besides, the order of invocation and data flow between the pages is not expressed
in this model, as they depend on the behavior model. �

6.3.3 Process Model

Figure 6.7 shows the first part (cf. Figure 6.15 for the second part) of the metamodel6.18
for process models of mobile applications. This metamodel is influenced by the
language design of BPMN [31] and (WS)-BPEL [39]. Since BPMN does not itself
provide a built-in model for describing data structures, we have to reuse the data
model provided by EMF. Thus, it is natural to adopt the required BPMN/(WS)-
BPEL model elements to our own EMF-based domain-specific modeling language.
Many of the BPMN/(WS)-BPEL language elements have been removed (e.g., the
error handling of (WS)-BPEL and the events of BPMN). The standard set of behavior
constructs is extended by CRUD functionality on the data model, input/output
facilities referencing the GUI model, platform-independent permissions, and CRUD
privileges, where we do not find any adequate constructs in BPMN and (WS)-BPEL.

The main constituents of a process model are processes that may be defined in a com-6.19
positional way. In particular, the modularity and reusability of existing processes
requires minimal effort for process modeling. The model element InvokeProcess calls
a sub-process. When invoking a process, the kind of invocation – synchronous or
asynchronous – has to be specified. Long-lasting processes (e.g., processor-intensive
or network-intensive processes) should be marked as asynchronous. These processes
will be run in the background. Each process has a name and several variables that
may also serve as (return) parameters. A parameter is modeled as a variable with a
global scope, contrary to locally scoped variables. The body of a process defines the
actual behavior consisting of a set of tasks ordered by typical control structures and
potentially equipped with permissions. Permissions indicate the required rights (e.g.,
network, file access, Global Positioning System – GPS) of the mobile applications.

6.3. Domain-Specific Modeling Language Definition 71

There is a number of predefined tasks covering basic CRUD functionality on objects
(e.g., Create, Read, Update and Delete), control structures (e.g., If, If-Else, and While),
the invocation of an external operation (InvokeOperation) or an already defined
process (InvokeProcess), as well as the view of a page (InvokeGUI). While the task
CrudGui covers the whole CRUD functionality with corresponding views, Create,
Read, and Delete just cover single internal CRUD functionalities. Privileges can limit
object access (e.g., Read-only, Modify, and Modify & Create) of the element CrudGui.
An InvokeGUI task refers to a page defined in the GUI model. The ProcessSelector
points to all processes that should be available in the main menu of the mobile
application (see screenshots in Figure 6.2a and Figure 6.2b first screen from left).

SequencePermission

permision:Permission

TaskIf

IfElse

While

Expression

Delete

Create

Assign

Variable

changeable:EBoolean
defaultValue:EString
scope:Sope

EObject

EClass

CrudGui

privileges:Privileges

InvokeProcess

synchronized:EBoolean

ProcessContainer

Process

ProcessSelector

Page

InvokeGUI

Read

InvokeOperation

long:EBoolean;

ETypedElement

EOperation

≪enum≫
Scope

LOCAL
GLOBAL

≪enum≫
Privileges

READ_ONLY
MODIFY
MODIFY_CREATE
ALL

≪enum≫
Permissions

INTERNERT
FILE_SYSTEM
CAMERA
MICROPHONE
...

body 1

body 1 follower 10..* permissions

elseBody 1

condition 1

rhs 1

lhs 1

1 object

value 1

anchor 1

return 1

1 eClass

1 contain

0..* return
0..* arguments

subProcess
1

processes 0..*

startTask 1

0..* processes

1 page

1 page0..* variables
0..* return

1 operation

0..* input
0..* outputData
0..* outputAction

1 return
0..1 object

1 context
0..* arguments

0..1 return

FIGURE 6.7: Ecore metamodel for defining the behavior of mobile applications (Pt. I/II)

72 Chapter 6. Domain-Specific Modeling Language and Model Editors

Example (Process model of the simple phone book application). The behavior of6.20
the phone book application is modeled by a process selector as main process that
contains processes for all use cases provided. Figures 6.8a and 6.8b show processes,
with Main being a process selector and CRUDPerson covering the whole CRUD
functionality for contacts. Figure 6.8c shows an individual process to create persons.
Figure 6.8d shows the definition of a search process where first a search pattern
is created that may be edited in an EditPage and then it is passed to a Read task
resulting in a list of persons being viewed in a SelectableListPage. If a person is
selected from that list, its details are shown in a ViewPage. Figure 6.8e shows how
to connect to a phone app to call a person. After searching for a person, the oper-
ation callMobileNumber() is invoked on the selected Person object. Just a few lines
of platform-specific native program code are needed to start the corresponding
Android activity or iOS service. This operation operation is implemented manually.
Appendix B.1.3.13 shows the process NearToMe defining situation-dependent be-
havior in the sense that all persons of the phone book with an address near to the
current position are displayed.

Main

MainProcesses

ProcessesOverview : ProcessSelectorPage
CRUDPerson , SearchPerson , CallPerson , ShowPersonAddressOnMap , NearToMe

(A) Main Process

CRUDPerson

CRUDPerson

ALL
Person

(B) CRUD Process
CreatePerson

NewPerson

CreatePerson

Person
NewPerson : Person

EnterNewPerson

NewPerson : Person
EditPerson
NewPerson : Person

ViewNewPerson

NewPerson : Person
ViewPerson
NewPerson : Person

(C) Create Person Process
SearchPerson

PersonSearchPattern PersonResultList SelectedPerson

CreatePersonSearchPattern

Person
PersonSearchPattern : Person

SearchCriteriaPerson

PersonSearchPattern : Person
EditPerson
PersonSearchPattern : Person

ReadAllPersons

PersonSearchPattern : Person
PersonResultList : Person

ViewSearchedPerson

SelectedPerson : Person
ViewPerson

ChoosePersonFromResultList

PersonResultList : Person
SelectPerson
SelectedPerson : Person

(D) Search Person Process
CallPerson

PersonSearchPattern PersonResultList SelectedPerson

CreatePersonSearchPattern

Person
PersonSearchPattern : Person

ReadAllPersons

PersonSearchPattern : Person
PersonResultList : Person

ChoosePersonFromResultList

PersonResultList : Person
SelectPerson
SelectedPerson : Person

CallPerson

CALL

callMobileNumber
SelectedPerson : Person

(E) Call Person Process

FIGURE 6.8: Process model of the simple phone book application (excerpt)

Since all three metamodel parts are Ecore models, each model element can be6.21
annotated to cover additional generator-relevant information or just comments. �

6.3. Domain-Specific Modeling Language Definition 73

6.3.4 Provider Model

In order to reconfigure mobile applications at runtime, we use provider models 6.22
(i.e., object model, process instance model, and style model), which are interpreted
at runtime by the mobile application. The object model is an instance of the data
model, which was modeled beforehand by the mobile application developer (see
Figure 6.4). In contrast the process instance model and the style model are on the
same abstraction level as the GUI model and process model, respectively (compare
Figures 6.6, 6.8, and 6.9). To be more precise, the process instance and style model
share the same syntax. For example, the style model (if defined) overwrites the
setting of the GUI model at runtime. Given that the providing user does not model
such a provider model, the mobile application creates an (empty) default provider
model from the app model. To the mobile application, it makes no difference
whether the provider models are created at design time (and bundled with the
generated mobile application) or imported after installation of the mobile appli-
cation. In turn, the generated mobile applications do not need to be reinstalled
to cover device- or user-specific requirements. It is sufficient to load a respective
configuration in the form of a provider model.

(A) Object model (tree-based editor)

(B) Process instance model (tree-based
editor)

(C) Style model (tree-based editor)

(D) Object model properties (Person) (E) Object model properties (Address)

(F) Process instance model properties (ProcessSelector)

FIGURE 6.9: Provider models of the simple phone book application

Example (Provider model for the simple phone book app model). The object model 6.23
of an initial provider model contains an empty phone book only; the process instance
model just contains the main process. The object model changes whenever the list
of contacts is modified by the mobile user. Figures 6.9a, 6.9d, and 6.9e show a non-
empty object model as an instance of the data model (see Figure 6.4). Figures 6.9b
and 6.9f show the runtime configurations of available processes, which result in the
configuration seen in Figure 6.2a. In particular, Figure 6.9f shows the processes that
are available at runtime for a certain user group. This set can be rearranged in any
way. The dynamic processing of a provider model is a crucial feature to meet several
requirements that arise with different contexts of use. �

74 Chapter 6. Domain-Specific Modeling Language and Model Editors

6.3.5 Well-Formedness Rules

To get consistent app models, we also need a number of well-formedness rules. In6.24
particular, the consistency between model components has to be taken into account.
The most important well-formedness rules are listed below, expressed in natural
language. The complete list of rules formalized as OCL constraints can be found in
Appendix A.

1. There is exactly one process with the name Main. This process is the first one
to be executed.

2. There is at least one task of type ProcessSelector in the Main process.

3. A Process registered in a ProcessSelector, contains – potentially transitively – at
least one task of type InvokeGUI or CrudGui.

4. When invoking a process, the list of arguments has to be consistent with
the list of parameters defined for that process with respect to the number,
ordering, and types.

5. With respect to the task InvokeGUI, the number, ordering, and types of input
and output data, as well as output actions must be consistent with the type
of page invoked. For example, to invoke a MapPage, two Double values are
needed as output data; for a LoginPage, two strings are needed to show the
user name and password, while a Boolean value as output data represents the
result of a login trial.

The rules in Listings 6.2 and 6.3 show the corresponding OCL constraints for6.25
the page type SelectableListPage (instance of ListablePage and SelectablePage). A Se-
lectableListPage provides the selection of one element (e.g., a person) from a list
of the same type (e.g., persons). Figure 6.2d shows such a dialog for choosing
a person who should be called. The constraint is divided into the output (List-
ing 6.2) and input (Listing 6.3) constraint. The output constraint describes the
parameters to be passed to the page. In this case, the OCL constraint requires a
single argument (size()=1), which has to be a list (upperBound=-1). The input
constraint describes the return parameters from the page. As expected, the OCL
constraint requires a single return value (size()=1), which is not a list element
(upperBound=1). It conforms to the type of list elements (eType) shown by the
page.

LISTING 6.2: Output constraints for ListablePage (Output)

1 context InvokeGUI inv IsListArgument :
2 s e l f . page . oclIsTypeOf (gcore : : L i s tab lePage) implies
3 s e l f . outputData −> s i z e () = 1 and s e l f . outputData −>
4 f o r A l l (var : Var iab le|var . upperBound=−1)

LISTING 6.3: Input constraints for SelectableListPage (Input)

1 context InvokeGUI inv WellTypedSelectedElement :
2 s e l f . page . oclIsTypeOf (gcore : : S e l e c t a b l e L i s t P a g e) implies
3 s e l f . input −> s i z e () = 1 and s e l f . input −>
4 f o r A l l (var : Var iab le|var . eType= s e l f . outputData −>
5 a t (1) . eType and var . upperBound=1)

Example (Well-formedness of the simple phone book app model). Based on the6.26
excerpt of the process model, as shown in Figure 6.8, and the GUI model depicted
in Figure 6.6, we show the well-formedness of the process SearchPerson in Figure
6.8d, particularly of the task ChoosePersonFromResultList, which is an InvokeGUI task.
This task offers a list of results from prior search tasks. The mobile user can choose
one result for a detailed view offered by a SelectableListPage (defined in the GUI
model).

The mentioned constraints (Listings 6.2 and 6.3) check whether the input type of the6.27

6.4. Domain-Specific Modeling Language Implementation 75

InvokeGUI task ChoosePersonFromResultList is a list (of Persons) and the output type
is a single object of the same type Person. In this case, this constraint is satisfied and
the code generator can generate a valid initialization of the SelectableListPage. �

6.4 Domain-Specific Modeling Language Implementation

The metamodel, shown in Figures 6.3, 6.5, and 6.7, now serves as input of the 6.28
code-generating components of EMF. First, the general application code of the
metamodel was generated and results in two Eclipse plugins (second and third
rows of Table 6.1). These plugins capture the domain-specific modeling language
and additionally perform the (de)serialization and validation of model instances.
These generated plugins serve as a language specification for every other plugin
that is part of the model-driven development infrastructure for mobile applications.

TABLE 6.1: First set of plugins shaping the MDD infrastructure

Plugin project name Content Type
pimar.language Metamodel, Model code manual/generated
pimar.language.edit Edit code generated
pimar.language.editor Editor code generated
pimar.language.editor.extended Editor code (custom part) manual

Furthermore, EMF supports the generation of standard model editors. The plugin 6.29
pimar.language.editor provides facilities to create and modify model instances which
conform to the metamodel of our domain-specific modeling language. Figure 6.10
shows generated standard model editors, editing a GUI model (*.gcore).

FIGURE 6.10: Standard model editors generated by EMF (showing the GUI model)

On the left-hand side of Figure 6.10, a plain-text model editor is shown to demon- 6.30
strate the XML Metadata Interchange (XMI) representation of a model instance.
This model editor could be used for model modifications, but this way of access is
only suitable for technical experts. In contrast, the tree-based model editor on the
right-hand side of Figure 6.10 is a more convenient way to edit models. This model
editor supports simple edit operations (e.g., adding/deleting an element, relocating

76 Chapter 6. Domain-Specific Modeling Language and Model Editors

elements, setting attributes). The properties view, shown at the bottom of Figure
6.10, allows entering attribute values for selected model elements. The tree-based
model editor already provides a validation of model instances.

Although EMF is a complex model-driven framework, it cannot provide all re-6.31
quirements, which is a general issue in model-driven development. In order
to customize the tree-based model editor, an additional plugin, called pimar.lan-
guage.editor.extended, uses the inheritance mechanism of EMF and extends the stan-
dard behavior by additional functions. These functions will be explained later in
Section 6.7.

6.5 Graphical Modeling Framework (GMF)

While the presented domain-specific modeling language is based on EMF, the6.32
graphical model editor is based on Eclipse’s Graphical Modeling Framework (GMF)
[Gro09]. GMF is a powerful and widely-used framework for implementing and run-
ning graphical model editors for EMF-based domain-specific modeling languages.
GMF provides a generative approach, similar to EMF. Beginning with an Ecore
model (called domain model) that defines the abstract syntax of the domain-specific
modeling language, we derive a set of more detailed models that describe the
graphical concrete syntax and the mapping to the abstract syntax. These models
can then be processed by the GMF code generators to build the graphical model
editor. Figure 6.11 shows the set of involved models, the generation steps, and the
resulting plugins that form the desired model-driven development infrastructure
(i.e., the modeling functionality). Having been generated by GMF, the graphical
model editors internally require the Graphical Editing Framework (GEF) [Rub+11]
libraries and runtime. Hence, GMF bridges EMF and GEF. Although we cannot
present GEF in detail here, it later becomes necessary to modify the generated
plugins in order to provide custom functionality.

GMF is compatible with different meta-modeling paradigms such as graph-centric6.33
and declarative modeling approaches. For example, the Tiger (Transformation-
based generation of modeling environments) [Ehr+05] framework applies GMF
based on a graph-centric approach. However, the domain-specific modeling lan-
guage we developed following a declarative approach and thus we apply GMF in
the commonly used way.

6.5.1 Workflow

The general workflow of GMF requires the creation of four models (cf. Di Ruscio6.34
et al. [Rus+10, Sec. 1,2], Baetens [Bae11]): (i) the domain model (*.ecore), (ii) the
graphical definition model (*.gmfgraph), (iii) the tool definition model (*.gmftool)
and (iv) the mapping model (*.gmfmap). Additionally, the so-called generation
model (*.gmfgen) is required for the code generation. It also containing platform-
specific options. The generation model can be automatically derived from the
previously mentioned models. It can also be customized if needed. The numbers
inside Figure 6.11 denote the usual order of creation.

Since we already start with the definition of the domain-specific modeling language6.35
(cf. Section 6.3) that is captured in an Ecore model (*.ecore), we will reuse this model
as our domain model for the graphical editor.

The graphical definition model (*.gmfgraph) provides nodes and connections as basic6.36
building blocks and limits the visual languages to a graph-like notation [Min02].
Both nodes and connections will be arranged on a canvas. Nodes may contain other
nodes through a compartment relation. Nodes and connections always refer to a
figure descriptor that provides standard figures (e.g., rectangles, circles), customized

6.5. Graphical Modeling Framework (GMF) 77

❶ Domain
Model

(*.ecore)

❷ Domain
Generator-

model
(*.genmodel)

EMF SDK (Generation Framework) EMF Runtime

❺ Mapping-
model

(*.gmfmap)

❸ Graphical
Definition

Model
(*.gmfgraph)

❻ Diagram
Generator-

model
(*.gmfgen)

❹ Tool
Definition

Model
(*.gmftool)

GMF SDK (Generation Framework)

GMF Runtime

GEF Runtime

 pimar.language
 pimar.language.edit
 pimar.language.editor
 pimar.language.editor
.extended

 pimar.editor.visual
.gcore.diagram

 pimar.editor.visual
.wcoredExtended.diagram

 pimar.editor.visual
.gcore.diagram.extended

 pimar.editor.visual.wcore-
Extended.diagram.extended

 pimar.editor.visual
.multieditor.plugin

Eclipse Platform

FIGURE 6.11: EMF/GMF process overview and involved models

figures (e.g., polylines), as well as external defined scalable vector graphics (SVG).
The figure descriptor implements the graphical elements of the visual language.
Additionally, the graphical definition model contains diagram labels that decorate
nodes and connections. Usually, diagrams hide some attributes of model elements in
order to increase the readability; these attributes can only be changed in a so-called
property editor (cf. Figure 6.10). Both the graphical and the tree-based model editor
use the properties editor to set non-visualized properties.

The graphical tool definition model (*.gmftool) defines which entries are available 6.37
on the palette inside the graphical model editor. This model is constructed in a
straightforward way and usually contains the main classes of the domain model.
Categories will often divide elements into node types and connection types.

The mapping model (*.gmfmap) combines the previously mentioned models. It 6.38
maps the elements of the domain model, i.e., classes, to nodes or connections. At-
tributes will be mapped to labels of the graphical definition model. Besides, the
mapping model maps the tooling items from the palette to visual elements. Thus,
the tooling items enable the creation of visual elements inside the generated model
editor.

All of the mentioned models, except the generation model, must be created manu- 6.39
ally. Kolovos et al. [Kol+10] apply model transformation techniques to support the
creation of such models and develop a tool support called EuGENia. However, we
could not apply these techniques in our setting: having highly customized graphical
language elements requires manual modeling for multiple reasons.

Finally, the platform-specific generation model (*.gmfgen) must be generated and 6.40
configured. Then, the program code of the plugins for the graphical model editor
are generated from this diagram generation model.

78 Chapter 6. Domain-Specific Modeling Language and Model Editors

6.6 Graphical Concrete Syntax and Edit Operations

To provide a graphical model editor, at first we must define the graphical concrete6.41
syntax. The graphical concrete syntax is captured in the graphical definition model
as shown by the presented workflow (cf. Figure 6.11).

Example (Specifying graphical concrete syntax elements). Figure 6.12 shows an6.42
excerpt from the presented models that specify the graphical concrete syntax of the
domain-specific modeling language. More precisely, the element ProcessContainer is
mapped to a canvas via the diagram element. A Process can be part (compartments)
of the diagram and occurs as a node element. In turn, a Process contains a Task
(e.g., Create). The Create element of the domain model is mapped to an identically
named node element of the graphical definition model, which is linked to a figure
descriptor. The figure descriptor defines the complete layout (e.g., geometric shape,
labels, icons, decorator elements) of the resulting visual element. Single attributes
(e.g., name) of domain elements are mapped through label mappings which refer
to label providers in the graphical definition model. These label providers refer, in
turn, to labels inside a figure descriptor.

ProcessContainer

Process

Task

Create

ENamedElement

name:String

processes 0..*

startTask 1

<diagram>

<compartments>

<nodes>

<compartments>

<nodes>

<labelMappings>

<descriptors>
CreateFigure

<canvas>
wcore

<nodes>
Create

<labels>
createName

<rectangle>
Rectangle

<label>
NameFigure

Domain Model
(EMF)

MappingModel
(GMF)

Graphical
Definition Model
(GMF)

GEF
Constructs

FIGURE 6.12: The mapping between EMF, GMF, and GEF

Since the notation shown in Figure 6.12 is not very intuitive to understand how the6.43
resulting visual elements look like, we will present the graphical concrete syntax
based on concrete instances as shown in Figure 6.13.

The rendered figure descriptor shows the layout, icons, and the static and dynamic6.44
labels. The annotations on the right-hand side denote to which element of the
domain model the node, label, or compartment refers. Some elements can be edited
directly if they refer to simple data types (e.g., string, int, enumeration). If they
refer to complex data types (e.g., Create.eClass), their values can only be set by the

6.6. Graphical Concrete Syntax and Edit Operations 79

Create (node)
Create.name
Create.permissions
(compartment)
Create.eClass.name
Create.return.name’:’Create.return.type

FIGURE 6.13: The graphical concrete syntax for the model element Create

properties view, although the values are displayed at the figure. Non-visualized
attributes (e.g., Create.anchor) can only be set through the properties editor (not
shown). �

The introduction of the graphical concrete syntax and edit operations inside the 6.45
next paragraphs follows the tripartite structure of the domain-specific modeling
language:

6.6.1 Graphical Concrete Syntax for the Data Model

Instance models (cf. Figure 6.4) of the data metamodel follow the same graphical 6.46
notation as the Ecore metamodel (cf. Figure 6.3). This notation for class diagrams
has proven to be very useful and widely accepted for modeling the structural
properties of a domain. Hence, we will not present the details of the graphical
concrete syntax for this part of app models.

6.6.2 Graphical Concrete Syntax for the GUI Model

The graphical concrete syntax of the GUI metamodel is very compact because the 6.47
set of graphical concrete syntax elements is pretty small. Tables 6.2 to 6.12 show
the mapping of the abstract syntax (AS) (cf. Figure 6.5) to the graphical concrete
syntax (GCS). The GCS type denotes to which graphical syntax type the abstract
syntax element is mapped, i.e., node, node with compartment(s), or node with label.
The GCS example row of the following tables shows an example of the respective
graphical concrete syntax element. The context value indicates in which context
and how often the graphical concrete syntax element may occur. Finally, the edit
operations describe which operations can be performed on the diagram and which
settings can be made in the properties view.

The abstract classes SelectablePage, ListablePage, and MenuablePages are not mapped 6.48
to graphical concrete syntax elements. The same applies for the enumeration types.

TABLE 6.2: Mapping of the abstract syntax element PageContainer

AS The abstract syntax element PageContainer shapes the di-
agram canvas and thereby directly or indirectly contains
all other graphical concrete syntax elements.

GCS (Type) Canvas
GCS (Example) not applicable
Context none
Edit
operations

Diagram
operations

The Canvas element provides the creation of
Page, StyleSettings, and Menu elements.

Property
settings

The properties editor provides no further
property settings.

80 Chapter 6. Domain-Specific Modeling Language and Model Editors

TABLE 6.3: Mapping of the abstract syntax element StyleSetting

AS The abstract syntax element StyleSetting and its con-
tained elements like PageStyleSettings, RGBColor, ListStyleSet-
tings, MenuStyleSettings, and SelectionStyleSettings shapes are
mapped to the graphical concrete syntax element StyleSetting.

GCS (Type) Node with compartments

GCS
(Example)

(A) Empty
StyleSetting

(B) Fully modelled
StyleSetting

StyleSetting (node)
StyleSetting.rgbColors
(compartment)
StyleSetting.listStyle,
StyleSetting.menuStyle,
StyleSetting.selectionStyle,
StyleSetting.pageStyle
(compartment)

Context Arbitrarily often inside a PageContainer compartment
Edit
operations

Diagram
operations

The StyleSetting element provides the creation of
all contained sub-elements according to the cardi-
nality given by the abstract syntax model.

Property
settings

The properties editor supports the setting of the
features backgroundColor and fontColor.

TABLE 6.4: Mapping of the abstract syntax element RGBColor

AS The abstract syntax element RGBColor is mapped to the graph-
ical concrete syntax element RGBColor.

GCS (Type) Node with label

GCS
(Example)

RGBColor (node) ’Color ’RGBColor.name’ (’
RGBColor.red’,’
RGBColor.green’,’
RGBColor.blue’)’

Context Arbitrarily often inside a StyleSettings.rgbColors compartment
Edit
operations

Diagram
operations

The RGBColor element provides no further edit op-
erations within the diagram.

Property
settings

The properties editor supports the setting of the
features red, green, blue, and name.

TABLE 6.5: Mapping of the abstract syntax element ListStyleSettings

AS The abstract syntax element ListStyleSettings is mapped to the
graphical concrete syntax element StyleListSettings.

GCS (Type) Node

GCS
(Example)

ListStyleSettings (node)

Context At most once inside a StyleSettings.listStyle compartment
Edit
operations

Diagram
operations

The StyleListSettings element provides no further
edit operations within the diagram.

Property
settings

The properties editor supports the setting of the
features showSeparator, separatorColor, and listStyle.

6.6. Graphical Concrete Syntax and Edit Operations 81

TABLE 6.6: Mapping of the abstract syntax element MenuStyleSettings

AS The abstract syntax element MenuStyleSettings is mapped to
the graphical concrete syntax element StyleMenuSettings.

GCS (Type) Node

GCS
(Example)

MenuStyleSettings (node)

Context At most once inside a StyleSettings.menuStyle compartment
Edit
operations

Diagram
operations

The StyleMenuSettings element provides no further
edit operations within the diagram.

Property
settings

The properties editor supports the setting of the
features fixedMenu and menuStyle.

TABLE 6.7: Mapping of the abstract syntax element SelectionStyleSettings

AS The abstract syntax element SelectionStyleSettings shapes the
graphical concrete syntax element StyleSelectionSettings.

GCS (Type) Node

GCS
(Example)

SelectionStyleSettings (node)

Context At most once inside a StyleSettings.selectionStyle compartment
Edit
operations

Diagram
operations

The StylePageSettings element provides no further
edit operations within the diagram.

Property
settings

The properties editor supports the setting of the
feature selectionColor.

TABLE 6.8: Mapping of the abstract syntax element PageStyleSettings

AS The abstract syntax element PageStyleSettings shapes the graph-
ical concrete syntax element StylePageSettings.

GCS (Type) Node

GCS
(Example)

PageStyleSettings (node)

Context Exactly once inside a StyleSettings.selectionStyle compartment
Edit
operations

Diagram
operations

The StyleSelectionSettings element provides no fur-
ther edit operations within the diagram.

Property
settings

The properties editor supports the setting of the
features frame, framecolor, imagePosition, and textPo-
sition.

82 Chapter 6. Domain-Specific Modeling Language and Model Editors

TABLE 6.9: Mapping of the abstract syntax elements Page

AS All abstract syntax elements which inherit only from the ele-
ment Page are mapped respectively to equally named elements
of the graphical concrete syntax. The static label above the
icons indicates the type of the page. The dynamic label below
the icon denotes its object name.

GCS (Type) Node with label

GCS
(Example)

(A) EditPage

...a

(B) MapPage

Page (node)

Page.name

a CustomPage, LoginPage, MediaPage, ARPage, TakePicturePage
Context Arbitrarily often inside a PageContainer compartment
Edit
operations

Diagram
operations

The elements provide no further edit operations
within the diagram.

Property
settings

The properties editor supports the setting of the
pageStyle and the name property. By default, the
first pageStyle element in a diagram will be assigned
automatically.

TABLE 6.10: Mapping of the abstract syntax element Menu

AS The abstract syntax element Menu corresponds to the element
Menu of the graphical concrete syntax. The dynamic label
below the icon denotes its object name.

GCS (Type) Node with label

GCS
(Example)

Menu (node)

Menu.name

Context Arbitrarily often inside a PageContainer compartment
Edit
operations

Diagram
operations

The Menu element provides no further edit opera-
tions within the diagram.

Property
settings

The properties editor supports the setting of the
features menuStyle and name.

6.6. Graphical Concrete Syntax and Edit Operations 83

TABLE 6.11: Mapping of the abstract syntax element MenuablePage

AS The abstract syntax elements ViewPage and ProcessSelectorPage
are mapped to equally named elements of the graphical con-
crete syntax.

GCS (Type) Node with label

GCS
(Example)

(A) ViewPage (B) ProcessSelectorPage

Page (node)

Page.name

Context Arbitrarily often inside a PageContainer compartment
Edit
operations

Diagram
operations

The elements provide no further edit operations
within the diagram.

Property
settings

The properties editor supports the setting of the
features pageStyle, menu, and name. By default, the
first menu element in a diagram will be assigned
automatically.

TABLE 6.12: Mapping of the abstract syntax element ListablePage

AS The abstract syntax elements ListPage and SelectableListPage are
mapped to equally named elements of the graphical concrete
syntax.

GCS (Type) Node with label

GCS
(Example)

(A) ListPage (B) SelectableListPage

Page (node)

Page.name

Context Arbitrarily often inside a PageContainer compartment
Edit
operations

Diagram
operations

The elements provide no further edit operations
within the diagram.

Property
settings

The properties editor supports the setting of the
feature listablePageStyle for both page types. The
features selectablePageStyle and multiSelection are
only supported for the SelectableListPage, while the
feature menu is only supported for the ListPage.

84 Chapter 6. Domain-Specific Modeling Language and Model Editors

As apparent by the GCS types in Tables 6.2 to 6.12, the graphical concrete syntax6.49
provides only nodes and no connection types. This is because connection types (e.g.,
arrows between nodes) often imply an execution order or processing sequence. Since
the GUI model defines neither the internal structure of pages nor their invocation
order, we refrain from using graphical syntax elements that could imply this. Rela-
tions between objects can only be expressed by assignments in the properties editor
(cf. Figure 6.6b and 6.6c) or by using the compartment mechanism of a node. The
latter variant is used for the StyleSetting element.

6.6.3 Graphical Concrete Syntax for the Process Model

This section provides the graphical concrete syntax of the process model and its6.50
abstract syntax, respectively (cf. Figure 6.7). While the most of the elements of the
abstract syntax can be mapped in a similar way as shown before, some elements
can not be mapped to graphical concrete syntax elements in such a straight forward
manner.

As stated by Ehrig et al. [Ehr+05, Sec. 2.2], the disadvantage of the graphical6.51
model editor generation based on GMF is that the underlying metamodel (i.e., the
Ecore model) strongly influence the structure of the visual language alphabet. As
indicated by the already shown mappings, a containment relation in the abstract
syntax is always expressed as a compartment construct in the graphical concrete
syntax. With respect to the abstract syntax of the Process element, mobile application
modelers must follow a containment structure while modeling a Process. At first,
they must create a startTask, which is usually a Sequence, and add body and follower
tasks as compartment elements of the corresponding sequence. The reordering,
insertion, and deletion of tasks are not supported by the GMF-generated graphical
model editor, making the modeling process very inconvenient. Mobile application
modelers usually prefer a freehand modeling method, being able to create all nodes
(e.g., tasks) first and then combining them with edges (e.g., body and follower
relations). In particular, edges should be flexibly assignable to modify the modeled
process.

In order to circumvent the limitations of GMF, three solutions are conceivable:6.52

First, editing operations could be implemented to support the reordering, insertion,6.53
and deletion of process elements. This could be implemented in a manual or a tool-
supported way, e.g., by specifying model transformations [Tae+07]. However, in
both cases, the editing operations change the existing layout of a diagram because
rearranged model elements will also rearrange the diagram elements. Indeed,
editing operations may affect several diagram elements (e.g., all tasks of a process)
and thus might not be convenient for mobile application modelers because the
layout will be lost.

Second, the metamodel, i.e., the domain-specific modeling language, could be6.54
changed in order to provide a more easy-to-use graphical model editor. This is the
most frequently applied solution, especially if the metamodel is not used by other
artifacts (e.g., code generators). However, a redesign of the abstract syntax is not
favored during this work, because both the graphical model editor and the code
generators should have no influence on the domain-specific modeling language
and will be developed independently.

Third, an additional metamodel could be defined to provide a convenient graphical6.55
model editor while the domain-specific modeling language definition remains
unchanged. This solution requires a model-to-model transformation that serves
as a kind of a model parser (e.g., parse visual subsentences – cf. Costagliola et al.
[Cos+05b] [Cos+05a]). The additional model is used only for editing and will be
parsed to the initial process model. As a result, the graphical model editor and the
code generators can be developed independently referring only to their common

6.6. Graphical Concrete Syntax and Edit Operations 85

domain-specific modeling language. In practice, the additional metamodel consists
of the existing metamodel and includes some extensions, hence it could called
extended process model.

6.6.3.1 Extended Process Model

The extended process model, shown in Figure 6.14, contains the classes Variable, 6.56
Process, and Task, which are derived from the equally named classes in the initial
process model (cf. Figure 6.7). The first extension is the containment feature allTasks
of the class Process. This feature provides the creation of multiple tasks inside a
process compartment without using a Sequence task to combine the tasks. In order
to combine tasks, the next added feature RefTrue can be used. The RefTrue class acts
as a directed edge between two tasks and denotes the preceding and succeeding
task respectively. The classes If1, IfElse1, and While1 correspond to the similarly
named classes in the initial process model but require no body (or elseBody). The
RefTrue and RefFalse classes are used to model the accepting and rejecting path after
such conditional tasks. Besides, the introduced conditional nodes and the Assign1
element accept a textual condition, captured in the condition (or rhs) attribute. This
will be used later to combine textual and graphical editing (cf. Section 6.7).

ConditionalNode

Assign1

rhs:String

If1

condition:String

IfElse1

condition:String

While1

condition:String

Task

Variable

Process

RefFalse RefTrue

allRefsTrue
0..*

allRefsFalse
0..*

allTasks 0..*

pre 1

suc 1

suc 1

pre 1

lhs 1

FIGURE 6.14: The extended process model (showing extension only)

To sum up, the extended process model provides a syntax structure that allows 6.57
graph-based editing, rather than tree-based editing, inside the graphical model editor.
The extended process model is parsed to the initial process model when the mobile
application modeler saves a newly created extended process model. The parser
removes the additionally introduced classes, i.e., the corresponding objects, thus
creating a tree-based structure of tasks. However, this is not always possible if
mobile application modelers create cycles or multiple edges. The parser provides
trivial error-handling (e.g., ignoring multiple edges, multiple initial tasks) but does
not yet provide a visual feedback or error location (cf. Tuovinen [Tuo00]). This

86 Chapter 6. Domain-Specific Modeling Language and Model Editors

trade-off between freehand and syntax-directed editing is well discussed in the
literature [KM00].

After extending the initial process model with these few elements, a more conve-6.58
nient model editor based on GMF can be generated. We will now introduce the
graphical concrete syntax for the extended process model.

6.6.3.2 Graphical Concrete Syntax for the Extended Process Model

Tables 6.13 to 6.29 show the mapping of the abstract syntax (AS) (cf. Figure 6.7) to6.59
the graphical concrete syntax (GCS).

TABLE 6.13: Mapping of the abstract syntax element ProcessContainer

AS The abstract syntax element ProcessContainer forms the
diagram canvas and thereby directly or indirectly con-
tains all other graphical concrete syntax elements.

GCS (Type) Canvas
GCS (Example) not applicable
Context none
Edit
operations

Diagram
operations

The Canvas element provides the creation of
Process elements.

Property
settings

The properties editor provides no further
property settings.

TABLE 6.14: Mapping of the abstract syntax element Process

AS The abstract syntax element Process and its contained elements
like Variables and Tasks shape the graphical concrete syntax
element Process.

GCS (Type) Node with compartments and label

GCS
(Example)

(A) Empty
Process

(B) Partially modelled
Process (C) Fully modelled Process

Process (node)

Process.name
Process.variables (compartment)
Process.allTasks (compartment)
Process.returns (compartment)

Context Arbitrarily often inside a ProcessContainer compartment
Edit
operations

Diagram
operations

The Process element provides the creation of Vari-
ables and Tasks. Variables can be global parameter
variables, local variables, and return variables.

Property
settings

The properties editor supports the setting of the
feature name.

6.6. Graphical Concrete Syntax and Edit Operations 87

TABLE 6.15: Mapping of the abstract syntax element Variable

AS The abstract syntax element Variable is mapped to the graphical
concrete syntax element Variable.

GCS (Type) Node with label

GCS
(Example)

(A) Global
Variable

(B) Local
Variable

(C) Return
Variable

Variable (node)

Variable.name

Context Arbitrarily often inside a Process.variables compartment or Pro-
cess.returns compartment

Edit
operations

Diagram
operations

The elements provide no further edit operations
within the diagram.

Property
settings

The properties editor supports the setting of the
features name, changeable, defaultValue, scope, value,
and eType (inherited from ETypedElement).

TABLE 6.16: Mapping of the abstract syntax element ProcessSelector

AS The abstract syntax element ProcessSelector is mapped to the
graphical concrete syntax element ProcessSelector.

GCS (Type) Node with compartment and label

GCS
(Example)

ProcessSelector (node)
ProcessSelector.name
ProcessSelector.permission
(compartment)
ProcessSelector.page.name’:’
ProcessSelector.page.type
ProcessSelector.processes

Context Arbitrarily often inside a Process.allTasks compartment
Edit
operations

Diagram
operations

The element provides the creation of Permissions.

Property
settings

The properties editor supports the setting of the
features page, processes, and name.

TABLE 6.17: Mapping of the abstract syntax element Create

AS The abstract syntax element Create is mapped to the graphical
concrete syntax element Create.

GCS (Type) Node with compartment and label

GCS
(Example)

Create (node)
Create.name
Create.permissions
(compartment)
Create.eClass.name
Create.return.name’:’
Create.return.type

Context Arbitrarily often inside a Process.allTasks compartment
Edit
operations

Diagram
operations

The element provides the creation of Permissions.

Property
settings

The properties editor supports the setting of the
features anchor, eClass, return, and name.

88 Chapter 6. Domain-Specific Modeling Language and Model Editors

TABLE 6.18: Mapping of the abstract syntax element Read

AS The abstract syntax element Read is mapped to the graphical
concrete syntax element Read.

GCS (Type) Node with compartment and label

GCS
(Example)

Read (node)
Read.name
Read.permissions
(compartment)
Read.object.name’:’
Read.object.type
Read.return.name’:’
Read.return.type

Context Arbitrarily often inside a Process.allTasks compartment
Edit
operations

Diagram
operations

The element provides the creation of Permissions.

Property
settings

The properties editor supports the setting of the
features object, return, and name.

TABLE 6.19: Mapping of the abstract syntax element Delete

AS The abstract syntax element Delete is mapped to the graphical
concrete syntax element Delete.

GCS (Type) Node with compartment and label

GCS
(Example)

Delete (node)

Delete.name
Delete.permissions
(compartment)
Delete.object.name’:’
Delete.object.type

Context Arbitrarily often inside a Process.allTasks compartment
Edit
operations

Diagram
operations

The element provides the creation of Permissions.

Property
settings

The properties editor supports the setting of the
features object and name.

TABLE 6.20: Mapping of the abstract syntax element Assign

AS The abstract syntax element Assign is mapped to the graphical
concrete syntax element Assign.

GCS (Type) Node with compartment and label

GCS
(Example)

Assign (node)

Assign.name
Assign.permissions
(compartment)
Assign.rhs
Assign.lhs

Context Arbitrarily often inside a Process.allTasks compartment
Edit
operations

Diagram
operations

The element provides the creation of Permissions.

Property
settings

The properties editor supports the setting of the
features rhs, lhs, and name.

6.6. Graphical Concrete Syntax and Edit Operations 89

TABLE 6.21: Mapping of the abstract syntax element InvokeOperation

AS The abstract syntax element InvokeOperation is mapped to the
graphical concrete syntax element InvokeOperation.

GCS (Type) Node with compartment and label

GCS
(Example)

InvokeOperation (node)
InvokeOperation.name
InvokeOperation.permissions
(compartment)
InvokeOperation.argumentsa

InvokeOperation.operation
InvokeOperation.context
InvokeOperation.return.name’:’
InvokeOperation.return.type

a not used here
Context Arbitrarily often inside a Process.allTasks compartment
Edit
operations

Diagram
operations

The element provides the creation of Permissions.

Property
settings

The properties editor supports the setting of the
features arguments, context, long, operation, return,
and name.

TABLE 6.22: Mapping of the abstract syntax element InvokeGUI

AS The abstract syntax element InvokeGUI is mapped to the graph-
ical concrete syntax element InvokeGUI. The second labeled
icon in the lower compartment indicates which type of page is
referred (e.g., SL for SelectableList).

GCS (Type) Node with compartment and label

GCS
(Example)

InvokeGUI (node) InvokeGUI.name
InvokeGUI.permissions
(compartment)
InvokeGUI.outputData.name’:’
InvokeGUI.outputData.type
InvokeGUI.page.type (Icon)
InvokeGUI.page.name
InvokeGUI.inputData.name’:’
InvokeGUI.inputData.type

Context Arbitrarily often inside a Process.allTasks compartment
Edit
operations

Diagram
operations

The element provides the creation of Permissions.

Property
settings

The properties editor supports the setting of the
features input, outputData, inputData, return, and
name.

90 Chapter 6. Domain-Specific Modeling Language and Model Editors

TABLE 6.23: Mapping of the abstract syntax element InvokeProcess

AS The abstract syntax element InvokeProcess is mapped to the
graphical concrete syntax element InvokeProcess.

GCS (Type) Node with compartment and label

GCS
(Example)

InvokeProcess (node)
InvokeProcess.name
InvokeProcess.permissions
(compartment)
InvokeProcess.argumentsa

InvokeProcess.subProcess
InvokeProcess.return.name’:’
InvokeProcess.return.type

a not used here
Context Arbitrarily often inside a Process.allTasks compartment
Edit
operations

Diagram
operations

The element provides the creation of Permissions.

Property
settings

The properties editor supports the setting of the
features arguments, return, subProcess, synchronized,
and name.

TABLE 6.24: Mapping of the abstract syntax element CRUDGui

AS The abstract syntax element CRUDGui is mapped to the graph-
ical concrete syntax element CRUDGui.

GCS (Type) Node with compartment and label

GCS
(Example)

CrudGui (node)

CrudGui.name
CrudGui.permissions
(compartment)
CrudGui.privileges
CrudGui.contain

Context Arbitrarily often inside a Process.allTasks compartment
Edit
operations

Diagram
operations

The element provides the creation of Permissions.

Property
settings

The properties editor supports the setting of the
features anchor, contain, privileges, and name.

TABLE 6.25: Mapping of the abstract syntax element Permission

AS The abstract syntax element Permission is mapped to the graph-
ical concrete syntax element Permission.

GCS (Type) Node with label

GCS
(Example)

Permission (node)

Permission.name

Context Arbitrarily often inside a Task.permission compartment; except
the task types If1, IfElse1, and While1

Edit
operations

Diagram
operations

The element provides no further edit operations
within the diagram.

Property
settings

The properties editor supports the setting of the
features name and permission.

6.6. Graphical Concrete Syntax and Edit Operations 91

TABLE 6.26: Mapping of the abstract syntax elements RefTrue and RefFalse

AS The abstract syntax element RefTrue and RefFalse are mapped
to equally named elements of the graphical concrete syntax.

GCS (Type) Edge

GCS
(Example) (A) RefTrue element (B) RefFalse element

RefTrue (edge) RefFalse (edge)

Context Arbitrarily often inside a Process.allTasks compartment; The
element RefTrue may start from any kind of task, while the
RefFalse element only starts from ConditionalNodes.

Edit
operations

Diagram
operations

The elements provide the creation of Tasks, which
are selected as suc value.

Property
settings

The properties editor supports the setting of the
features pre, suc, and name.

TABLE 6.27: Mapping of the abstract syntax elements If1

AS The abstract syntax element If1 is mapped to the graphical
concrete syntax element If1.

GCS (Type) Node with label

GCS
(Example)

(A) If1 element
(not connected)

(B) If1 element
(fully connected)

If1 (node)

If1.condition

Context Arbitrarily often inside a Process.allTasks compartment
Edit
operations

Diagram
operations

The element provides the connection of RefTrue and
RefFalse elements (edges).

Property
settings

The properties editor supports the setting of the
features condition and name.

TABLE 6.28: Mapping of the abstract syntax elements IfElse1

AS The abstract syntax element IfElse1 is mapped to the graphical
concrete syntax element IfElse1.

GCS (Type) Node with label

GCS
(Example)

(A) IfElse1 element
(not connected)

(B) IfElse1 element
(fully connected)

IfElse1 (node)

IfElse1.condition

Context Arbitrarily often inside a Process.allTasks compartment
Edit
operations

Diagram
operations

The element provides the connection of RefTrue and
RefFalse elements (edges).

Property
settings

The properties editor supports the setting of the
features condition and name.

92 Chapter 6. Domain-Specific Modeling Language and Model Editors

TABLE 6.29: Mapping of the abstract syntax elements While1

AS The abstract syntax element While1 is mapped to the graphical
concrete syntax element While1.

GCS (Type) Node with label

GCS
(Example)

(A) While1 element
(not connected)

(B) While1 element
(fully connected)

While1 (node)

While1.condition

Context Arbitrarily often inside a Process.allTasks compartment
Edit
operations

Diagram
operations

The element provides the connection of RefTrue and
RefFalse elements (edges).

Property
settings

The properties editor supports the setting of the
features condition and name.

The abstract syntax element Expression is not mapped to a graphical syntax element:6.60
it is mapped to textual syntax as presented in the next paragraph.

6.7 Combining Textual and Graphical Editing

The tooling of our approach has points of similarity with AToM3 (de Lara et al.6.61
[DL+04]), which combines different editing paradigms for visual model editors. We
follow a multi-paradigm approach, thereby extending the functionality of GMF
(cf. Völter [Völ09, Sec. 5]). While AToM3 combines a meta-modeling approach
with a graph-grammar approach, we combine the meta-modeling approach with
textual parsing techniques developed for string languages. We use the ANTLR
(Another Tool for Language Recognition) [Par12] framework to generate a parser to
recognize expression statements of the domain-specific modeling language. These
expressions are part of the presented conditional elements such as If, If/Else, and
While. The Assign element also refers to an expression (cf. Figure 6.7).

Expression

BinaryExpression

operator:BinaryOperators

UnaryExpression

operator:UnaryOperators

TerminalExpression

Variable≪enum≫
UnaryOperators

NOT
...

≪enum≫
BinaryOperators

AND
OR
...

leftExpression 1

rightExpression 1

rightExpression 1

refers 1

FIGURE 6.15: Ecore metamodel for defining the behavior of mobile applications (Pt. II/II)

6.7. Combining Textual and Graphical Editing 93

Figure 6.15 shows how these expressions are composed. Based on the requirement 6.62
to create logical expressions in a textual way, the extended process metamodel (cf.
Figure 6.14) accepts at first string values inside the attributes condition and rhs of
the relevant elements.

FIGURE 6.16: A textual entered condition of an IF element

Figure 6.16 shows a textual expression (Person EQUAL SelectedPerson) cap- 6.63
tured by the condition attribute of an If1 element. When saving the model, the
generated parser becomes active and recognizes the structure based on the gram-
mar rules given in Listing 6.4.

LISTING 6.4: Parser rules for an expression

1 grammar Expression ;
2

3 s t a r t : express ion ;
4

5 express ion : ’ (’ express ion ’) ’ | op=unaryOperator express ion
| l e f t =express ion op=binaryOperator r i g h t =express ion |

v a r i a b l e ;
6

7 unaryOperator : (NOT | . . .) ;
8

9 binaryOperator : (AND | OR | EQUAL | . . .) ;
10

11 v a r i a b l e : IDENTIFIER ;

Finally, the parser delivers the abstract representation of the textual expression 6.64
entered before as shown in Figure 6.17.

(A) The conditional expression (with selected terminal expression)

(B) Properties of the selected terminal expression

FIGURE 6.17: The parsed conditional expression

During the numerous experiments with undergraduate students, we came to learn 6.65

94 Chapter 6. Domain-Specific Modeling Language and Model Editors

that the textual input option is generally valuable, but it remains unclear for the
mobile application modelers which variables are in scope of the textual expression to
be written. The scope of variables for the conditional (or assignment) statements is
difficult to figure out. Henceforth, an expression editor supports mobile application
modelers while creating textual expressions. The expression editor shown in Figure
6.18 proposes only variables that are in scope of the currently edited element.

FIGURE 6.18: Expression editor for conditions and assignments (rhs)

6.8 Graphical Model Editor Implementation

Table 6.30 shows the second set of plugins forming the graphical model editor. The6.66
graphical model editor for app models is designed as a graphical model editor
comprising three different views. There is a view for data modeling, one for process
modeling (see Figure 6.19), and one for graphical user interface modeling. Since this
multi-editor functionality is not provided by GMF, the first plugin project (first row
of Table 6.30) realizes this multi-editor functionality and provides three views for
the different models. As expected, changes in one view are immediately propagated
to the other ones. The existing Ecore diagram editor has been integrated for data
modeling (second row of Table 6.30).

The GUI model editor and the extended process model editor are created by the6.67
presented workflow (cf. Section 6.5.1) resulting in one plugin for each model (third
and fourth rows of Table 6.30). However, the generated graphical model editors
do not cover all required features and must be adapted. For example, we want
to use custom labels and icons. To this end, we apply the well-known generation
gap pattern [Vli98, pp. 85–101], which provides a mechanism to inject custom
functionality. Thus, the graphical model editors for the extended process model
and the GUI model are extended (fifth and sixth rows of Table 6.30). Figure 6.19
shows the resulting graphical model editor for an app model while editing a process
model.

TABLE 6.30: Second set of plugins shaping the MDD infrastructure

Plugin project name Content Type
pimar.editor.visual.multieditor.
plugin

Multi-editor
framework code manual

org.eclipse.gmf.ecore.editor Data model editor reused
pimar.editor.visual.gcore.diagram GUI model editor generated
pimar.editor.visual.wcoreExtended.
diagram

Extended process
model editor generated

pimar.editor.visual.gcore.
diagram.extended

GUI model editor
(custom part) manual

pimar.editor.visual.wcoreExtended.
diagram.extended

Extended process
model editor (custom part) manual

6.9. Further EMF-Based Tools and Frameworks 95

FIGURE 6.19: Graphical model editor for app models (Process model being edited)

6.9 Further EMF-Based Tools and Frameworks

Since EMF is a widely-used modeling framework implemented on top of the Eclipse 6.68
software development platform, we could use other EMF-related tools to analyze
and modify the created app models. Two of the most important applications are
model quality assurance and model transformation.

6.9.1 Tooling for Model Quality Assurance

Arendt and Taentzer provide [AT13] a tool environment for quality assurance 6.69
based on the Eclipse modeling framework. This tool environment supports metrics
computation, smell detection, and refactoring for models that are based on EMF.
Different specification methods such as Java, OCL [35], and Henshin [Are+10]
can be used. The model quality approach can be adapted to project-specific and
domain-specific needs. This feature facilitates the creation of metrics functions,
smell definitions, and refactoring operations, which are tailored to the designed
domain-specific modeling language.

We apply the quality assurance process to our domain-specific modeling language. 6.70
We define 41 metrics functions and 58 smells. Refactorings are currently not imple-
mented.

Example (Color metric and color smell). While creating a mobile application, the 6.71
mobile application modelers have to set at least one style setting inside the GUI
model. In turn, this style setting requires at least two colors that serve as background

96 Chapter 6. Domain-Specific Modeling Language and Model Editors

and font colors of the mobile application. They may choose inappropriate color
values, resulting in bad legibility of the mobile application as shown in Figure 6.20a.

Hence, one of the realized metric functions, CVD_min (color value distance mini-6.72
mum), calculates at first the minimal difference between two color objects. Listing
6.5 shows the implementation of this function.

LISTING 6.5: Metric function CVD_min

1 publ ic f i n a l c l a s s CVD_min implements I M e t r i c C a l c u l a t o r {
2 . . .
3 @Override
4 publ ic double c a l c u l a t e () {
5 r e t = minDifference (color1 , co l or 2) ;
6 . . .
7 re turn r e t ;
8 }
9

10 p r i v a t e double minDifference (RGBColor color1 , RGBColor
co lo r2) {

11 double r e t = Math . abs (co lor 1 . getRed ()−co lo r2 . getRed ()) ;
12 double d i f f = Math . abs (co lor 1 . getGreen ()−co lo r2 . getGreen

()) ;
13 i f (d i f f < r e t) { r e t = d i f f ; }
14 . . .
15 re turn r e t ;
16 }
17 }

(A) Mobile application with low back/font
color difference

(B) Smell results view

(C) Tree-based view

FIGURE 6.20: Detection of model smells

Based on this metric function we define the smell LowColorValueDifferenceSingle,.6.73
This smell occurs if a color value distance (i.e., red, green, or blue) of two colors
(e.g., font or background color) is below a certain defined threshold (e.g., 100).
Consequently, quality assurance can detect smells for models having inappropriate
color values (e.g., Fontcolor (153, 255, 255) and Backcolor (255, 255, 255)) as shown in
Figure 6.20b. Additionally, the quality assurance tool points to the occurrence of
the smell (cf. Figure 6.20c). �

Table 6.31 shows the third set of plugins forming the quality assurance of the model6.74
editor.

6.10. Evaluation 97

TABLE 6.31: Third set of plugins shaping the MDD infrastructure

Plugin project name Content Type
pimar.model.analysis.metrics Metrics definitions manual
pimar.model.analysis.smells Smell definitions manual

6.9.2 Tooling for Model Transformation

The Henshin framework [Are+10] provides an in-place transformation of EMF 6.75
models. Pattern-based transformation rules can be expressed using a visual syntax.
Henshin is suitable for implementing model refactorings and metamodel evolution.
In the course of this work, we use Henshin to refactor app models at design time.
For example, an in-place transformation of an app model can be used to meet the
requirements of a particular platform or device.

6.10 Evaluation

The preceding sections presented the main features of our domain-specific mod- 6.76
eling language for mobile applications and the corresponding model editors. We
discuss two questions: first, did our designed artifacts cover the modeling language
requirements provided in Chapter 4 (Question 1)?, and second, is the design of the
domain-specific modeling language appropriate (Question 2)?

6.10.1 Setup

To show that the artifacts described in this chapter cover the requirements, we map 6.77
the artifacts to the corresponding requirements. Moreover, since the requirements
already contain acceptance criteria, we check whether or not the artifacts fulfills the
particular acceptance criteria for each of the targeted requirements.

The requirements, especially the modeling language requirements, are not ex- 6.78
pressed in a final manner through the use of an iterative development process.
Consequently the acceptance criteria are also expressed on a very high level. Hence,
we will discuss the final artifacts, i.e., the domain-specific modeling language for
mobile applications and the corresponding model editors, with respect to generally
accepted guidelines for the design of domain-specific modeling languages. To this,
we use design guidelines for domain-specific modeling languages stated in [Kar+14]
(cf. [Mer12, Chap. 14]) and the design guidelines for user interface description
languages stated in [SV03] [Nav+09]. These generally accepted guidelines serve
as additional acceptance criteria. The evaluation with respect to the feature model
is postponed to the next chapter in order to cover the generator components of
the model-driven development infrastructure. Similar, the user studies and user
experiences are presented therein.

6.10.2 Requirement Coverage (Question 1)

The parts of the overall implementation of the model-driven development infras- 6.79
tructure which are provided by the plugins denoted in the tables 6.1, 6.30, and
6.31 cover the requirements 4.1.1 to 4.1.5 and 4.3.1 (cf. Table 4.1). However, the
semantics of the domain-specific modeling language is still not defined. Only the
code generators define the behavior of the model elements by transforming them to
program code with well-defined syntax and semantics.

The plugin pimar.language contains the metamodel which defines the domain- 6.80
specific modeling language. By reusing the Ecore metamodel (cf. Section 6.3.1) for

98 Chapter 6. Domain-Specific Modeling Language and Model Editors

data modeling purposes, the data modeling part allows an appropriate modeling
of various domains where the mobile application should be used. The behavior
modeling part (cf. Section 6.3.3) provides abstract modeling (e.g., by the CrudGui
element) as well as more specific model elements for individual process definitions.
The discussion of the runtime configurability based on the process instance model
will be postponed to the next chapter. The third part of the plugin implements the
language elements for graphical user interface modeling (cf. Section 6.3.2). In accor-
dance with the acceptance criteria, this part provides abstract modeling elements.
Again ,the runtime configurability based on the style model will be discussed in the
next chapter.

Finally, well-formedness rules for app models and the model quality assurance6.81
plugins (pimar.model.analysis.*) were implemented to cover the modeling require-
ments which are not directly focused on the design of domain-specific modeling
languages, but are highly relevant in order to avoid compile errors or inappropriate
program code during the code generation process. In accordance with the accep-
tance criteria of the mentioned requirements, the well-formedness rules prohibit
many cases in which the models may lead to compile errors. Moreover, the model
quality assurance process enables infrastructure developers to define metrics and
smells that should be identified and avoided during the modeling process.

The second set of plugins (cf. Table 6.30) covers the tooling requirement of a6.82
graphical model editor. In accordance with its acceptance criteria, the graphical
model editor provides freehand editing and the evaluation of the created app
models.

6.10.3 Language Adequacy (Question 2)

In order to demonstrate that the designed domain-specific modeling language has6.83
an appropriate design, we discuss it with respect to the following design guidelines:

6.10.3.1 Design Guidelines for Domain-Specific Modeling Languages

The main purpose of our domain-specific modeling language is code generation.6.84
It will be used mainly by mobile application developers, possibly also by domain
experts and content-providing users. The language is designed to be platform-
independent, i.e., independent of Android, iOS, or other mobile platforms.

A decision whether to use a textual or graphical concrete syntax does not have to6.85
be made since we design the language with EMF and therefore have the possibility
to add a textual concrete syntax with e.g., Xtext [Bet13] or a graphical one with e.g.,
the Graphical Modeling Framework (GMF) [Gro09] [Rub+11], as shown before. The
development of a textual syntax is less work and will be added in the near future.
We decided to reuse EMF for data modeling, as it is very mature. Since we define
our language with EMF, the Ecore metamodel can also be reused, along with its
type system.

Next, we discuss the choice of language elements. Since all generated mobile6.86
applications share the same architectural design (as detailed in the next chapter),
the domain-specific modeling language does not need to reflect the architecture.
However, data structures, behavior, and graphical user interface design are cov-
ered. Since we want to raise the abstraction level of the domain-specific modeling
language as high as possible, we have discussed each specific feature of mobile
applications carefully to decide whether it can be set automatically by the code
generator or the mobile application modeler should care about it. For example,
asynchronous execution of an operation is decided indirectly if the operation is
classified as long-lasting but can also be set directly. Permissions are completely in
the hand of the mobile application modeler since these are based on the operations

6.10. Evaluation 99

modeled. The authors of [Kar+14] emphasize the simplicity of a language in order
to be useful. Our domain-specific modeling language follows this guideline by
avoiding unnecessary elements and conceptual redundancy, having a very lim-
ited number of elements in the core language and avoiding elements that lead to
inefficient code.

The graphical concrete syntax has to be chosen carefully: for data modeling, we 6.87
adopt the usual notion of class diagrams since it has proven to be very useful.
Process models adopt the activity modeling style to define control structures on
tasks since well-structured activity diagrams map usual control structures very
well. Notations for pages and tasks use typical shapes and icons to increase their
descriptiveness and make them easily distinguishable. Models are organized in
three separate sub-models with respect to different system aspects, i.e., data model,
process model, and GUI model. Moreover, data structures can be organized in
packages, and processes can be structured hierarchically.

There is one part in particular where the abstract and the concrete syntax of our 6.88
language diverge: the definition of control structures for task execution. While the
concrete syntax follows the notion of activity diagrams, the abstract syntax contains
binary or ternary operators such as while loops and if clauses. This allows for an
easier handling of operations for code generation. However, they are unhandy
during the modeling process. The chosen layout does not have any effect on the
translation to abstract syntax. Our language provides the usual modularity and
interface concepts known from other languages: packages and interface classes in
data models as well as processes and process invocations in process models.

6.10.3.2 Design Guidelines for User Interface Description Languages

Looking at the design and comparison criteria of user interface description lan- 6.89
guages given in [SV03] [Nav+09], (i.e., component model, methodology, tools,
supported languages, platforms, targets, interaction coverage, expressiveness), we
can say that our graphical user interface definition reflects most of the stated criteria.

In order to position our GUI model with respect to the existing work, we discuss 6.90
the following criteria: first, the component model criteria require a separation of
the user interface description language into sub-models (or aspects) such as a task
model, domain model, presentation model, and dialog model. Our app model
is structured in this way per design. The task model describes different tasks to
be accomplished by the user. Within our approach, we describe these tasks (e.g.,
viewing data, filling out a form, taking a picture) by corresponding page types (such
as ViewPageEditPage, and TakePicturePage). Each page has a predefined, generic
structure of graphical user interface components and follows a specific purpose.
For example, the purpose of the ARPage is to compare the current camera image
with a predefined pattern and to augment it with additional information such as
text and images. The ARPage hides the technical details of the AR functionality
from the mobile application modeler and reuses already existing AR frameworks
(e.g., MetaioSDK [26]).

The methodology criteria distinguish between (i) the specification of user interfaces 6.91
for each of the different contexts of use and (ii) the specification of a generic (or
abstract) user interface description for all the different contexts of use. Our approach
provides both variants. A graphical user interface (here Page) can be reused in
different contexts by using style models that act as runtime instances of GUI models.
Alternatively, graphical user interfaces (i.e., Pages) can be created for each context
of use to, e.g., support an individual layout or modify generated code.

The tool criteria describe the existence of a translation tool. Such a tool translates 6.92
a user interface description into a specific language or platform [Pue+94]. Our
graphical user interface description is automatically translated by code generators.
In this respect, the criteria of platforms and supported languages are also met by

100 Chapter 6. Domain-Specific Modeling Language and Model Editors

our code generators supporting different platforms (Android, iOS) and different
languages (XML, Java, Objective-C).

The target criteria describe the ability of the user interface description to express6.93
variations according to the desired platform, user group, and environment. Our
modeling approach supports user-specific targeting of processes and related user
interfaces specified by provider models [Vau+14]. Thus, our GUI model has multi-
user capability.

Finally, we discuss the expressiveness of our GUI model: according to Navarre et6.94
al. [Nav+09], the expressiveness includes data description, state representation,
event representation, representation of time, concurrent behavior, and dynamic
instantiation. As many other user interface description languages, our GUI meta-
model covers this variety of expressiveness aspects only partly. As mentioned
earlier, data description is part of our modeling concept, namely the data model.
The state representation of our modeled graphical user interface (pages) cannot be
modeled, but it is provided at the code level. Events can be modeled. A usual case
is the invocation of and return from graphical user interfaces with certain return
events (e.g., Save and Cancel). Most of Navarre’s expressivness criteria are either
provided by the data or process sub-model or at the code level. Some of them have
not been in the focus of our design and are thus not provided. Our GUI model is
admittedly minimalistic, describing a graphical user interface that is focused on a
specific purpose.

6.10.4 Threats to Validity

Considering external validity, it is not ensured that our designed domain-specific6.95
modeling language is, in general, appropriate regarding different potential user
groups, although it respects several design guidelines. For example, mobile ap-
plication modelers who are more technically oriented might prefer a textual con-
crete syntax and a low abstraction level because this is more similar to traditional
code-writing. In turn, mobile application modelers with a background in business-
oriented domain-specific modeling languages might prefer a high-level abstraction
and a graphical concrete syntax. An empirical study might confirm this hypothesis.
In addition to the adaptation of the domain-specific modeling language described
in Section 6.7, we will report on the experiences during the practical use of the
designed domain-specific modeling language in the next chapter.

A threat to internal validity is that the iteratively designed domain-specific model-6.96
ing language was not discussed after each of the iterations. Earlier design variants
are ignored since only the final design was evaluated with respect to the design
guidelines. Moreover, the well-formedness rules for app models can only be com-
pleted as soon as the code generators are available, because inappropriate app
models which lead to compile errors can be identified easier by systematic code
generator tests.

101

Chapter 7

Reference Applications, Code
Generators, and Prototypes

This chapter presents the development of code generators as a second essential com- 7.1
ponent of the model-driven development infrastructure. However, before starting
with the construction of the code generators, representative reference applications
must be created according to our agile bottom-up development approach (cf. Figure
3.1).

Thus, we start with a qualitative analysis of reference applications, a step that we 7.2
call reverse engineering. These reference applications were initially provided by our
industrial research project partners. Our feature model can express different kinds
of mobile applications. Therefore, the analysis of only one reference application
may not be sufficient. Based on the focused features (cf. Section 5.4), we consider
information systems and transaction systems as well as standalone mobile applications
in this work. Therefore, we start the qualitative analysis with two different mobile
applications that represent the respective kinds of mobile applications.

The qualitative analysis of reference applications is useful for identifying domain 7.3
concepts, but the codebase of the reference applications is usually not directly
suitable for code generator template extraction: the reference applications may
contain anti-patterns, code smells, or bugs, which are not to be included in the
code generators. Additionally, recurring and schematic boilerplate code may be
obfuscated by slightly different manifestations and cannot be identified easily. In
both cases, a refactoring toward design patterns and code quality may be required,
but a complete refactoring of real-world mobile applications often seems ineffective
and is too time-consuming.

A less complex approach is the re-engineering of these reference applications, as for- 7.4
ward engineering. Forward-engineered applications may be limited in certain aspects,
meaning that forward-engineered applications contain only application-specific
functionality, i.e., will not implement recurring or schematically similar structures
as they may occur in the initially analyzed reference applications. Additionally,
forward engineering allows unifying several mobile applications on a conceptual
level. Finally, forward-engineered applications contain the application concepts in
a condensed manner. To guarantee that the re-engineered applications are repre-
sentative with respect to the original reference applications, several techniques can
be applied (e.g., back-end compatibility, functional tests, and mobile application
developer’s interviews).

Another aspect of forward engineering is the harmonization of different implemen- 7.5
tation variants. As presumed, every analyzed implementation (iOS, Android) was
developed and maintained by different teams. Sociological and technical factors
influence the design of the platform-specific implementations, which is why a sec-
ond goal of the forward engineering is to align the platform-specific aspects of each
implementation as far as possible.

Finally, forward engineering can be used to introduce new features that will be 7.6

102 Chapter 7. Reference Applications, Code Generators, and Prototypes

provided by the generated mobile application later. In our case, we add augmented
reality (AR) technology to forward-engineered reference applications although the
analyzed applications do not have this feature.

After an evaluation of the forward-engineered applications, the second part of7.7
this chapter will describe how the code generators are designed. The term code
generator in its broadest sense describes not only native program code generation
but rather the generation of all artifacts of a mobile application. Hence, we subsume
the IDE preparation for a mobile platform-specific development project and the
architecture of the generated mobile applications as relevant while constructing a
code generator. These aspects are often ignored in the model-driven development
literature. The native program code generation in the narrow sense, is explained
along the processing of the app model. Subsequently, the processing of the provider
model is explained and some hints how generated native program code could be
customized are given.

The concluding evaluation presents a discussion with respect to the requirements7.8
and the feature model criteria. We demonstrate, using three case examples, how
generated prototypes cover the focused features. The applicability of the model-
driven development infrastructure is demonstrated through a user-study evaluation.
Finally, we discuss the structure and similarity of the code generators and the
generated mobile applications and evaluate additional more technical aspects.

7.1 Reverse Engineering of Reference Applications

Reverse engineering is mainly a qualitative analysis of reference applications and7.9
gives a deeper insight into the kinds of mobile applications we want to generate.
Their architecture is of particular interest. Hence, instead of focusing on the detailed
features of the considered mobile applications, we focus on their concepts. The
selection of reference applications excludes applications which have little to no
application data (e.g., games and music players). Such non-interoperable and non-
data-oriented mobile applications are not our focus. The process step involving
reverse engineering does not contain any kind of implementation task. This will be
carried out by the forward engineering task in the following stage. Finally, at the
end of this section, we will provide a short discussion of how the selected mobile
applications reflect the focused features.

7.1.1 Information System

The analysis of reference applications was started with the key2guide application (cf.7.10
Section D.2), which can be classified as an offline-capable information system.

Information systems generally have a unidirectional data flow between the back end7.11
and the front end. Typical mobile applications that realize an information system are
passenger/visitor information systems, weather information systems, and financial
information systems. These systems have one thing in common: the provided data
is transient and is distributed over a hub (e.g., a back-end system). In contrast, an
electronic dictionary or an encyclopedia generally uses stable records, which is why
their data distribution may also be different (e.g., provided by a factory setting).

Two systems can be further distinguished based on the degree of transience of data:7.12

First, as observed by key2guide, the number of data records will be often extended7.13
while the existing records remain unchanged. In such cases, a native implementa-
tion of the mobile application is recommended. Mobile applications of this kind can

7.1. Reverse Engineering of Reference Applications 103

replicate the data locally, which means they can operate in a disconnected situation
unless some data is added at the back end.

Second, other mobile applications like weather information systems are very often 7.14
realized by a web-based mobile application or the mobile version of a website. The
data of such an application is naturally transient, and thus, a replication makes
no sense in this case. The response of the mobile end-user request is cached only
temporally for a short time. These kinds of information systems do not support
being restarted, longer states of inactivity, or network disconnection without the
need to get current data again.

Another aspect is the specificity of a request/response from a back-end system and 7.15
the amount of replication. For example, key2guide provides only two replication
modes (full replication/full replication without media files). Full replication is
used because a mobile end user might use the information at any place or any time
later. The time and place of such a replication request cannot be used beneficially
to reduce the amount of replicated data. In turn, an online request within a web-
based mobile application reveals the current position and time of information usage
(immediately). For example, a mobile end user requesting a flight connection at a
certain airport at a certain time might generate a very specific response e.g., only
the next connections. Outdated data or data extending too far into the future can be
ignored and thus excluded from a replication of data.

As analyzed by key2guide, the only issue with replication in information systems 7.16
is the obsolescence of data due to additions or modifications at the back end,
which is called read inconsistency. However, in practice, mobile end users accept
read inconsistency on replicated data while they are disconnected because even
potentially inconsistent data might be more beneficial than no data access at all.

To sum up, many existing mobile applications that realize an information system are 7.17
still web-based and lack offline capability. One of the reasons for this is the fact that
offline-capable implementations such as key2guide require native implementation
for each of the desired platforms.

7.1.2 Transaction System

The second analyzed reference application was key2operate, which can be classified 7.18
as an offline-capable transaction system.

In most cases, transaction systems are realized as online systems that follow the well- 7.19
known online transaction processing (OLTP) paradigm. This paradigm describes
that transactions are performed in real time and online on a centralized system, i.e.,
database management system (DBMS). Conflicts between different transactions (or
their users) follow well-known conflict definitions (e.g., taken from serializability
theory), and can be detected and resolved easily in such a system. However, when
it comes to the domain of mobile applications, the mentioned paradigm needs to
be rethought. As stated by Bernstein [Ber+87, Chap. 8.8] transaction processing
on replicated data does not tolerate communication failures. As a result, mobile
applications always have to work online to meet the assumptions of the mentioned
paradigm. This does not seem to be feasible in many mobile applications and usage
scenarios.

Key2operate realizes an offline-capable transaction system by employing replication 7.20
and synchronization. This transaction system has a bidirectional data flow that
bridges back end and front end mutually. Transactions can be performed online as
well as offline within certain limits.

One ongoing problem, which is also not resolved in key2operate, is the conflict 7.21
analysis in online- and offline-capable transaction systems. At first, online- and
offline-capable transaction systems have the same read inconsistency problem as

104 Chapter 7. Reference Applications, Code Generators, and Prototypes

information systems while operating offline on replicated data. Additionally, trans-
actions are usually not limited to reading data, but they also write data. Thus, write
inconsistency might occur. For example, while synchronizing the mobile front end
(mobile client) with the back end (server), a locally performed transaction must be
reset or reevaluated because another mobile client has changed the value in the
meantime.

The analyzed mobile reference application requires no write consistency, a fact that7.22
may lead to conflicts at the synchronization, because two offline mobile users may
write to the same (replicated) value. Users of key2operate generally have to accept
conflicts while operating offline. This is not uncommon in other mobile applications
as well.

To provide conflict-free transaction processing inside mobile applications while7.23
being offline, the implementation of more sophisticated concepts from literature
(e.g., mobile transaction models) is required.

To sum up, mobile applications that realize transaction systems are at present largely7.24
incapable of working both online and offline and ensuring, at the same time, conflict-
free operation.

7.1.3 Standalone System

The analysis of the reference applications has shown which kind of mobile applica-7.25
tions should be covered by the model-driven development infrastructure and what
the challenges are. The analysis of the analyzed mobile applications’ architectures
shows that both can temporarily operate offline. Thus, the question arises whether
these designs also cover the design of a standalone application that works only
offline. As part of the analysis, we notice that the analyzed reference applications
are potentially able to work only offline. The reason for this is that the back end
provides no core functionality (e.g., application logic) which is required by the
mobile device permanently.

Hence, the model-driven development infrastructure should also generate stan-7.26
dalone applications. Besides, the generated default back end should provide as
little functionality as possible, because we focus not on model-driven development
infrastructure for web-applications.

7.1.4 Coverage of Focused Features

Based on the focused features given in Section 5.4, we will discuss which of these7.27
focused features are covered by the selected mobile applications and which of
these features will additionally be covered by the model-driven development in-
frastructure and the mobile applications it can generate. As shown in Table 7.1, the
selected mobile applications cover most of the features, thus we consider them as
representative reference applications. However, the remaining features deal mostly
with software engineering concerns (e.g., model-driven development of mobile
applications). Hence, our goal in this part of the thesis is to create mobile applica-
tions in a model-driven way which provide at least the same functionality as the
respective selected reference applications.

key2guide (cf. Section D.2) is a mobile multimedia guide (Information system)7.28
available for the native platforms Android and iOS. It uses several sensors/actors and
interfaces of the devices’ hardware, as well as internal memory. It can interpret data
that are obtained from a back-end system, which is why it has a hybrid architecture.
Finally, it is designed for permanent offline operation (i.e., local data and transaction
management), except for its initial startup it needs a network connection.

key2operate (cf. Section D.3) is a manufacturing and production information system7.29

7.2. Forward Engineering of Reference Applications 105

TABLE 7.1: Focused features and mobile application features

Feature group ◃ ... ◃ Feature/s Covered by application
Application type ◃ Standalone not covered
Application type ◃ Information system key2guide
Application type ◃ Transaction system key2operate
Software platform ◃ Android key2guide
Software platform ◃ iOS key2guide
Hardware platform ◃ Screen ◃ Resolution not covered
Hardware platform ◃
(Actors/Sensors/Interfaces/Memory)

key2guide,
key2operate

Application architecture ◃ Native application key2guide, key2operate
Application architecture ◃ Interpreter application key2operate
Application architecture ◃ Hybrid application key2guide
Application development ◃ Model-driven not covered
Model-driven ◃ Design model (Abstract/Detailed) not covered
Model-driven ◃ Runtime model key2operate
Data and transaction management ◃ Local key2guide, key2operate
Data and transaction management ◃ Central key2operate
Graphical User Interface ◃ Dynamic key2operate
Context-awareness ◃ Platform context-awareness not covered

(MPIS). Information can be retrieved in a manner similar to key2guide from a back-
end system, but transactions can also be made (e.g., supplies requests). key2operate
is a native mobile application that uses industry-typical sensors, i.e., barcode scan-
ner. Moreover, local memory is required to store data during offline situations.
However, key2operate synchronizes transactions made offline using a centralized
backend system. Hence, the data and transaction management are both local and
centralized. key2operate is designed as an interpreter, because manufacturing and
production processes are company-specific. It applies a runtime model that specifies
the behavior of the mobile application and the graphical user interface.

To sum up, the two main contributions of this thesis (cf. Sections 1.5.1 and 1.5.2) 7.30
cover all focused features. The mobile applications generated by the model-driven
development preserve the existing features of the prototypes but will additionally
cover the features which are not yet covered. At the end of this chapter, we will
show which features are covered by the model-driven development infrastructure
(cf. Table 7.6). The remaining, uncovered features are discussed in the second part
of this thesis.

7.2 Forward Engineering of Reference Applications

Forward engineering follows the goal to create a representative reference application 7.31
that, firstly, combines the identified architectural features of the analyzed mobile
applications, and secondly, provides native program code of good quality which
can be adopted by the code generators.

7.2.1 Front End

At first, forward engineering of the front end delivers a mobile application for 7.32
each of the desired software platforms (Android and iOS). The process of forward
engineering was mostly identical for the Android and iOS reference applications,
but there were some differences, because some tools were only available for Eclipse

106 Chapter 7. Reference Applications, Code Generators, and Prototypes

rather than XCode. Forward engineering focuses on the product key2guide, but
aspects of key2operate have also been realized.

At the beginning of the forward engineering, the mobile applications use the origi-7.33
nal back-end system. Thus, the first implementation step was to provide mobile
applications that can login to the back end and download the project files and, if
applicable, the related media files.

Since key2operate provides a dynamic data model in the opposite direction of the7.34
static data model of key2guide, forward engineering adopts dynamic modeling.
In order to provide a flexible data model, the corresponding classes of a domain
model (Ecore model) were already generated in a model-driven way by EMF. The
forward engineers for the iOS front-end variant must additionally implement a
corresponding code generator that generates data access objects (DAO) because
EMF was not able to generate the Objective-C code. Moreover, the iOS application
variant uses a lightweight database instead of the file-based XMI serialization used
for the Android application variant. These data-oriented parts of the re-engineered
reference applications could be reused later while creating the code generators of
the model-driven development infrastructure, because they were already developed
in a model-driven way.

Due to the requirement of using the original back end, the forward engineers have7.35
to write parsers that parse the vendor-specific project file obtained by the back end
(e.g., the content management system – CMS) and convert them to the internally
used data model. This part of the reference applications will not be used later while
constructing the code generators. Instead, it enables carrying out a compatibility
test of the forward-engineered front-end applications using the already existing
back end. The mentioned parts (i.e. the parsers) can be removed when the forward
engineering of the back end is completed.

Finally, the forward engineers realize the graphical user interface of the application7.36
that presents the parsed and converted data. As the mentioned mobile applications
provide extensive configuration capabilities of the graphical user interface at run-
time, the forward-engineered applications must provide the same configurations.

Consequently, the forward engineering of the front end provides an Android and7.37
an iOS application that reflect several features of key2guide and key2operate. Figure
7.1 illustrates the forward-engineered reference applications showing data from
an university’s mathematical collection that are created in the existing back-end
system as a test project.

7.2.2 Back End

The information provided in the mobile applications (Figure 7.1) was obtained7.38
from the original back-end system. In the original setting, the analyzed mobile
applications need such a content management system because it provides the only
facility to create application data and configure the mobile applications. Using
EMF as the underlying technology in the forward-engineered mobile applications
facilitates the creation of standard model editors for all relevant models, as shown
in Figure 6.10. Henceforth, models can be created and edited locally by rich-client
model editors and uploaded directly to the mobile devices. Besides, the mobile
applications to be generated will provide CRUD functions, which provide self-
service functionality to create and modify runtime models directly on the mobile
device. Hence, it is at first appropriate to provide a platform just for runtime model
distribution rather than creation and editing. A simple back end was created to
cope with this task. Moreover, to provide web-based editing of runtime models, a
web-based back-end model editor was developed, similar to the content management
system used in key2guide.

7.2. Forward Engineering of Reference Applications 107

(A) Main screen (Android) (B) Object view (Android) (C) eLearning (Android)

(D) Main screen (iOS) (E) Object view (iOS) (F) eLearning (iOS)

FIGURE 7.1: Forward-engineered mobile application variants (Android/iOS)

7.2.2.1 Simple Back End

The simple back end (called SeVVerl – Serveranwendung zur Verwaltung und 7.39
Verteilung von Laufzeitmodellen; engl. Server application for administration and
distribution of runtime models) supports the following features:

• User-roles and groups: the back end implements user management. Different
users can be grouped together with their different levels of authorization.
Since the back end can administer several runtime models of different types
of mobile applications, every user is allocated to a particular application.

• Login and logout of users: corresponding to the mobile front ends, the back
end supports the login and logout of mobile devices, i.e., their users.

• Delivery of metadata: following the login, the back end delivers a list of the
available runtime models for the particular user. This list of data may vary
depending on the user authorization level.

• Download of a selected runtime model: after selecting one runtime model,
the mobile application retrieves the runtime model and applicable additional
media files, if any.

108 Chapter 7. Reference Applications, Code Generators, and Prototypes

• Upload of a selected runtime model: users can also upload models to the back
end. Here it does not matter whether the runtime model was locally created
or downloaded before and modified.

• Deletion of runtime models: users can delete models. This function is only
available in the web-based front end of the back end.

• Sharing of runtime models: users can share models. Using this function, the
runtime models can be made available to other users or groups.

The simple back end does not provide any editing functionality apart from the7.40
runtime editing in the mobile applications. Besides, concurrently modified run-
time models (e.g., modified by two independently working mobile users) cannot be
joined together when both are uploaded. In such cases the simple back end provides
two update strategies: (i) the existing runtime model will be overwritten completely
by a modified and uploaded runtime model, regardless of the loss of already per-
formed modifications of another mobile user; (ii) Modified and uploaded runtime
models are stored separately with a new revision number. However, modifications
of other users cannot be integrated into this model.

7.2.2.2 Web-Based Back-End Model Editor

The web-based back-end model editor (PIMARWebEdit) was developed to provide7.41
a platform-independent model editor for provider models (cf. Section 6.1). This
application adopts most of the features of the simple back end, but extends the
functionality considerably in terms of model-editing. Figure 7.2 shows the design
of the editor’s graphical user interface.

FIGURE 7.2: Web-based model editor for runtime models (editing a GUI model)

Similar to the simple back end, the web-based back-end model editor provides no7.42
features for collaboration in terms of joining the modified models. As shown later,
different frameworks such as CDO [59], Teneo/Hibernate [71] [LM10] or EMFStore
[KH10] [64] can be used to provide concurrent access to the runtime models.

7.2.3 Evaluation of the Forward Engineered Reference Applications

To argue that the forward-engineered reference applications are representative, two7.43
goals must be pursued:

The first goal concerns the functionality of the reference applications. The forward-7.44
engineered reference application should fulfill the same specification as the analyzed

7.3. Construction of Code Generators 109

reference applications. In practice, this can be ensured by a compatibility test.
The forward-engineered components were tested against unmodified components,
i.e., the forward-engineered front end with the unmodified back end. Another
test exploits the already existing test cases for the forward-engineered reference
applications in order to demonstrate an equal behavior or correct in- and outputs.

The second goal focuses on the internal structure of the forward-engineered ref- 7.45
erence applications. The mobile application developers of the original reference
application review the forward-engineered mobile applications and point out dif-
ferences, if any.

7.2.3.1 Compatibility Test

The forward-engineered reference applications initially use the unmodified back- 7.46
end to obtain their application data (cf. Figure 7.1). The unmodified back end
provides several already existing projects (runtime models), which can be used as
representative test data for the forward-engineered applications. Apart from the
existing projects, a test record was systematically created by the forward engineers
in order to test different configurations of the front end as accurately as possible.

7.2.3.2 Functional Test

The mobile application developers of the original reference application test the 7.47
forward-engineered reference applications based on their existing test cases. How-
ever, they are unable to apply test cases of a low test stage (e.g., unit tests). Hence,
the already existing user acceptance tests (UAT) are reused. Moreover, this test covers
device heterogeneity (in the case of Android), because the tester carries out several
tests on different device types. All in all, about 60 single user acceptance tests were
run for the forward-engineered reference applications. In total, the functional test
demonstrates that the functionality of the forward-engineered mobile versions is
generally equal to the functionality of the initial reference applications.

7.2.3.3 Qualitative Review

The qualitative review of the forward-engineered reference applications is particu- 7.48
larly important because all quality defects and anti-patterns, as well as architectural
issues, will be adopted to the deduced code generators. Therefore, the domain
experts review the forward-engineered applications in a final step and fix minor
issues. This last step results in the forward-engineered reference application which
serves as a basis for the construction of good code generators:

7.3 Construction of Code Generators

The construction of code generators includes code generation, the initialization of 7.49
platform-specific projects of the particular IDEs, and the app model and provider
model processing. Finally, the constructed code generators provide functionality to
inject custom code into the generated mobile applications.

7.3.1 Initialization of the IDEs

Although the model-driven development infrastructure itself is developed and 7.50
executed on the Eclipse platform, the code generator does not necessarily target

110 Chapter 7. Reference Applications, Code Generators, and Prototypes

the same platform for artifact generation. Most existing IDEs for mobile appli-
cation development provide their own IDE-specific project structure. Moreover,
the mobile platforms need different project artifacts (often called manifest files),
which contain metadata and further essential information (e.g., API keys). Hence,
the code generator must also initialize these IDE-specific project structures and
their platform-specific artifacts correctly, in order to subsequently apply the build
mechanisms (program-code compiler) of the desired IDEs.

7.3.1.1 Platform-Specific Project Initialization (Android)

The Eclipse platform is the targeted platform for the Android code generation. The7.51
initialization routine at first initiates a new project, adds the required project natures
(e.g., Android, EMF), and creates standard sub-folders. After that, the required
libraries (e.g., EMF runtime library), the default icons, and an empty Android
manifest file are copied to the project. Finally, the Android-specific settings (e.g.,
targeted Android version) are set. The initialized Android project is then ready
for code generation. However, the code generator must be aware of these artifacts
and maintain the data in it. For example, a generated Android activity must be
registered in the Android manifest file; otherwise, the application may fail during
execution.

7.3.1.2 Platform-Specific Project Initialization (iOS)

The target platform for iOS code compilation and project building is XCode [06].7.52
However, the corresponding code generator runs in Eclipse and writes native
program code in a local project folder which is exported from Eclipse and then
imported into the XCode IDE. The initialization routine for the iOS project inside
Eclipse uses an empty XCode project that serves as a template project. Since Eclipse
cannot programmatically access XCode project-specific settings (e.g., add library
dependencies), all required artifacts are already created inside the project template.
The XCode project is ready for code generation directly after its creation. Similar to
the Android project, several files must be maintained during the code generation
stage. XCode and Eclipse work together seamlessly because the XCode project
may be active in XCode and in Eclipse at the same time. Hence, code and project
modifications will be immediately recognized by XCode.

7.3.2 Preprocessing an App Model

The app model undergoes some preprocessing steps before it is compiled. Apart7.53
from an obligatory validation of the app model, the data model will be decorated
with some additional methods. Regarding the abstract modeling of standard be-
havior (e.g., CRUD elements), the preprocessor concretizes the abstract modeling
elements automatically. The preprocessing follows a visitor-based approach be-
cause the preprocessor modifications are done at the modeling level and a visitor
mechanism is used to iterate over the model elements.

7.3.2.1 App Model Decoration

The generated mobile applications require different operations for reading and7.54
viewing data objects. The read task performs pattern-based reading, thus requiring
the equals method to find pattern-matching objects. The ListablePages requires the
comparable method to sort the objects that are listed in a particular order. The toString
method is used to format item names as part of list elements.

The mobile application modeler is not bound to model these methods manually,7.55

7.3. Construction of Code Generators 111

since the preprocessor will add them to the data model in the model decoration step.
Nevertheless, the mobile application modeler may add the mentioned methods to
create a customized solution instead of using standard behavior. In this case, the
preprocessor will not overwrite the manually added methods.

7.3.2.2 App Model Concretization

In the model concretization step, any occurrence of an abstract modeling element is 7.56
substituted by an appropriate structure consisting of concrete modeling elements.
For example, the preprocessor decomposes CRUD tasks into an InvokeGUI task,
which in turn invokes an EditPage. Thus, the update functionality can be provided
(cf. Figure 6.2a left-hand site) as part of the abstract CRUD process. Create, Read
and Delete functionalities are provided in the same manner.

Our employed automatic concretization inside the same language level, i.e., meta- 7.57
model (endogenous transformation), is unusual, since usually, the model-driven
development approach seeks to lower the abstraction level only between different
language levels, i.e., metamodels (e.g., CIM, PIM, and PSM). However, using both
abstract and concrete modeling elements inside a modeling level will ease the
modeling process (more compact elements means less modeling effort) and can be
efficiently handled by the code generators by reusing concrete transformation rules.

7.3.3 Processing an App Model

The core functionality of the code generator (model compiler) is the processing 7.58
of a software model. However, the code generator will not only generate simple
and unstructured program code artifacts, but also a runnable mobile application
with a defined architecture. Hence, the code generator establishes the architecture
of the generated mobile applications. Due to the absence of any architectural
modeling construct inside the developed domain-specific modeling language, the
code generator implicitly incorporates the resulting architecture of the mobile
applications. The general architecture of the mobile applications to be generated is
explained below. Afterward, the mapping between the modeling elements and the
platform-specific program constructs is presented. Finally, the code generation for
Android and iOS is shown in more detail.

7.3.3.1 Architecture of Generated Mobile Applications

Before giving a detailed presentation of the mapping of the modeling elements to 7.59
the constructs of the different target platforms and the code generation to Android
and iOS, we describe the overall platform-independent architecture of the generated
mobile applications.

The architecture of generated mobile applications reflects the separation of data, 7.60
process, and graphical user interface aspects in our app model (as shown in Figure
6.1). Since we generate data-oriented mobile applications [Fra+14, Section 2.1],
the architecture of each generated mobile application has a data access layer. This
layer contains the modeled data entities (e.g., persons, addresses) and provides
functionality to serialize and deserialize these objects. The data layer forms the
model of the application.

The controller layer implements the behavior specified by the process model, e.g., 7.61
it holds the application logic. It is the intermediary layer between the model and
the view. The controller invokes the interactive user dialogs and processes events
produced by user dialogs. Since it is possible to take the process instance model into

112 Chapter 7. Reference Applications, Code Generators, and Prototypes

Client (C)

Application GUI

Application logic

Local
DBMSDB

(A) Local data and transaction management

Client (C)
Application GUI

Application logic

Server (S)

Central transaction
manager (TM)

DB

Central DBMS

(B) Centralized data and transaction management

FIGURE 7.3: System architectures of the generated mobile applications

account at runtime, the controller layer contains an interpreter part for the process
instance models.

The presentation or view layer provides all interactive dialogs and the graphical user7.62
interface. This is the most platform-specific layer because it uses the graphical com-
ponents provided by the different software platforms. Additionally, the graphical
user interface must be dynamically configurable (e.g., according to device-specific
features) at runtime. The dialogs in the view layer do not contain any computa-
tion or navigation logic (except for input validation) and forward all events to the
controller.

Finally, the architecture of a generated mobile application implements a transaction7.63
concept. A process invoked by the initial process selector dialog opens a transaction
on the object model. If the user returns to this initial process selector dialog by
confirming all the steps, this transaction is completed successfully. Otherwise, the
user can cancel the transaction at any dialog, and the changes made are consequently
lost.

Besides the internal structure of the generated mobile applications (clients), the7.64
mobile devices can be again part of external system architecture, if connected with
a server. Since we are focused on data-driven mobile applications the considered
servers are lightweight and only provide a database management system. Figure
7.3 shows the architectural variants that are possible with respect to the features
local and centralized data and transaction management.

These variants can be instantiated at runtime by the mobile users of the generated7.65
mobile applications. The class DataAccessLayer is called at the start of the mo-
bile application. The constructor of this class (see Listing 7.1) tries to determine
whether a central database was initialized before. In this case, the mobile applica-
tion will run with centralized data and transaction management (see Figure 7.3b).
Otherwise, the constructor checks if the mobile application is preset with local data.
In this case, the mobile application will be operated as a standalone application
with local data and transaction management (see Figure 7.3a). In case that both
cases are not applicable (no mobile application of this type was ever started) the
mode is set to an undefined state and the user is asked whether the database should
be initialized at the server (centralized) or the client (locally). This case will only

7.3. Construction of Code Generators 113

occur for the first startup of the mobile application, which may be performed by
the administrator of the system.

LISTING 7.1: Determination of data and transaction mode

1 private DataAccessLayer (. . .) {
2 . . .
3 masterdatabase = new Masterdatabase (getContext ()) ;
4 i f (i sOnl ineDataAvai lable ()) {
5 setModeOnline () ;
6 masterdatabase . log in () ;
7 } e lse i f (i s O f f l i n e D a t a A v a i l a b l e ()) {
8 setModeOffl ine () ;
9 } e lse {

10 setModeUndefined () ;
11 }
12 }

7.3.3.2 Mapping of Model Elements to Platform-Specific Types

Prior to the presentation of the code generators, we explain our mapping between 7.66
the platform-independent modeling elements and the platform-specific types and
technologies.

Mapping of the Data Model

The mapping of the data model is not platform-specific, since multi-platform tech- 7.67
nologies (e.g., platform-independent relational databases) are available. We may
use different technologies such as a file-based system (storing data in XMI format)
or a database management system (using SQLite or MySQL) to map the data model.
Consequently, the mapping of the object-oriented data model follows well-known
concepts (e.g., the object-relation mapping [Amb12, Chapter 14]). It is not further
regarded in this discussion.

Mapping of the Process Model

Table 7.2 shows the important model elements of the process model (see Figure 7.68
6.7) and the corresponding counterparts in the targeted platforms. We mapped the
Process element to Services. Services have no graphical user interface and can be
started and stopped. An InvokeGUI task calls a graphical user interface. Thus, it
is mapped to platform-specific graphical user interface constructs (e.g., Activity or
UIViewController). The Create-, Delete-, and Read-Tasks are mapped to simple classes
of the platform-specific programming language. An InvokeOperation task calls a
method and does not differ from a normal method access. The mapping of the
InvokeProcess task is slightly different for each of the supported platforms. While
Android provides the Intent-construct to call Services (or other mobile applications),
iOS has no counterpart. Thus, in iOS, the InvokeProcess task is mapped to an
instantiation of the corresponding service class. This mapping reflects the main
design decisions with respect to code generation based on the domain experience of
mobile application developers and suggestions provided in the relevant literature.
As we have used a set of reference applications (and forward engineered reference
applications) to develop our domain-specific modeling language, as well as getting
appropriate code snippets for the code templates, we reuse this bottom-up mapping
from code to language elements in reverse.

114 Chapter 7. Reference Applications, Code Generators, and Prototypes

TABLE 7.2: Mapping the model elements to platform-specific constructs

Modeling element Android iOS
Process android.app.Service Service (NSObject1)
InvokeGUI task android.app.Activity NSObject.UIResponder.

/FragmentActivity UIViewController
Create-, Delete-,
Read-Tasks java.lang.Class NSObject

Variable Declaration of field Declaration of field
InvokeOperation task Invocation of a method Invocation of a method
InvokeProcess task android.content.Intent Invocation of Service

Mapping of the GUI Model

In contrast to the clear mapping of the main process model elements, GUI model7.69
elements (see Figure 6.5) cannot be mapped to platform-specific types in a straight-
forward way. There are two reasons for this:

First, the GUI model and the style model (if available) are mainly interpreted by7.70
the mobile application at runtime. Thus, a mapping of modeling elements and
platform-specific constructs is hardly possible. The generated mobile applications
contain generic code to interpret the model information, and as a result, neither the
generated declarative descriptions of the graphical user interfaces nor the generated
code contain hard-coded information about the graphical user interface modeled
earlier.

Second, the generic code relates to several components of the graphical user inter-7.71
face (e.g., labels, text views). The amount of graphical user interface components
depends on the type of Page (e.g., ViewPage, EditPage) and the data model (see Figure
7.5). Thus, the amount and location of generic graphical user interface interpreting
code are indirectly affected by the app model.

7.3.3.3 Code Generation for Android

The code generation process begins automatically after changing and saving an app7.72
model (auto generation). To avoid the processing of temporarily invalid models
while editing them, the mobile application modeler can deactivate the auto gen-
eration for the time being. The code generator produces at least two projects (see
Figure 7.4) – an Android project <Project>.Android (e.g., Phonebook.Android)
containing the Android application program code, and an Android library project
<Project>.Lib (e.g., Phonebook.Lib), which contains the data layer program code.
The mandatory Android library project serves two purposes: (i) it makes entity
classes of the data model available for use by the Android project, primarily by
Android activities. Hence, provider models can be easily handled by Android
activities using objects instead of raw parameter lists. (ii) The second purpose of
the Android library project is the permanent storage of provider models. For this
purpose, the Android library project refers to further libraries to (de)serialize and
modify the provider models at runtime. The Android library project is created
by reusing the existing EMF generator that generates code for the EMF runtime.
The generated code and the EMF runtime are directly applicable on the Android
platform. The EMF generator becomes a sub-generator of the complete code gen-
erator and processes the Ecore data model separately. Alternatively, it is possible
to use SQLite instead of EMF. The process model and GUI model are translated by
separate sub-generators written in Xtend, which is a contribution of this work.

The main Android project follows the usual Model-View-Controller [Lia14, p. 47]7.73
[Med+12, 171 ff.] architecture of Android applications. View components are mostly

1 NSObject is the root class of most Objective-C class hierarchies.

7.3. Construction of Code Generators 115

<Project>.Android

guicrud

adapter gui.<...> gui.dialog

asynctask

util

model

<Project>.Lib

ecoreI

ecoreI.impl ecoreI.util

google-play-services.Lib*

MetaioSDK.Lib*

...

FIGURE 7.4: Architecture of generated Android applications

generated as mobile application resources. The controllers contain the modeled
application logic and occur in the form of activities (gui, gui.dialog), fragments
(gui.<...>), adapters (adapter), services (gui), asynchronous tasks (asynctask), and
simple Java classes (crud). While entity class interfaces are widely dispersed in these
controllers, access to runtime models is done exclusively via the model package. The
model package acts as a data access layer, ensuring that Android activities do not ac-
cess runtime models directly. Therefore, the generated application architecture can
be easily adapted to other technologies (i.e., relational databases, web services) for
(de)serialization of provider models by just changing this layer (cf. code generation
for iOS).

Example (Automatic generation of the Graphical User Interface). Figure 7.5 shows 7.74
the generated activity layout for the process CRUDPerson. As mentioned earlier,
the mobile application modeler does not define the hierarchical structure of the
graphical user interface components in an explicit manner. This information is
deduced from the data model. The mobile application developer only specifies that
the process CRUDPerson displays an object of type Person (see Figure 6.3) to modify.
The code generator produces a standard layout for this task (cf. Tran [Tra+12] and

116 Chapter 7. Reference Applications, Code Generators, and Prototypes

Data model Process model Graphical User interface

FIGURE 7.5: The generated graphical user interface of the process CRUDPerson

Raneburger [Ran+12]). �

Further library projects (whose use is optional) encapsulate the utility of map7.75
services (e.g., Google Play Service [12]) and AR functionality (e.g., MetaioSDK
[26]).

All these projects are immediately compiled and are then ready to run. By default,7.76
the memory card of the mobile device contains an initial provider model containing
an empty object model, an initial style setting, and an initial process instance model
containing the main process with all those processes assigned to the main process
in the app model. This provider model may be extended during runtime. After
app model changes (which result in code regeneration), it might become partly
invalid, depending on the kind of changes. If, for example, the process model
has changed but the data model has not, the object model is still readable, but the
process instance model is not. It is left up to future research to support automated
migration of provider models.

7.3.3.4 Code Generation for iOS

The workflow to generate iOS code is nearly the same as for Android. The code7.77
generator produces one project (see Figure 7.6) – an iOS project <Project>.iOS) (e.g.,
Phonebook.iOS) containing the iOS application program code. A slight difference,
however, is that the generated project must be exported from Eclipse and imported
into the XCode-IDE in order to build an iOS application.

<Project>.iOS

gui

crud

util

model

ecoreI ecoreI.impl ecoreI.dao

FIGURE 7.6: Architecture of generated iOS applications

In contrast to the Android code generator, the iOS code generator currently creates7.78

7.3. Construction of Code Generators 117

only one project. The code generator for iOS cannot reuse the EMF generator to
process the Ecore data model since EMF-generated code cannot be run on the
iOS platform. This functionality must be covered by the code generator for iOS
in addition. Hence, the EMF-equivalent code for iOS comprises entity classes
deduced from the data model (ecoreI, ecoreI.impl) and corresponding data access
objects (DAOs [Yen+14, p. 154]) to (de)serialize objects. As the model package
indicates, the generated iOS applications use a relational database (SQLite [17]) to
store runtime models. An initial database is created based on the data model using
Teneo (which is based on Hibernate). This database contains an initial provider
model. Similar to the Android platform, the database might become partly invalid
after app model changes and regeneration of code. The remaining packages follow
the same architectural design as presented for an Android application. In this sense,
they are platform-specific equivalents to previously described Android packages.

To show geographical maps, the generated iOS applications use the built-in Apple 7.79
Maps Service. A library project such as google-play-services.Lib is not necessary,
but possible, for the iOS platform. Since Apple provides an increasing number of
similar services to Google (e.g., iCloud/Google Drive, iMessage/Google Messenger)
additional third-party libraries are less important to integrate a certain service. The
only exceptions to this are third-party libraries that provide specialized functionality
(e.g., AR functionality).

7.3.4 Processing a Provider Model

In addition to the high-level description of the provider model and its capabilities to 7.80
configure several options of generated mobile application given in the introduction,
we will now describe in detail which model elements will be evaluated at runtime.

With regard to the object model as an instance of the data model (cf. Figure 6.4), 7.81
all objects will be evaluated, i.e., processed, at runtime. The generated mobile
application can modify the object model during runtime. The object model is
generally many times larger, in terms of the number of elements, than the data
model.

Similar to the object model, all elements of the style model will be evaluated at 7.82
runtime. A GUI model may contain one general style setting for all pages. A style
model may contain one style setting element per page. Therefore, a style model
may have twice as many elements as the GUI model. A style model will not be
modified by the generated mobile application, in its current usage. However, it
might be useful that mobile users are allowed to change the style model to set their
personal preferences.

Finally, the process instance model is the most limited sub-model of the provider 7.83
model. For several reasons, the process instance model allows only the redefinition
of the ProcessSelector tasks. Hence, the process instance model never contains as
many elements as the process model itself. The process instance model may be
changed during runtime due to contextual changes, but the mobile end users are
not allowed to modify the process instance model.

The provider model and its sub-models are loaded at the start-up of the mobile 7.84
application and configure it accordingly (cf. Section 5.3.2). Modifications of the
object model are committed at the end of a process execution or rolled back in case
of process cancellation.

To sum up, a provider model manages the data, style, and the available processes 7.85
in a generated mobile application at runtime.

118 Chapter 7. Reference Applications, Code Generators, and Prototypes

7.3.5 Injection of Custom Code

Automatic code generation often limits the possibility of modifying or adding7.86
program code manually. Four possible strategies deal with this problem:

A trivial strategy involves changing the paradigms: at first, mobile application devel-7.87
opers use a model-driven development approach to generate a mobile application.
They make several iterations and try to cover as many requirements as possible. At
some point, they stop using the model-driven development approach and change
to a traditional development approach but keep the generated mobile application
as a basis for further implementations.

The protected region strategy is often used by model-driven development infrastruc-7.88
tures that generate only parts of a system, i.e., structural elements or mock-ups.
Subsequently, mobile application developers may fill these gaps by adding program
code inside certain regions. These regions are respected during regeneration, and
the manually inserted code is kept. Thus, code generation and manual coding can
be coexistent. However, when the model is changed in such a way that the structure
of the resulting implementation cannot be kept, this approach will turn out to be
useless or involve at least, user interaction.

The generation gap pattern has already been explained in Section 6.8 since we applied7.89
it to extend the generated parts of the model editor with custom program code.

Finally, our strategy to enable custom code writing and adding is based on model7.90
annotations. These model annotations are also used to introduce external libraries.

7.3.5.1 Platform-Specific Model Annotation

Since custom program code usually has the lowest abstraction level, any annotation7.91
of custom code changes a computation-independent model (CIM) or platform-
independent model (PIM) to a platform-specific model (PSM). To avoid this ab-
straction level switch, annotations should contain only cross-platform language
program code. However, we use only platform-specific model annotations, which
change the originating CIM/PIM app model to a PSM app model.

Customizing the Behavior

Custom behavior can be realized by the annotation mechanism for class methods,7.92
as shown in Listing 6.1, which is already supported by EMF. The annotation is a
string-typed field comprising Java (Android) or Objective-C (iOS) program code.
The class methods currently accept only one annotation, i.e., Java or Objective-
C program code. The code generators (iOS, Android) adopt the annotated code
automatically while creating the corresponding classes. Concerning the construction
of code generators, it would be valuable to use different annotation keys to map
annotations to a particular platform. For example, the Android code generator
should accept only annotations that have a corresponding key for this platform
and ignore other annotations. Consequently, the annotations are platform-specific,
whereas the model might be platform-independent further on due to multiple
platform-specific annotations covering all relevant platforms.

Customizing the Graphical User Interface

Just like they can use the injection method to realize custom behavior, mobile ap-7.93
plication modelers might want to customize the graphical user interface. To this
end, the modeling element CustomPage provides annotations for custom layouts. In
accordance to the Model-View-Controller pattern, the code generators generate de-
fault controllers for this user-defined CustomPage. The generated default controller

7.3. Construction of Code Generators 119

depends on the particular usage of the CustomPage, which can be detected by its
invocation context. We identify four different applications of a CustomPage:

First, if the CustomPage provides an input object (e.g., a Person), the mobile appli- 7.94
cation modeler intends to view this object. Hence, the controller will provide the
values of the object. In turn, the annotated custom layout must provide the same
data structure as the input object.

Second, if the CustomPage provides an output object (e.g., an Address), the mobile 7.95
application modeler intends to edit this object after creation. Hence, the controller
will write the values gained from the graphical user interface to the object. Accord-
ingly, the annotated custom layout must provide the same data structure as the
output to the input behavior. This also applies to the types of the graphical user
interface elements (e.g., setting a Boolean attribute of the output object requires a
checkbox and setting a string attribute requires an editable text field).

Third, if the CustomPage provides both an input and an output object, the mobile 7.96
application modeler intends to modify an existing data object. Hence, the controller
outputs already defined object values and gets modified ones.

Thus, the first three modes of the CustomPage application provide customized 7.97
graphical user interfaces while dealing with the view and acquisition of data.

Finally, the fourth scenario applies if no input or output objects are modeled during 7.98
the invocation of the CustomPage. The corresponding controller does not provide
or require any data. It loads only the annotated layout defined by the mobile
application modeler. Due to being independent of data, the layout can be designed
without restrictions.

Example (Customizing a graphical user interface). Based on the existing simple 7.99
phone book application, the process AllPersons (cf. Appendix B.1.3.6) provides the
selection of a Person object in order to subsequently show this object in a detailed
view (see Figure 7.7a).

LISTING 7.2: Layout annotation of a custom page (excerpt)

1 <LinearLayout
2 xmlns : android=" ht tp :// schemas . android . com/apk/r es/android "
3 android : background=" #99 FF99 "
4 . . . >
5 <TextView
6 android : id="@+id/tv_forename_data "
7 android1 : layout_marginTop=" 20dp"
8 android : g r a v i t y=" c e n t e r "
9 android : t e x t C o l o r=" #00 f "

10 android : t e x t S i z e =" 25sp " />
11 <TextView
12 android : id="@+id/tv_surname_data "
13 android : layout_width=" f i l l _ p a r e n t "
14 android : layout_height=" wrap_content "
15 android : g r a v i t y=" c e n t e r "
16 android : t e x t C o l o r=" # f00 "
17 android : t e x t S i z e =" 40sp " />
18 <TextView
19 android : id="@+id/tv_mobileNumber_data "
20 android : layout_width=" f i l l _ p a r e n t "
21 android : layout_height=" wrap_content "
22 android : v i s i b i l i t y =" i n v i s i b l e " />
23 <TextView
24 android : id="@+id/tv_officeNumber_data "
25 android : layout_width=" f i l l _ p a r e n t "
26 android : layout_height=" wrap_content "
27 android : v i s i b i l i t y =" i n v i s i b l e " />
28 </LinearLayout >

120 Chapter 7. Reference Applications, Code Generators, and Prototypes

(A) Generated GUI for
viewing a Person object

(B) Customized GUI for
viewing a Person object

FIGURE 7.7: Different graphical user interfaces for viewing a Person object

This refers to the first variant of CustomPage usage. To customize the generated
graphical user interface for viewing a Person object, mobile application modelers
change the invoked page type from a ViewPage to a CustomPage inside the task
InvokeGUI (CustomViewSelectedPerson) of the process ViewPerson (cf. Appendix
B.1.3.2). The introduced CustomPage contains the layout annotation shown in Listing
7.2, which results in the graphical user interface shown in Figure 7.7b. �

7.3.5.2 External Library Inclusion

The inclusion of external libraries facilitates the access to external functionality7.100
that constitutes merely an extension, rather than a customization, of the generated
mobile applications. However, external libraries may contain custom code written
by mobile application modelers. As shown in Figure 7.4, the generated mobile
application can be bundled with other libraries. Combined with annotated code
that invokes these libraries (called hooks), the generated mobile application can be
extended considerably with external functionality.

7.3.6 Code Generator Implementation

Finally, the Eclipse plugins, namely pimar.generator.frontend.ios and pimar.generator.-7.101
frontend.android, implement the code generators for the desired platforms (cf. Table
7.3). A separate plugin for the back end generation of each platform is provided
inside the code generator projects respectively.

TABLE 7.3: Fourth set of plugins shaping the MDD infrastructure

Plugin project name Content Type
pimar.generator.frontend.ios Code generator (iOS) manual
pimar.generator.frontend.android Code generator (Android) manual
pimar.generator.frontend.android.test Test cases (Android) manual

The code generators implement a builder mechanism and can be registered in an7.102
EMF-based project that contains app models (cf. Figure 6.19). The code generators
automatically track each change in the model files and regenerate the application

7.3. Construction of Code Generators 121

code. However, they might deactivate temporarily until the mobile application
modeler completes a part of the model.

The plugin pimar.generator.frontend.android.test implements test cases for the Android 7.103
code generator. Currently, a test-suite for the iOS code generator has not been
implemented yet. However, manual test cases can be reused because the structure
of the resulting mobile applications (Android and iOS) is similar and their behavior
should be identical.

7.3.6.1 Similarity Between the Code Generators

A review of the code generators shows that both code generators have a similar 7.104
structure but also some differences which are not reasoned only by the different
implementers. Since the Android generator was implemented before the iOS
generator, the iOS implementer tried to adopt as many architectural design decisions
as possible. Both generators provide similar packages for the interaction of the
code generator plugin with the IDE and particular the common used graphical
model editor. The mechanisms to setup the project folder structure of the IDEs
are also similar. As shown in the Tables 7.4 and 7.5, the Android code generator
is more structured, i.e., provides more packages. In turn, not all packages and the
corresponding content are necessary for the iOS code generator. For example, the
iOS platform does not require external layouts, menus, and strings (cf. A.9) and
adapter or dialog (A.2 and A.3) generators. Thus, the iOS generator has no directly
corresponding packages, but rather uses implicit equivalents inside the denoted
packages (I.2; I.3; I.4).

TABLE 7.4: Packages and content of the iOS code generator

No. Packages (pimar.*) Description Maps
to

I.1 .generator Setup of the project folder structure
and meta-files

A.11

I.2 .generator.controller Creates the process selector, the se-
quence of task invocations and the
predefined CRUD element

A.1

I.3 .generator.controller.crud Creates the individual CRUD opera-
tions like Create, Read, and Delete

A.6

I.4 .generator.controller.-
invokegui

Creates the invocations of GUIs and
the different pages (e.g., EditPage
and ViewPage)

A.4;
A.5

I.5 .generator.infrastructure Plugin code for adding the IOS gen-
erator to the Eclipse IDE

A.8

I.6 .generator.model Generates the DAO classes A.11
I.7 .generator.util Utility code used by the Plugin A.12

The alignment and shared use of similar and especially non-generating parts of the 7.105
code generators might reduce the effort for maintenance of several code generator
implementations. Nonetheless, we recommend that platform-specific code gener-
ators should reflect the targeted platform and intended artifacts (e.g., declarative
layouts). Based on our experience it is very useful to generate human-readable
code and respect the intended project structure of the desired software platform.
This ensures an easy adoption of prototypical code which is written and tested in a
generated prototype to the code templates.

The similarity between the resulting mobile applications is discussed at the end of 7.106
this chapter as part of the evaluation.

122 Chapter 7. Reference Applications, Code Generators, and Prototypes

TABLE 7.5: Packages and content of the Android code generator

No. Packages (pimar.*) Description Maps
to

A.1 .generator.controller Creates the process selector, the se-
quence of task invocations and the
predefined CRUD element

I.2

A.2 .generator.controller.adapter Creates List adapter I.2; I.3;
I.4

A.3 .generator.controller.dialog Creates Dialogs I.2; I.3;
I.4

A.4 .generator.controller.-
invokegui

Creates the invocations of GUIs I.4

A.5 .generator.controller.-
invokegui.pagegenerator

Creates different pages (e.g., Edit-
Page and ViewPage)

I.4

A.6 .generator.crud Creates the individual CRUD opera-
tions like Create, Read, and Delete

I.3

A.7 .generator.helper Helper classes used by the code gen-
erator templates to create code snip-
pets

I.7

A.8 .generator.model Generates the DataAccessLayer
which imports the EMF Library
project (<project>.Lib)

I.6

A.9 .generator.resources Generator dependent Android
resources (e.g., Menus, Layouts,
Strings)

I.2; I.3;
I.4

A.10 .generator.util Utility classes to copy static code to
the generated project

I.1

A.11 .infrastructure Plugin code for adding the IOS gen-
erator to the Eclipse IDE and setup
of the project folder structure and
meta-files

I.1; I.6

A.12 .infrastructure.util Utility code used by the Plugin I.7

7.4 Evaluation

The preceding sections presented the facilities for code generation. Together with the7.107
infrastructure components presented in Chapter 6 the model-driven development
infrastructure can be used by mobile application developers for creating mobile
applications in a platform-independent way. Hence, we will now discuss whether
or not the requirements given in Chapter 4 are now satisfied completely (Question
1). Moreover, since our model-driven development infrastructure is able to generate
mobile applications, we come up with the following question: do the generated
mobile applications reflect the focused features and the features of the initially
provided reference applications (Question 2)?

As mentioned during the evaluation of the domain-specific modeling language,7.108
the appropriateness of a developed domain-specific modeling language depends
not just on the compliance to generally accepted design guidelines, but also on the
acceptance of the desired user group, i.e., the mobile application developers that use
this domain-specific modeling language. Hence, we ask: how easily can the domain-
specific modeling language and the model-driven development infrastructure be
adopted by users of different skill levels (Question 3)?

Finally, we evaluate more technical aspects of the designed model-driven devel-7.109
opment infrastructure by discussing questions such as: how similar are the code
generators and the generated mobile applications for the particular platforms, i.e.,

7.4. Evaluation 123

Android/iOS (Question 4)? Do the code generators work correctly (Question 5)?
Do the code generators scale (Question 6)?

7.4.1 Setup

To answer the first set of questions (Question 1 and Question 2), we again use the 7.110
acceptance criteria of the requirements to demonstrate that the created artifacts
within this chapter cover and comply with the requirements. To show that the
generated mobile applications reflect the focused features and the features of the
initially used reference applications, we discuss three case examples. These case
examples, i.e., the mobile applications and their features, cover most of the features
given in Table 7.1.

In order to answer the question of how easily the model-driven development in- 7.111
frastructure could be adopted by users of different skill levels (Question 3), we
conducted several hands-on tutorials. We will report on the qualitative observa-
tions.

The set of technical questions (Question 4 – Question 6) is discussed by presenting 7.112
the mapping of the generated Android and iOS applications (Question 4), providing
a test suite for functionality tests of the code generator (Question 5) and conducting
scalability tests to test the runtime behavior of the code generators (Question 6).

7.4.2 Requirement Coverage (Question 1)

The parts of the overall implementation of the model-driven development infrastruc- 7.113
ture which are shipped by the plugins denoted in Table 7.3 cover the requirements
4.2.1, 4.2.2, and 4.3.2 (cf. Table 4.1).

The plugins pimar.generator.frontend.ios/android (cf. Table 7.3) implement the afore- 7.114
mentioned requirements completely: first, they form the code generator component
as part of the tooling (cf. Section 4.3.2). Second, they determine the architecture of
the generated mobile applications. Within this part of the thesis, we focus on data-
driven mobile applications (cf. Section 4.2.1) which form a single-user standalone
system with back-end access (cf. Section 4.2.2).

The data-driven acceptance criterion posits that the generated mobile applications 7.115
(Android and iOS) must be able to serialize the acquired data. Using the func-
tionality described in Section 7.3.3.2 (Mapping of the data model), the designed
model-driven development infrastructure fulfills this criterion for the desired plat-
forms.

The designed model-driven development infrastructure generates mobile applica- 7.116
tions that are able to work as a standalone system with back-end access as described
in the Sections 7.2.2.1 and 7.2.2.2. Finally, the acceptance criteria for the code gen-
erator requirement are fulfilled if a representative set of models can be used for
the generation of runnable mobile applications for different platforms. This holds
true to the extent as the case examples and the functionality test demonstrate that
the code generators are able to create runnable mobile applications for many dif-
ferent app models and, in turn, the test models reach a high coverage of the code
generator.

7.4.3 Feature Coverage (Question 2)

The designed model-driven development infrastructure primarily allows the model- 7.117
driven development of mobile applications, which is a key contribution of the first
part of this thesis. The model-driven development approach employs abstract and

124 Chapter 7. Reference Applications, Code Generators, and Prototypes

TABLE 7.6: Focused features and coverage by the model-driven development infrastructure

Feature group ◃ ... ◃ Feature/s

C
as

e
ex

am
pl

e
1

C
as

e
ex

am
pl

e
2

C
as

e
ex

am
pl

e
3

C
ov

er
ed

by
th

e
M

D
D

in
fr

as
tr

uc
tu

re

Application type ◃ Standalone X X × X
Application type ◃ Information system × × X X
Application type ◃ Transaction system × × × (X)
Software platform ◃ Android X X X X
Software platform ◃ iOS × X × X
Hardware platform ◃ Screen ◃ Resolution × × × (X)
Hardware platform ◃ (Actors/Sensors/Interfaces/Memory) X X × X
Application architecture ◃ Native application X X X X
Application architecture ◃ Interpreter application × × X X
Application architecture ◃ Hybrid application × × X X
Application development ◃ Model-driven X X X X
Model-driven ◃ Design model (Abstract/Detailed) X X X X
Model-driven ◃ Runtime model × × X X
Data and transaction management ◃ Local X × × X
Data and transaction management ◃ Central × × X X
Graphical User Interface ◃ Dynamic × × X X
Context-awareness ◃ Platform context-awareness × X × X

detailed design models and runtime models. Since the domain-specific modeling lan-
guage is platform-independent, the available code generators compile the models
to different software platforms (currently Android and iOS).

According to the model-driven development approach, which does not focus on7.118
technical details, the code generator conceals the technical details and the architec-
ture of the mobile applications. The implicit architecture of the generated mobile
applications is native but contains also interpreter functionality (used during the
implementation of the context-awareness in the second part of this thesis). Hence,
we call the application architecture of the generated mobile applications hybrid
application. Due to the nativeness of the generated mobile applications, different
actors, sensors, interfaces, and memory of the hardware platforms can be accessed.
The type of the generated mobile applications can be standalone (with preset data) or
an information system if a back end is used. This requires local data and transaction
management. Additionally, transaction systems with central data and transaction
management can be realized.

Table 7.6 shows the covered features. Compared with the features that are covered7.119
by the initial reference applications (cf. Table 7.1) now all features are covered.
Please note that the features transaction system and device-specific resolution, as well
as corresponding case examples, will be covered/introduced in the second part
of this thesis. Moreover, we will introduce and discuss additional features in the
second part.

To demonstrate the applicability and usefulness of the model-driven development7.120
infrastructure, we consider three case examples for the first part of this thesis. Please
note that the following prototypes do not yet demonstrate the two-level modeling
approach using provider models or the context-aware behavior. Such prototypes
will be shown later in the second part of this thesis.

7.4. Evaluation 125

7.4.3.1 Case Example 1 (Mathematikum)

Our first case example is a mobile application designed for a local science museum, 7.121
called Mathematikum1. The Mathematikum is a museum with a huge collection of
exhibits that explain complex mathematical topics in a playful manner, making
them accessible for laypeople and children. To follow this philosophy, the mobile
application requires a very intuitive and highly interactive graphical user interface
and should not only present mere text-based information statically.

FIGURE 7.8: Caesar’s ciphered text “Knack den Code” (Break the code)

To meet this requirement, two game-like activities are implemented. One of them 7.122
is concerned with an exhibit where a ciphered text has to be decoded by clever
guessing (cf. Figure 7.8). Successful guesses are shown to the mobile user. Moreover,
they see the text that still has to be deciphered. The second game-like activity uses
Caesar’s cipher for ciphering short texts and sending them by SMS or a messaging
application like WhatsApp.

(A) Object detection and support offering (B) Overlayed solution hint

FIGURE 7.9: Traveling Salesman Problem “Deutschlandtour” (Germany Tour)

Using augmented reality, users can get interactive guidance to understand exhibits. 7.123
1 http://www.mathematikum.de/

126 Chapter 7. Reference Applications, Code Generators, and Prototypes

(A) Overlayed animation (Man) (B) Overlayed animation (Mouse)

FIGURE 7.10: π Approximation “PI-Kreis” (PI-Circle)

This functionality is used here to interactively explain the Traveling Salesman
Problem (TSP). When visitors try to solve this problem hands-on by building a tour
through Germany, the mobile application can give them hints on finding the right
solution (see Figure 7.9). To demonstrate how π can be approximated (dividing
the sum of different-sized footsteps around a circle by the diameter of this circle),
augmented reality features are used to create animated explanation scenarios (see
Figure 7.10). The mobile application is available at [57].

The Mathematikum application is a standalone application that operates perma-7.124
nently offline. Hence, the data and transaction management are local. It is first
generated for the Android platform, i.e., a native implementation is generated. A
native iOS version could also be generated, but customized code (annotated in the
app model) must be written again for iOS. The model-driven development process
of this application requires only a design model, as a start- or runtime adaptation
of the graphical user interface or the behavior was not required. The application
makes use of the device hardware (e.g., the built-in camera). The corresponding
features of this mobile application are marked in Table 7.6 (Case example 1).

7.4.3.2 Case Example 2 (SmartPlug)

The second case example demonstrates how a generated mobile application can7.125
deal with external hardware devices. The SmartPlug application provides wireless
remote control for home appliances and electronics. Users can turn off and on
electronic devices that are attached to a manageable power distribution unit (e.g.,
NETIO-230B [22]) controlled by SmartPlug. SmartPlug logs the electricity usage and
can forecast the costs for electrical energy based on the logged switching intervals.
Figure 7.11 shows the main use cases of the mobile application.

The main menu (Figure 7.11a) contains the use cases Configure device, Switch devices,7.126
Show protocol, and Power consumption. The use case Switch devices (Figure 7.11b)
shows the registered devices and current states (in brackets). The screen Power
consumption (Figure 7.11c) shows the calculated energy consumption broken down
to the devices. The mobile application uses manually written code (extending
EOperations) and existing libraries (e.g., java.net.Socket) to establish the connection

7.4. Evaluation 127

(A) Main menu (B) Switch devices (C) Power consumption

FIGURE 7.11: The mobile application SmartPlug

to the external device. After an adaptation of the manually written platform-
specific code (i.e., EOperations), the app model could be used to generate a mobile
application version for iOS.

The SmartPlug application is a standalone application that operates permanently 7.127
offline (except for the connection to local devices through a Wi-Fi, NFC, or Bluetooth
connection). The app model of the SmartPlug application does not contain a lot of
customized code, and can thus be easily used for generating native implementations
for Android and iOS without much effort. Consequently, the development process
is platform-aware, as different software platforms can be operated. The SmartPlug
application can interact with external hardware (e.g., sensors/actors) through the
interfaces of the mobile device. Table 7.6 (Case example 2) shows the features of
this mobile application.

7.4.3.3 Case Example 3 (TV Reminder)

The third case example shows a data-oriented mobile application that provides 7.128
mostly standard processes and tasks (e.g., CRUD functionality). The TV Reminder
mobile application organizes the broadcast times of the mobile user’s favorite TV
shows. By browsing the list of upcoming broadcasts, the mobile user can view and
select favorites. The selected favorites are shown in a separate list in ascending order
to get a quick overview of the upcoming broadcasts. Additionally, the user may
export the selected favorites to the calendar to get a notification when a TV show
begins. The mobile application creates a calendar entry based on the broadcast time
and duration by using the calendar provider. Contrary to the mobile applications

(A) Main menu (B) View upcoming broad-
casts (including favorites)

(C) Detail view (Tv show
and episodes)

FIGURE 7.12: The mobile application TV Reminder

128 Chapter 7. Reference Applications, Code Generators, and Prototypes

presented before, the TV Reminder does not provide any means to create, update,
or delete broadcasting elements. Moreover, the detail view of TV shows/episodes
can be customized at runtime by a runtime model. Figure 7.12 shows the main use
cases of the mobile application.

The TV Reminder application is an information system that relies on a central7.129
database, i.e., its data management is centralized. It is generated for the Android
platform, but can be generated for iOS as well. Its native implementation allows
the interpretation of data and style models at start- and runtime. This requires
a model-driven development approach that contains both design- and runtime
models. Thus, we call its application architecture hybrid. The features of this
mobile application are summarized in Table 7.6 (Case example 3).

7.4.3.4 Potentials and Limits

During the development of the shown example applications, we learned that our7.130
domain-specific modeling language can be applied best if the mobile application
focuses on data management. Data structures, their graphical user interface repre-
sentation, and the CRUD functionality can be modeled on a high abstraction level.
Our case examples also reveal that individual behavior may be added, sensors may
be used, and external devices may be controlled. Relatively small numbers of model
elements compared to huge amounts of generated code boost productivity for this
kind of mobile applications. The situation may differ for mobile applications that
focus less on data management. The Mathematikum application, for example, has a
larger amount of game-like behavior that is not generated, but manually coded. In
particular, this application shows that code generation and manual coding can be in-
tegrated seamlessly. It also shows the limitations of our model-driven development
approach in its current form. Although some high-level behavior can be specified
by abstract modeling elements (e.g., CRUD processes), and simple logic can be
modeled using the control structures (e.g., If-Else, While, Assign), it is preferable to
hand-code more complex behavior. The reason for this does not necessarily lie in
the limited expressiveness of the domain-specific modeling language. Rather, it is a
matter of convenience to code complex algorithms manually and in a text-based
way instead of modeling them on a similar abstraction level in a graphical model
editor using a visual domain-specific modeling language.

7.4.4 User Experience Evaluation (Question 3)

In addition to the rather technical evaluation of the domain-specific modeling7.131
language along the design guidelines presented before, we also validate the in-
frastructure (i.e., the graphical model editor and the code generators) with respect
to socio-technical aspects. In fact, one requirement is to support mobile applica-
tion modelers coming from different areas, e.g., domain experts, technical experts.
Hence, we test the model-driven development infrastructure during different stages
of development with different groups of testers.

During a period of 16 months (02/14-06/15), 10 workshops were organized and7.132
about 75 participants in total used the model-driven development infrastructure.
The workshop participants implemented the phone book application shown in
Appendix B by following the guided tutorial which is shown in Appendix C. Apart
from these guided workshops, the model-driven development infrastructure was
tested during a master’s course. The students of this course could freely realize a
self-developed mobile application idea after a short introduction. Similarly, a group
of 5 experts from industry realized a mobile application for a safety briefing. Finally,
the model-driven development infrastructure was used within several advanced
learners’ laboratory courses. In the following, we report about the experiences and
cluster them to the different user groups:

7.4. Evaluation 129

7.4.4.1 Undergraduate Testers

Since undergraduate testers are generally skilled neither in mobile application 7.133
development nor in model-driven development, this group of testers had naturally
the most problems. While creating app models, they generally go by the instructed
modeling approach, but a variety of modeling mistakes such as wrong cardinali-
ties, incomplete models, wrong, or untyped attributes could be recognized by the
instructors. These issues are not atypical of modeling novices, regardless of the
technique (e.g., UML, EMF, and BPMN) or tooling used. In turn, prepared examples
and sample solutions help most of the participants to master the generation and
build process and come up with a runnable mobile application in the end. Thus,
the majority of the undergraduate testers are able to generate mobile applications,
realize minor changes to app models, and perceive the effects of these changes.

7.4.4.2 Graduate Testers

The group of graduate testers had generally fewer problems while modeling the 7.134
phone book application. Although they, like the previously mentioned group, make
modeling mistakes, the graduate testers use the validation facilities of the graphical
model editor very exhaustively. Hence, they are able to fix most of the errors
without the help of the instructors. After passing the generation and build process
of the model-driven development infrastructure a couple of times, they are able
to follow the tutorial without further help from the instructors. Some participants
interact independently to the tutorial and experiment freely with the model-driven
development infrastructure. However, the generated mobile application may crash
due to incorrect modeling. The testers were usually incapable of mapping runtime
exceptions to the error-causing part of the app model.

7.4.4.3 Expert Testers

The group of expert testers exhibits the same problems as the group of graduate 7.135
testers. Based on their higher skills of mobile application development, they use
more code annotations even if modeling elements would provide the same func-
tionality. Due to their high technical skills, the experts tend to circumvent the
model-driven development infrastructure because they feel limited. Despite this,
the participants like the automatic generation of the mobile application for the
platform which they are not familiar with (e.g., Android or iOS).

7.4.4.4 General Observations and Results

According to our question, how easy the proposed approach could be adapted by 7.136
different user groups (Question 3); we are convicted that it could be applied easily
by potential users of any user group. Although the effectiveness and accuracy of
modeling show a wide range due to different skill levels of the participants, mostly
every participant was able to model and generate at least one mobile application.
This gives evidence that the designed model-driven development infrastructure
could be applied in general.

When we take a closer look at the individual problems of the participants, we iden- 7.137
tify that technical problems (e.g., how to model a cardinality) are more dominant
than conceptual issues. The participants adopted the domain-specific modeling
language very quickly due to the example-driven presentation, but had several
problems with the tooling and the setup of the development environment (e.g.,
installing the appropriate software development kit and configuring the emulator).

The most benefit a mobile application developer can take when using a model- 7.138

130 Chapter 7. Reference Applications, Code Generators, and Prototypes

driven development infrastructure is achieved when s/he knows how the input
(i.e., the app model) must look like to reach the goal, i.e., a mobile application
that satisfies certain functional requirements. Mobile application developers who
use (a new) model-driven development infrastructure for the first time often build
a mental model that reflects modeling actions and the resulting code structure.
More precisely, they internalize the transformations that are performed by the
model-driven development infrastructure, i.e., the code generators.

Our observation is that participants with a low skill level in both areas (modeling7.139
and code writing) poorly perceive what the model-driven development infras-
tructure can do and thus cannot use the tool well. In turn, highly skilled mobile
application developers and domain experts are able to reconstruct the transforma-
tions made by the model-driven development infrastructure very quickly and know
what is to be done in order to complete an assignment. Further on, we recognize
that non-technical experts (i.e., domain experts) depend more on the features of
the domain-specific modeling language and an up-front description. In contrast,
technical experts dislike paying attention to documentation or verbal instruction
about the domain-specific modeling language and prefer sample models, even
if they do not understand them fully. They adopt the domain-specific modeling
language by investigating the generated mobile applications, i.e., the generated
native program code. Therefore, the participants could be divided into groups of
language-oriented learners and transformation-oriented learners (cf. Table 7.7).

TABLE 7.7: Observation made during the user experience evaluation

Modeling
skills

Coding
skills

Profit of
MDD

Learning approach

Low Low Low Unstructured
High Low High Language-oriented
Low High High Transformation-oriented
High High High Language- and/or Transformation-oriented

7.4.5 Similarity Between Applications (Question 4)

In addition to the presentation of the internal architecture of the generated mobile7.140
application presented in the Sections 7.3.3.3 and 7.3.3.4, we will also discuss and
compare the structure of the generated mobile applications from a mobile user
perspective.

The review of the generated prototypes (iOS and Android application variants)7.141
is based on the used app model for the phone book example. Both the Android
and the iOS generators process the same app model and generate the projects
mentioned in Sections 7.3.3.3 and 7.3.3.4. The process model includes 12 processes
and 47 tasks. The data model contains three classes (see Figure 6.4). Finally, the GUI
model given in Figure 6.6 contains five pages of different types and appropriate
style settings. From the structural point of view, we can confirm that both generated
mobile applications follow the presented architecture based on a review of the
selected app model. The only difference is that different technologies are used
inside the architectural layers (model, controller, and view). Besides, we always
find technical and logical counterparts in both architectures. From a behavioral
point of view, we compare the site map (order and structure of appearing screens)
of the prototypes, the runtime artifacts (i.e., object-, process instance-, and style-
model), and the transactional behaviors. Figure 7.13 shows an excerpt of the site
map of the prototypes.

For the 10 user-interacting processes, we can find equal site maps. As an example,7.142
we show this for the process CRUDPerson in Figure 7.13. The transactional behavior

7.4. Evaluation 131

(A) User interaction in Android

(B) User interaction in iOS

FIGURE 7.13: Sitemaps of the process CRUDPerson

of both prototypes is nearly the same: the only difference is the underlying per-
sistence framework. The Android prototype uses EMF libraries to load and store
runtime models (XMI), while the iOS prototype uses a SQLite database to store and
load data.

7.4.6 Code Generator Testing (Question 5 and 6)

The code generators are tested from a functional perspective. Additionally, their 7.143
execution times and their scalability are tested.

7.4.6.1 Functional Tests

Testing a code generator differs from a traditional software test in many ways. 7.144
Model-driven development infrastructures handle abstract software models and
generate complex software systems, i.e., native program code. During the de-
velopment of the model-driven development infrastructure, the phone book app
model (cf. Appendix A) is used as a reference model for both code generators
(iOS, Android). Testers (being at the same time infrastructure developers) check

132 Chapter 7. Reference Applications, Code Generators, and Prototypes

the resulting program code for the syntactical correctness and if runnable, correct
runtime behavior.

Additionally, several automated functional tests (unit tests) were defined and ap-7.145
plied to the implementation of the Android code generator. In order to implement
functional tests, the testers specified (parts of) test models as an input and parts of
native program code as an expected output of a code generator. A test framework
(e.g., JUnit) executes these tests automatically and reports the results.

Testers usually follow a structured approach to create representative test models7.146
(e.g., the category-partition method proposed by Ostrand and Balcer [OB88]).

Indeed, the specification of the expected output represents a challenge: comparing7.147
the output – native program code – as a byte or character stream makes the test
quickly unusable because even semantically equivalent changes inside the code
template cause a test fail because the syntax may differ.

Thus another approach applies techniques of model transformation testing [Bau+06].7.148
Before a test, the generated native program code must be parsed in order to create
another model that conforms to the programming language metamodel. Subse-
quently, the expected output can be defined also in this programming language
metamodel and compared with the parsed model.

A very practical approach is the random test. Several test models are generated7.149
based on the given metamodel [Bro+06] of the domain-specific modeling language
and tested during a test run. The expected outcome need not be specified. The only
criterion is the acceptance of the generated native program code by the program-
code compiler. Hence, the program-code compiler (called oracle) identifies app
models that lead to errors. This approach is very helpful in the early stages of code
generator development.

To sum up, the Android generator can be tested in an automatic way with a code-7.150
coverage of about 40%. The test suite contains 87 test cases for automatic tests (i.e.,
unit tests). The code coverage is not higher since our main focus is on the parts
of the code generator which are related to the generation of native program code
(e.g., the packages A.2 till A.4 and A.9 from Table 7.5). Other packages contain code
that is related to the plugin functionality or do not produce native program code
of the resulting mobile applications. This plugin code might be tested with other
tools such as Jubula [68] or the RCP Testing Tool [69]. Moreover, five test models
(modeling real mobile applications) are used for manual testing of the Android and
iOS code generators.

7.4.6.2 Scalability Tests

The model-driven development infrastructure was tested with design models of dif-7.151
ferent sizes until the generated mobile applications reached the technical limitations
of the desired platforms.

The Android platform below Version 5.0, i.e., the underlying Dalvik machine,7.152
supports mobile applications with less than or equal to 64k methods. A mobile
application that exceeds the 64k limit cannot be compiled directly in the selected
IDE (Eclipse ADT). The Android platform above version 5.0 supports mobile ap-
plications beyond 64k methods. The model-driven development infrastructure
supports such applications too, but they must be built with another IDE (Android
Studio). The iOS platform has no program-code compiler limit but requires that the
resulting mobile applications will not exceed 4GB (02/2015).

To test scalability, we tested the model-driven development infrastructure with7.153
design models that meet the mentioned limits, i.e., the generated mobile applica-
tions follow the mentioned sizes. These test models were synthetic app models.
These synthetic app models contain different classes and relation types (aggregation,

7.4. Evaluation 133

association), all task types, and all types of pages in the respective sub-model parts.
This representative set of model elements is then duplicated to meet the number
of model elements shown in the Figure 7.14. Assuming that the mentioned limits
will increase over time, we are interested in the general runtime behavior of the
model-driven development infrastructure. Thus, we carry out scalability tests with
different sizes of the design models. Figure 7.142 shows the result of the test in
terms of generation duration and code size.

(A) Scalability of the code generator for Android

(B) Scalability of the code generator for iOS

FIGURE 7.14: Scalability of the code generators

Figure 7.14a shows how the Android code generator scales with models that range 7.154
from a few model elements up to about 7,500 model elements. The left y-axis
(associated with the red plot) denotes the generation time in seconds [s]. The right
y-axis (associated with the green plot) denotes the code size of the generated native
program code in megabyte [MB]. Figure 7.14b shows the same data for the iOS code
generator.

We remark on two observations: (i) Figure 7.14 shows the worst cases of the code 7.155
size growth because each model element causes a native program code fragment
in this case. By naming equal parts (e.g., Read tasks that read objects of the same
type) identically, the output of code and thus the project size could be reduced
considerably because the code generators reuse generated code. In terms of memory
complexity, the model-driven development infrastructure provides a sub-linear
behavior in the average case. (ii) The generated native program code must be
subsequently compiled by the project-specific environments (e.g., Eclipse, Android
Studio, or XCode). The generation and build durations are nearly equal. Hence, the

2 Tested on an Intel Core CPU M520 i5 2.4 GHz; 8GB RAM

134 Chapter 7. Reference Applications, Code Generators, and Prototypes

generation of native program code will not dominate the overall build process of
mobile applications.

Additionally, the scalability of the runtime models, i.e., the provider models, was7.156
also tested. While the process instance and the style models cannot scale up to any
size due to the limitations presented in Section 7.3.4, the data model may scale up
to any size. To demonstrate the scalability of the generated mobile applications,
we load data models of different sizes and log the load-time duration and the
allocated memory size for the Android platform. Figure 7.15 shows the results of
these measurements3.

FIGURE 7.15: Scalability of Android runtime models

The diagram in Figure 7.15 shows how the Android applications scale with different7.157
sizes of a runtime model. The sizes range from a few model elements to about
1,000 elements. The left y-axis (associated with the red plot) denotes the load-time
needed from the start of the application until the data can be seen on the screen in
seconds [s]. The right y-axis (associated with the green plot) denotes the allocated
main memory of the device in kilobyte [kB].

These experiments show that the model and code size scales linearly, no matter7.158
which code generator is considered. The generation time for iOS is higher than for
Android, but the compilation time dominates the building process on both IDEs
(Eclipse, XCode). Moreover, the runtime model also scales very well with respect to
the loading time and allocated memory size. In summary, our experiments show
that the model-driven development process with the developed model-driven
development infrastructure is not critical in terms of scalability.

7.4.7 Threats to Validity

Although we discussed several questions during the evaluation of this Chapter,7.159
we will now focus on the question of learnability and user adoption of the model-
driven development infrastructure (Question 3), since this question is subject to
many risks in terms of result validity.

Considering external validity, the reactive effects of the experimental arrangement7.160
may influence the learnability of the designed model-driven development infras-
tructure in a positive way. In turn, users which are not embedded in an experimental
arrangement (e.g., a workshop with an instructor) may show a lower performance
because a personal instruction will be more effective as written documentation or

3 Tested on a Samsung SM-G130HM Single Core 1GHz; Android 4.4.2

7.4. Evaluation 135

another kind of static support material. Another threat to the external validity is
the selection of users. Since the most experiments (i.e., workshops) were conducted
with students in an academic environment, the participants were generally open-
minded to learn and test new concepts and tools. Hence, personal motivation might
be a noteworthy bias.

A threat to internal validity is the unknown experimental mortality. It describes 7.161
that (mostly underperforming) participants will not continue a given task in an
experimental setting. In our case, the participants could use the prepared solutions
for each part of the workshop to keep pace with the group. To deal with this
circumstance, we applied the workshop in a slightly changed setup and asked
participants to model an individual mobile application.

137

Chapter 8

Related Work: Model-Driven
Development of Mobile Applications

In the following sections, the model-driven development approach presented in this 8.1
thesis is compared with other approaches for the cross-platform development of
mobile applications. First, we discuss the advantages and disadvantages of a model-
driven development approach in comparison non-model-driven cross-platform
approaches. Since this work focuses on model-driven development approaches,
the discussion of related work is limited to approaches and frameworks which are
model-driven.

8.1 MDD vs. Non-MDD Cross-Platform Approaches

Although a model-driven development approach is also a cross-platform approach 8.2
by nature, there are cross-platform approaches (e.g., Apache Cordova [03], Mobile
Together [01], SAP Mobile Platform 3.0 [47]), which provide no design model, i.e.,
they cannot be classified as model-driven development approaches. According
to the classification given by Heitkötter et al. [Hei+12], these cross-platform ap-
proaches require interpreters (runtime employing approaches) for each desired
platform or cross compilers which compile a platform-independent codebase to a
particular platform., i.e., native program code.

Mobile application developers must often spend more effort to learn a new cross- 8.3
platform programming language within a non-model-driven development cross-
platform approach, than they spend learning a new domain-specific modeling
language within a model-driven development approach. This is firstly because
the cross-platform programming languages are less abstract as the domain-specific
modeling languages. Secondly, the use of a domain-specific model during the
development process provides a better distinction between technical aspects and
business concerns. Domain experts are not confronted with too many new concepts
or technical details. Hence, an advantage of the model-driven development ap-
proach is a better learnability of the domain-specific modeling language and the
reduction of technical details, which are left to the code generators. This advantage
does not necessarily hold for high-skilled technical experts.

An abstract domain-specific modeling language is also beneficial regarding the plat- 8.4
form evolution. While the low abstraction level of the cross-platform programming
language may cause considerable effort for platform migration due to manual mod-
ification of technical details, the platform evolution could be handled more easily
by the model-driven development approach. In the best case, a platform migration
only cause changes in the code-generating part of the infrastructure. The existing
models can be reused for code generation without any modification, and the mi-
grated version of the mobile application will be the result. In less favorable cases,
the domain-specific modeling language must be modified (e.g., extended by new
language elements) and existing models must be transformed. However, depending

138 Chapter 8. Related Work: MDD of Mobile Applications

on the changes of the domain-specific modeling language, the transformation of
the model instances is tool-supported.

A wealth of meta-tools (e.g., model quality tools, model transformation tools, model8.5
differencing, and model analysis) provide additional functionality which can be
used beneficially to create mobile applications of high quality. For example, a
codebase written in a platform-independent cross-platform programming language
could not be easily transformed according certain aspects (e.g., device contexts).
The use of models is advantageous when the implementation is to be changed and
analyzed.

A general disadvantage of model-driven development approaches is the limitation8.6
to the intended function and architecture of the generated (mobile) applications.
Mobile application developers are often annoyed that model-driven development
infrastructures are limited beyond a certain point and the injection of custom code
is often experienced as cumbersome compared to traditional coding. Non-model-
driven development cross-platform approaches often provide the ability to use
custom libraries and plugins written in platform-specific, native program code
(cf. Figure 2.7). This enables handling non-standard requirements flexibly and
individually. In turn, the easy introduction of libraries and custom plugins inside
non-model-driven development cross-platform tools will not enforce the reuse of
existing or general functionality which may lead to quality issues. Hence, based on
a quality-oriented viewpoint an agile bottom-up development process of model-
driven development infrastructures could ensure quality goals as wells a flexible
extension of the model-driven development infrastructure.

A further advantage of the model-driven development approach is the capability to8.7
generate native implementations. Since some non-model-driven development cross-
platform approaches follow an interpreter architecture, these mobile applications
might be limited in several aspects, i.e., hardware access or security concerns.

To sum up, we demonstrate that the model-driven development approach has8.8
several advantages, such as a concise abstract domain-specific modeling language
which are well-suited for non-technical mobile application developers, a separation
of technical and domain concerns, a powerful platform migration capability, and a
toolkit of meta-tools for different purposes. A disadvantage almost every model-
driven development approach is the insufficient flexibility with respect to individual
requirements which have not been considered by the infrastructure developers.

8.2 Comparison Criteria for MDD Approaches

Prior to the discussion to the model-driven development approaches, some criteria8.9
should be introduced in order to make the different approaches more comparable:

Modeling aspects: The modeling aspects describe the expressiveness of the domain-8.10
specific modeling language. Due to the lack of a standard mobile modeling lan-
guage, a lot of model-driven development approaches reuse existing modeling
languages from the domain of software-system modeling (e.g., UML). Hence, we
evaluate how the approaches cover the modeling aspects of data, behavior, and
graphical user interface by their (adopted) general-purpose modeling languages.

Modeling techniques: From a mobile application modeler’s perspective, modeling8.11
techniques are important. First, a mobile application modeler is interested to see
how mobile applications models can be expressed, e.g., by a graphical concrete
syntax or a concrete textual syntax and how they look like. According to the state-
of-the art process of model-driven development, these approaches differ in model
usage (cf. Figure 2.2). For example, some of the approaches generate directly from
the CIM to native program code, instead of using intermediate models such as PIM
or PSM. Since most of the model-driven development approaches provide code

8.3. Comparison with Related Approaches 139

generation from a design model and support no model execution or interpretation,
we will discuss the latter in the chapter on related work in the second part of this
thesis (cf. Chapter 15).

Mobile application implementation: A major property of a model-driven development 8.12
approach is the program code generation, i.e., the generation of native or cross-
platform program code. While identifying model-driven development approaches
in the literature, we have to distinguish carefully between these technologies. For ex-
ample, in their categorization of cross-platforms and languages, Ribeiro et al. [RS12,
Table 2] exclude all approaches that lack a domain-specific modeling language (cf.
Palmieri et al. [Pal+12, Table 1]) from the category of model-driven development ap-
proaches, because model-driven development requires a domain-specific modeling
language in order to increase the level of abstraction.

Mobile application architectures: The architecture of a mobile application is strongly 8.13
related to the kind of application implementation. Since cross-platform implementa-
tions mostly tend to be web-based client-server architectures, the native application
often realizes a rich-client architecture.

Unfortunately, the literature on the different model-driven development approaches 8.14
for mobile applications generally contains limited or no information as to how the
model-driven development approaches and frameworks were developed, particu-
larly which software development process model was used for the model-driven
development infrastructures. Thus, we cannot position our agile bottom-up devel-
opment approach clearly regarding this aspect. Additionally, the literature provides
only insufficient information about user evaluation and practical experiences when
using the designed model-driven development infrastructures in practice.

8.3 Comparison with Related Approaches

We will consider the following approaches as the most relevant work related to our 8.15
contribution:

MD2: MD2 [Hei+13] [Hei13] is a model-driven development framework for cross- 8.16
platform (Android, iOS) development of data-oriented mobile applications. The
used domain-specific modeling language is organized in three parts with respect to
Model-View-Controller pattern. Thus, the first part of the modeling language that
describes the format of data entities is called data model. The view model specifies the
graphical user interface of the mobile application at a detailed level (e.g., defines
widgets). Finally, the controller model links the view model and the data model, and
describes the behavior of the resulting application. The behavior of a mobile
application is described in an event-based manner. Different kinds of events can be
handled by modeled actions. Based on the modeling techniques, the MD2 approach
provides a concrete textual syntax (similar to the Human-Usable Textual Notation –
HUTN [32]), corresponding model editors, and code generators that compile models
to the mobile applications for different platforms. Model execution is not provided.
The generated mobile applications are implemented in the native language of the
desired platform. The generated mobile application has a client-server architecture.
The model-driven development framework additionally generates a back end (JEE
application) used by mobile applications of both platforms (Android, iOS).

MD2 shows a high similarity to our approach and has a lot of well thought-out 8.17
solutions. The authors point to many well-known issues (e.g., concept mismatches
between Android and iOS and alignment). There are differences in the top-down
approach of MD2. In contrast to our agile bottom-up development approach us-
ing reference applications, the authors of MD2 decide on the features of their
model-driven development infrastructure in a top-down manner by prioritizing the
frequently found requirements. Further limitations with respect to our approach
include the limitation of modeling business logic inside the controller model and the

140 Chapter 8. Related Work: MDD of Mobile Applications

customization of generated mobile applications. Mobile applications that are gener-
ated with the MD2 model-driven development infrastructure follow a client-server
architecture. This limits the offline capability of the generated mobile applications
because the data is stored on the server and cannot be reached in disconnected
situations.

Mobl: Mobl [HV11a] [HV11b] is a model-driven development framework for the8.18
rapid development of data-driven mobile web applications. The used domain-
specific modeling language is organized in two parts with respect to the compo-
nents of the Model-View pattern (a modified version of the Model-View-Controller
pattern). Controller functionality is not modeled by the user, but added by the code
generator. The data model provides facilities for defining classes with typed at-
tributes. Moreover, the data model contains an object-oriented sub-language, thereby
allowing adding program code to the data model. The view model provides screens
as main elements. Screens comprise different kinds of widgets (e.g., buttons, labels,
and text fields). Additionally, control elements (e.g., buttons) can be used to link
different screens, i.e., to invoke other screens. Besides, the view model contains data
bindings to establish a direct connection to the data model. Based on the modeling
techniques, the Mobl approach provides a concrete textual syntax, corresponding
model editors, and code generators that compile models to deployable server appli-
cations coded in HTML/CSS/JavaScript. The resulting web application provides
different web services for the exchange of data. Direct model execution is not
provided even if the generated artifacts are interpreted locally by the web browsers
of the mobile clients. As any other web-based approach, the application implemen-
tation is a cross-platform implementation. The overall architecture of the system is
a client-server architecture.

With respect to our approach and the majority of other approaches, Mobl shows a8.19
lot of differences. The framework is strongly focused on data-oriented mobile web
applications with standard behavior only. Hence, custom behavior and business
logic cannot be modeled, nor can the generated standard behavior be customized.
Although the authors claim that the generated mobile application can store data
locally and thus the interruption of the network connection may not affect the
mobile user negatively, a restart of the browser or the system might cause a problem
in terms of data availability.

JUSE4Android: JUSE4Android [SA14b], [SA14a], [Sil+14] is a model-driven devel-8.20
opment framework for single-platform (Android) development. The approach uses
no domain-specific modeling language in the narrow sense. A common UML class
diagram serves as the domain model. This model must be equipped with anno-
tations that focus on graphical user interface definition, persistence, and declare
which classes of the diagram are domain classes as part of a PIM. According to
the modeling techniques, the JUSE4Android approach provides different concrete
syntaxes (via UML class diagram definition), but no corresponding model editor to
add the mentioned annotations to an app model. The code generator compiles the
annotated model to a native implementation (currently only Android). However,
model execution is not provided. The generated mobile application has a client-
server architecture. The additionally generated back end provides the functionality
of storing and distributing data objects to and from different front ends (mobile
clients).

JUSE4Android is very similar to our approach, especially with respect to the contri-8.21
butions (e.g., online- and offline capability) made in the second part of this thesis.
The JUSE4Android approach realizes extended client-server architecture (cf. Figure
1.4). Due to a replication mechanism, the generated mobile applications can access
the data even if they are offline. After reconnecting to the server, they can synchro-
nize locally modified data. Since JUSE4Android demonstrates a good architectural
design that matches up well with business information systems (BIS), the model-
ing concerns are not very elaborated. Apart from the domain model, only little
information can be added and the generated behavior is strongly limited to CRUD

8.3. Comparison with Related Approaches 141

functionality. A key difference between JUSE4Android and our approach is the
modeling technique. JUSE4Android is based on UML and uses annotations. Hence,
a proper definition of application-specific behavior is not possible. As we see in
the second part of this thesis, such a behavior model is an essential requirement to
generate conflict-free, offline-capable mobile applications.

Modagile: Modagile [Küs+13] is a model-driven development framework for cross- 8.22
platform (Android, iOS, Windows Phone) development of mobile applications.
The used domain-specific modeling language is divided into four parts: a mobile
application model consisting of DomainEntities, DomainAdapters, UIContainers, and
Events. Similar to the MD2 approach, the behavior of the resulting mobile appli-
cations is defined in an event-based manner. The domain entities are typed by an
Ecore model. The graphical user interface layout can be modeled granularly using
abstract, platform-independent widget types. Based on the modeling techniques,
the Modagile approach provides a graphical concrete syntax, corresponding model
editors, and code generators that compile models to the mobile applications for
the different platforms. Similar to the other approaches, models are not executed
at runtime. The generated mobile applications are implemented in the native lan-
guage of the desired platform. The generated mobile application has a rich-client
architecture.

Compared to our approach, we do not follow such a detailed modeling approach 8.23
regarding the graphical user interface. Additionally, we do not employ an event-
based behavior modeling approach and follow a more process-oriented modeling
approach. Nonetheless, the Modagile [Küs+13] approach is technologically quite
similar to our approach, as it is also based on EMF.

The model-driven development frameworks developed by Serral et al. [Ser+10] 8.24
[Muñ+06], Ceri et al. [Cer+07], Escolar et al. [Esc+14], and Kapitsaki et al. [Kap+09]
support additional different contextual dimensions. We include these approaches
and frameworks in our discussion of related work herein, but the detailed descrip-
tion of these approaches follows in the second part of this thesis because the focus
of these approaches is on context-awareness.

Other frameworks and tools such as AppInventor [23] [Wol+14], Canappi mdsl 8.25
[20], and arctis [Kra11] could not be evaluated, because internals about the domain-
specific modeling language, the application architecture, or used target languages
were not (or no longer) available at the time of evaluation.

More comprehensive reviews of the existing approaches — not just limited to model- 8.26
driven development approaches — are provided by Umuhoza and Brambilla [UB16]
(results are partly shown in the middle part of Table 8.1), Le Goaer and Waltham
[GW13], Gaouar et al. [Gao+15], El-Kassas et al. [EK+15], and Charkaoui et al.
[Cha+14].

Table 8.1 shows the model-driven development approaches for the development 8.27
of mobile applications and the classification of their main characteristics. A X-
symbol indicates that the corresponding feature is supported, whereas an ×-symbol
indicates the opposite. An “-” indicates that this feature has not been evaluated.

Most of the model-driven development approaches focus on model compilation 8.28
and thus generate native program code. Only one of the evaluated approaches
generates no program code and follows a model interpreter approach. Besides,
client-server architectures are more often present. Unfortunately, most frameworks
come with their own domain-specific modeling language. The lack of a standard
modeling language for mobile application development makes it difficult in general
to compare the different approaches.

As seen in Table 8.1, the criteria annotation and textual of the criteria group modeling 8.29
techniques, and the criterion cross-platform of the criteria group application implemen-
tation are not supported by our approach. Since the annotation criterion is usually
used only in combination with general-purpose modeling languages (GPML), this

142 Chapter 8. Related Work: MDD of Mobile Applications

TABLE 8.1: Model-driven approaches to the development of mobile applications
(middle part of the table adopted from [UB16])

Name Modeling
Aspects

Modeling
Techniques

Application
implementation

Application
architecture

Model
compiler

D
at

a
B

eh
av

io
r

G
U

I

A
nn

ot
at

io
n

Te
xt

ua
l

G
ra

ph
ic

al

PI
M

PS
M

N
at

iv
e

C
ro

ss
-

Pl
at

fo
rm

M
od

el
in

te
rp

re
te

r

C
li

en
t-

Se
rv

er

R
ic

h-
C

li
en

t

MD2 X X X × X × X × X × × X ×
Mobl X × X × X × X × × X × X ×
JUSE4Android X × X X × × X X X × × X ×
Modagile X × X × × X X × X × × × X
Serral et al.
[Ser+10] [Muñ+06] X X × × × X X × × X × X ×

Ceri et al. [Cer+07] X X × × × X X × × X × X ×
Escolar et al.
[Esc+14] X X X × X × X × × X × X X

Kapitsaki et al.
[Kap+09] X X × X × × X × × X × X ×

MobML [Fra+14] X X X × X × X × X × × - -
MIMIC [Elo+14] × × X × × X X × X × × - -
Applause [Beh10] X X X × X × X × X × × X X
Francese et al.
[Fra+15] × × X × X X X × X × × - -

MAG [Usm+14] × X X X × × X × X × × - -
RUMO [SF13] × × X × X X X × X × × - -
WL++ [Str+15] X X X × X X X × X × × - -
AXIOM [JJ14] X X X × X X X X X × × - -
Mendix App
Platform [25] X X X × × X X × × × X - -

IBM Rational
Rhapsody [19] X X X × X X X × X × × - -

WebRatio Mobile
Platform [77] X X X × × X X × X × × - -

Appian [04] X X X × × X X × X × × - -
Our Framework X X X × × X X X X × X X X

criterion is not relevant if a domain-specific modeling language is employed. A
textual concrete syntax is not yet realized, but based on the used framework (EMF)
such a syntax could be additionally added as future work. Similarly, the criterion
of cross-platform code generation is currently not realized. Since the model-driven
development approach is not limited to native code generation, this criterion could
be fulfilled in the future by writing an additional code generator which generates
cross-platform program code.

Our framework for the model-driven development of mobile applications supports8.30
most of the mentioned features. Moreover, the ability to compile and interpret
models and the support of different mobile application architectures lead to the
contribution made in the second part of this thesis: the context support.

143

Part II

Context Support

145

Chapter 9

Context Support – Foundations
and Definitions

The following sections clarify the terms context, context-awareness, and mobility 9.1
which are relevant in the second part of this thesis. Regarding the state of the
art, we will shortly summarize the existing solutions and concepts with respect
to platform-, device-, and user context support. We will discuss the support for
system contexts in more detail. To this, we recall prior work of our own [Vau+16a]
to show how we adopted the state-of-the-art extended client-server architecture
and created a generic version which is used as the architecture of our generated
mobile applications (cf. Figure 1.4). This includes an introduction to the essential
mobile transaction models.

9.1 Context and Context-Awareness

A significant difference between mobile applications and traditional applications 9.2
is the influence and evaluation of different contexts. In this work, we define a
context as anything a mobile application can sense (cf. Abowd et al. [Abo+99, Sec.
2.2] and Dey [Dey01]). Moving on, we can distinguish between simple contexts
(e.g., geographical location, temperature, and brightness) and complex contexts (e.g.,
walking outside, waiting at the check-out line at the supermarket), as Hofer et al.
[Hof+03]1 proposed. If a mobile application could sense and react to such contexts,
we would call it context-aware, situation-aware, or self-adaptive (cf. [Abo+99,
Sec. 3.2]). For instance, a context can be the time and the location of a mobile
user. A context-aware application may use this information to provide the mobile
user with context-specific data. Different dimensions of the context have been
proposed by Abowd et al. and Dey [Abo+99, Sec. 2.3], Schilit et al. [Sch+94], and
Schmidt [Sch+99]. As a summary of these, we use the following four dimensions
(cf. Section 1.2) in the course of this work: platform-related contexts (e.g., operating
system), user-related contexts (e.g., role, personal data), device-related contexts (e.g.,
display size and available sensors), and system-related contexts (e.g., online/offline,
interaction with other devices, services). Figure 9.1 shows the different contexts
that are relevant to this work. Contexts are directed. Thus, to describe that a mobile
application can be installed on different mobile devices, we say, “A mobile device
is a context for a mobile application.” Contexts may also be transitive Hence, we
say, “The system is a context for a mobile application” instead of “The system is a
context for a mobile device, which is a context for a mobile application.”

As shown before, the mobile application is the entity that detects and reacts to the ap- 9.3
pearing contexts of different dimensions (cf. Figure 9.1). Hence, context-awareness
is primarily a property of mobile applications. In other areas, as Computer-
supported cooperative work (CSCW) and Human Computer Interaction (HCI),
the term context-awareness has also been applied, but in a different manner. In

1 It was originally called the physical context and the logical context respectively.

146 Chapter 9. Context Support – Foundations and Definitions

User context Platform and Device context System context

FIGURE 9.1: Considered contexts of mobile applications

this field of research, the (mobile) user and its context-awareness regarding the
environment is in focus rather than the context-awareness of the mobile application.

Dourish and Bellotti [DB92] reports that during a CSCW task the users must be9.4
aware of the activities of other users. This provides a context for the own actions
and will enable cooperative work. Greenberg and Marwood [GM94] show that
the context-awareness of users affect the design of the interface (cf. Rodden et al.
[Rod+98]) since the actions of collaborating objects and subjects must be propagated
to the interface in order to enable context-aware behavior and interaction of the
user. Moreover, this artificial reproduction of contexts is strongly related to virtual
reality (VR) or augmented reality (AR) applications (cf. Aliaga [Ali97]). In such
applications, real objects are simulated, or annotated with additional information.
The users of such applications can interact with such virtual or real objects. Hence,
the user behavior is driven by these contexts.

To sum up, in this work we will deal with the context and context-awareness of9.5
mobile applications, even if mobile users also may sense and react to contexts.

9.2 Mobility

Most contexts emerge and disappear due to the mobility of mobile devices. Thus,9.6
context-awareness is strongly related to mobility. The term mobility is often used
in a misleading way, and is misconceived in the literature on mobile application
engineering. In normal language usage, mobility is the capability of moving or being
moved2. The term moving is broadly understood as spatial movement between
geographical locations. But, we relax the definition and also define the change of
logical contexts, such as different devices and network nodes, as a change of place.
Considering that an object (e.g., a mobile device) or a subject (e.g., a mobile user)
provides or consumes (i.e., uses) different functions respectively, we extend the
definition and want the providing or the consuming of the functions to continue
while the objects and subjects move spatially. An object or subject is mobile if it can
operate while it is moving. Otherwise, we would call the object and the subject
portable. This is the case if they can operate in different places, but not while moving.
Objects and subjects can be portable and mobile at the same time. That is, they
operate on a subset of features (called mobile features) while other features (called
portable features) are only available once they reach a certain position (e.g., network
coverage). Hence, mobility is a fine-grained property.

Another aspect is the object or subject whose mobility is considered. In general, the9.7
expression Mobile x or x mobility describes the involved object or subject x. This is
often called the dimension of mobility. B’Far [B’f04] and Asoke et al. [Tal10, pp. 6,
7] defined several fine-grained dimensions of mobility. We take up and adopt the

2 The definition was taken from the Merriam-Webster Dictionary.

9.3. Platform-, Device-, and User Context Support 147

three coarse-grained dimensions provided by Pandya [Pan04, Chap. 1]: (i) terminal
mobility, (ii) service portability, and (iii) personal mobility.

Personal
portability/mobility Terminal mobility Service mobility

FIGURE 9.2: Mobility of different subjects and objects

Figure 9.2 shows these dimensions. The service on the right-hand side may be 9.8
invoked through different access points of a network and by different mobile
devices. This ability is called service mobility. The service runs on a server. Thus, the
term ubiquitous is often used in the literature because the service can be invoked
everywhere. Service mobility can be ignored in this work because we focus on
native application implementations rather than on web-based mobile applications.

A moving terminal (mobile device and mobile application) may connect to different 9.9
access points (e.g., Wi-Fi, mobile networks). However, it can also be disconnected.
A terminal (e.g., a mobile device) is mobile if it provides all the functions while
moving. This also applies to the applications that are installed on this terminal.
This terminal mobility is what is generally intended when we talk about mobility
and mobile applications.

The user may own and use one or more devices. Since s/he cannot access a service 9.10
or mobile application while changing devices, we call this personal portability3, in
line with the given definition.

The mobility of objects and subjects is transitive. Thus, if the user utilizes a terminal 9.11
that is mobile, the user is mobile as well.

To sum up, mobile applications that can operate reliably during movement, espe- 9.12
cially while passing through different contexts, may be called mobile. Otherwise,
they are portable. Hence, in a narrow sense, mobility can only be guaranteed by
context-aware applications.

9.3 Platform-, Device-, and User Context Support

The following sub-sections shortly summarize the state of the art with respect to 9.13
the different contextual dimensions respectively:

9.3.1 Platform Context Support

The approaches shown in Section 8.1 support the platform context during the de- 9.14
velopment of mobile applications. Either a model-driven development approach or
a non-MDD cross-platform approach ensures the support for different platforms.
Since a model-driven development approach seems more powerful to support dif-
ferent platforms by the generation of native mobile applications on one hand, and

3 Pandya [Pan04, Chap. 1] named this personal mobility

148 Chapter 9. Context Support – Foundations and Definitions

overcome the limitations e.g., high development cost through manual implementa-
tions and weak user coverage (cf. Dalmasso et al. [Dal+13, Table 1]) on the other
hand, we will point to the approaches and frameworks listed in Table 8.1 as state of
the art to deal with different platform contexts. Hence, platform context support
is an inherent feature of the selected development approach, e.g., model-driven
development, and thus we will not discuss this contextual dimension further in the
second part of this thesis.

9.3.2 User Context Support

Since the state of the art in user context support is largely focused on the context of9.15
use (e.g., the physical and logical environment of a mobile application user) and
rather on different user groups and user roles, we are not able to present any state-of-
the-art concepts for user context support for mobile applications. However, Usman
et al. [Usm+14] exploit use case diagrams for the generation of mobile applications.
This framework might potentially be able to generate different user-specific variants
of mobile applications based on modified use case diagrams. Despite this, a runtime
adaptation of the mobile application depending on the current mobile user might
not be possible.

9.3.3 Device Context Support

The support of the device context is more complex, because in contrast to the9.16
platform context, the device context can usually be evaluated at the runtime of
the mobile application at the earliest. A certain device context affects at most the
graphical user interface of a mobile application. However the availability of hard-
ware sensors may affect the functional part of the mobile application. Since the
adaptation of the functional part depending on the hardware configuration of a
device is not handled very well by the state-of-the-art concepts, the adaptation of
graphical user interfaces has been an active area of research for many years. A
lot of work concerning dynamic graphical user interfaces is carried out by Cal-
vary, Vanderdonk, Souchon, Limbourg and others ([Cal+03], [Lim+04], [Eis+01],
[Van05], [Cal+02], [SV03], [FV04]). According to the unified reference framework
given by Calvary et al. [Cal+03], a graphical user interface must be context-aware
with respect to the users, the hardware and software platform and the physical
environment. This context-awareness requires design time adaptation (originally
named predictive context) and runtime adaptation (originally named effective context)
of the graphical user interface. A common state-of-the-art practice to deal with
the adaptation of graphical user interfaces is the application of domain-specific
description languages and corresponding instance models which describe graphical
user interfaces in an abstract way. Such descriptions can be transformed according
to the different context of use (e.g., device contexts). More state-of-the-art concepts
can be found in the case studies carried out by Calvary et al. [Cal+03, Chapter 3].

9.4 System Context Support

Research with a focus on system context support largely deals with the connection9.17
context of mobile devices, since the connection context affects the operability of
a mobile device considerably. Hence, the primary goal is an architecture that
provides an online- and offline-capable data and transaction management for mobile
applications.

Therefore, the question arises how architectures can support this requirement9.18
[Rom+00] [Lem+13]. Mobile application developers can choose from a variety
of technologies (e.g., native, hybrid, and web-based) and different architectures

9.4. System Context Support 149

(rich-client and client-server) to develop mobile applications. Sometimes, they are
unaware of the impact a chosen technology and architecture have on the mobility of
a mobile application. Web-based architectures often require a permanent connection
to the server, and therefore, are not suited to realize applications operating in an
offline mode. In contrast, native and interpretive technologies enable architectures
that may be used for working temporarily without a network connection.

Changing network conditions and transaction-oriented applications can cause 9.19
problems with respect to data and transactions which have to be managed in an
appropriate way: (1) a mobile application being part of a multi-user transaction
system has to replicate and synchronize data in order to process transactions offline.
(2) When being disconnected, the coordination of concurrent transactions is dis-
rupted since the mobile application is unaware of transactions performed by other
users in the network (no matter whether they are still online or offline). Conflicts
may arise when modified replicated data are synchronized with the server which
implies that offline transactions can be finished at synchronization time at earliest.

In order to deal with the problems mentioned before, several authors (such as 9.20
Satyanarayanan [Sat96], Pitoura & Samaras [PS12], and Book et al. [Boo+05]) pro-
pose a new architectural design. They propose a change of paradigms from the
client-server or rich-client design (cf. Figure 7.3) to a mixture of both architectures.
Hence, mobile applications can operate offline (using architectural components of
the rich-client design), or online (using architectural components of the client-server
design). We dub this architectural design an extended client-server architecture. The
extended client-server architecture at first ensures the availability of data even if
the client is disconnected. However, transactions that are performed offline must be
synchronized later when the mobile clients reconnect with the server. Sometimes it
is required that this synchronization does not fail, i.e., any transaction performed
offline must be synchronizable with the server. This requires mobile transaction
models. Mobile transaction models are aimed at maximizing concurrency and main-
taining data consistency in a failure prone and low bandwidth mobile environment
[Hel+96]. To this end, different mobile transaction models were proposed in the
literature (e.g., Keypool transaction model [54]; [55] and Escrow transaction model
[O’N86]; [LL09]). These transaction models guarantee conflict-free synchronization.

9.4.1 Application Domain and Example Applications

To illustrate the application of online- and offline-capable mobile applications, we 9.21
present example domains where such mobile applications can be used profitably,
followed by two application scenarios.

The three biggest retailers [50] in Germany in 2014, Amazon [02], Otto [40], and 9.22
Zalando [78] provide mobile applications for different platforms. None of them
supports transactions, such as viewing and ordering products, and mobile payment,
in a disconnected mode. Using a replicated digital product catalog, users could
view products while they are offline. They could also order offline and later send
the order to the back end when the connection is re-established. An inherent
problem within this setting is the limitation of mobile transaction methods for
offline payments [SK12]. Since an order often requires payment in advance, secure
payment is a crucial component of most e-commerce applications (e.g., 80% of the
popular online shops provide PayPal [42] as a payment service [50]). Payment
transactions usually contain an online clearing an confirmation step not allowing
these transactions to be performed offline. Thus, mobile e-commerce applications
for offline usage also require offline payment methods.

In industrial settings, the problems are slightly different: mobile applications often 9.23
support or substitute manual tasks (as, e.g., inventory, order picking, and mainte-
nance logging). The involved data objects are more individual and tailored to the

150 Chapter 9. Context Support – Foundations and Definitions

surrounding business processes or real-world objects. Likewise, operations on these
data objects are often more complex than in e-commerce and payment scenarios.

To sum up, online- and offline-capable architectures, and in particular, mobile trans-9.24
action models are required whenever mobile applications modify either aggregated
values (i.e., account balance and warehouse stock) with a set of repeatable opera-
tions (e.g., increment and decrement) or more customized objects (as they occur in
e.g., a car rental) with a set of complex operations (e.g., pick-up, refuel, and event of
damage). An object containing only an aggregate value attribute is named summable
object, otherwise, it is called individual object. If the set of operations contains at
least one altering operation, there is a potential conflict, i.e., the data objects may be
accessed in a competitive manner.

In the remainder of this chapter, we will take a closer look at two specific appli-9.25
cations – a payment application (covering an example for an aggregated value
with repeatable operations) and a course booking application for gym members
(dealing with individual objects and more complex operations) – to demonstrate
the different ways of data access. We start the discussion of each application with
the assumption that there is no replication for offline usage. This corresponds to a
client-server architecture. Later in Section 9.4.4, we show implications of adding
data replication.

9.4.1.1 Payment App

First, we consider applications for making mobile payments, such as Apple Pay [07],9.26
Google Wallet [14], or PayPal [42]. Traditionally, a banking account is administered
on a server at the banking site. The dataset mainly consists a single value (aggregate),
the account balance. This singleton is a so-called hot spot because every transaction
changes or accesses this value. The set of transactions on a banking account is
very limited (i.e.,withdraw cash, deposit cash, debit, credit, and getting account
balance). For each banking account, the number of users is also quite limited. Users
of a banking account are the bank itself and at least one bank client. The bank
itself arranges debit and credit payments from or to internal or external accounts.
Banking clients may perform cash withdrawals or deposits. We assume that the
account is a credit account, i.e., that it should never be in the debit state (which
would give raise to a conflict situation).

Example (Money transfer). We consider the following use case: a banking client9.27
wants to transfer money to another banking client from her/his mobile phone using
near field communication (NFC). Most payment applications support this use case
if both banking clients are online. The transaction is carried out as follows: the
creditor delivers his/her account information to the debtor via NFC. The debtor
sends a corresponding payment order to the back-end server as online transaction.
The bank checks the cover of the payment order and executes the transaction.
Finally, the creditor updates the account balance (again as online transaction) and
confirms the transaction. If one mobile client is offline, the payment cannot be
conducted. �

9.4.1.2 Course Booking App

As second example, we consider a course booking application for gym members.9.28
Examples of such applications are GymSync [16], GymJam [15] and BookFit [10].
Registered gym members can select course spots to practice particular exercises
(e.g., Yoga and Pilates) within certain time slots. The set of operations is very limited
(e.g., making or canceling a reservation or checking if a course spot is available).
Conflicts are very likely because each member may select every course spot. Studio
members may set course preferences to indicate which courses they will select

9.4. System Context Support 151

in the future. We assume that the course booking application never allows the
overbooking of a course spot (conflict situation).

Example (Reservation of a course). If a gym member is online and a selected course 9.29
spot is available, a reservation transaction can be processed. If the mobile client is
offline, no transaction can be conducted. �

9.4.2 Online- and Offline-Capable Architecture Design

In the following section, we present recommendations to the design of an online- 9.30
and offline-capable architecture and its working model including the required
components. These recommendations form a kind of reference architecture. Several
conceptual implementations of this reference architecture use individual mobile
transaction models. Although there are plenty of different mobile transaction
models, the number of available products is still limited [Ber+04]. We discuss the
applicability of these products in accordance with the requirements stated above
and identify shortcomings.

The loss of connection caused by the terminal mobility [Pan04] is not unusual [Fuc09] 9.31
and should be handled by the architecture of mobile applications. In case of
intentional or accidental loss of connection, it is necessary to delegate the server-
located functions to the mobile device to be able to work in an offline mode. This is
sometimes called blurring of roles. Satyanarayanan [Sat96] describes the resulting
architecture as an extended client server model where the extended client takes over the
role of the unreachable server. Pitoura and Samaras propose a similar architecture
[PS12]. Book et al. [Boo+05] state that the mobility of applications is influenced by
their architecture. In reverse, this means that mobile applications have to follow a
particular architecture to be online- and offline-capable.

Figure 9.3 shows the extended client server model which we later use as a blueprint 9.32
of our generic architecture. The application logic of the client is extended by a local
transaction manager (TM) which delegates all transactions either to the local database
management system (DBMS) or to the centralized one on the server, dependent
on the mobile application’s connection state. Furthermore, the transaction manager
comprises a replica manager. The replica manager is responsible for the replication
of data to be used while mobile clients are offline. Offline processed transactions
are logged by the synchronization/reintegration manager. Later, this log is used to
reprocess the transactions performed offline.

A transaction manager implements a particular mobile transaction model by speci- 9.33
fying the behavior of replication, offline operations, and synchronization. These
components (shown as gray colored areas in Figure 9.3) are individually tailored
according to the properties of the used mobile transaction model. For example, they
may be asked to be conflict-free. Online transactions are just passed to the server
and not handled by the local transaction manager. In Section 9.4.2.4, we will give
an overview of the different mobile transaction models that have been proposed in
the literature. Actually, every proposed mobile transaction model results in an indi-
vidual implementation of the extended client server model. To support a more flexible
exchange of transaction models, we are heading towards a generic architecture.

9.4.2.1 Working Model of the Local Transaction Manager

In Figure 9.4, a working model is shown which distinguishes the different context 9.34
states and operation steps of the local transaction manager. A mobile client starts
in an online context (online transaction processing) after an optional initial setup of
the system. In this mode, an online transaction model (often named standard
transaction model) is used. Mobile clients replicate the data while they are online
(Replication). The client may stay online after the replication or may go offline. If so,

152 Chapter 9. Context Support – Foundations and Definitions

Extended Client (EC)

Application GUI

Application logic

Local transaction
manager (TM)

Replication manager

Synchronization/Re-
integration manager

Log

offline online

Local
DBMSDB

Server (S)

Central transaction
manager (TM)

DB

Central DBMS

FIGURE 9.3: Extended client-server architecture

it operates offline (offline transaction processing) using a particular mobile transaction
model. When the mobile client is back online, it must publish the modified copies
(Synchronization/Reintegration). Gray colored areas in Figure 9.4 denote steps that
are specific to the used mobile transaction model.

Offline
transaction
processing

Synchronization
and

Reintegration

Online
transaction
processing

Replication
Initial setup

Offline Online

FIGURE 9.4: Working model of a local transaction manager
(extended client-server model)

9.4.2.2 Anomalies

While working offline, concurrent isolated accesses to the clients’ replicas may lead9.35
to the following kinds of conflicts when synchronizing the modified data. These
conflicts are called anomalies:

Deletion anomaly: If a mobile client deletes a replicated record while working offline9.36
and another client reads or changes the primary copy of this record meanwhile, a
deletion anomaly occurs.

Insertion anomaly: An insertion anomaly occurs when a new record is inserted into9.37
the servers’ database and an identical record does already exist. This anomaly can

9.4. System Context Support 153

occur if two mobile clients independently create a record and at least one mobile
client is offline.

Modification anomaly: The modification anomaly is the most common one. Every 9.38
time a mobile client changes a replicated record while working offline, another
client might also have changed it. Such a conflict may be solved by synchronizing
one replica and discarding the other one. The question arises which modification is
prior over the other.

Trivially, concurrent isolated read-only access of all mobile clients cannot lead to 9.39
anomalies. Thus, if mobile applications use static data (e.g., encyclopedias and
dictionaries) in a unidirectional way, mobility can easily be guaranteed by just
replicating the used data. However, the amount of data to be replicated may be a
limiting factor.

9.4.2.3 Replication and Synchronization

Within the working model, a step for replication is needed to guarantee availability 9.40
of data when being disconnected [Gol03a] [Gol03b]. Moreover, we are heading
towards applications that may change and then reintegrate the replicated data into
the server. Thus, the working model also requires a step for synchronizing and
reintegrating modified data after working offline. Both detailed mechanisms of
replication and synchronization heavily depend on the mobile transaction model
used. In Section 9.4.4, we will present a generic replication strategy which is suit-
able for several mobile transaction models. In any way, replication strategies can
be classified into eager and lazy [Gra+96] ones. Eager replication strategies try to
update all copies in a single step to complete the transaction. This is inappropriate
within our application area of mobile applications, since mobile clients cannot be
updated while being disconnected. Lazy replication asynchronously propagates
replica updates to other clients after offline transaction commitments. For doing
so, the transaction is executed locally and then reprocessed later on a primary copy
and other replicas. This is called transaction-based synchronization. Sometimes, it is
sufficient to replace the primary copy with the changed replica. This kind of syn-
chronization is called image-based synchronization. The synchronization approaches
of concurrent accesses can be classified – similar to traditional database management
systems [MN82] – into pessimistic and optimistic approaches. Pessimistic approaches
include strategies for conflict avoidance while optimistic approaches provide at least
conflict detection and often also conflict-solving strategies.

9.4.2.4 Mobile Transaction Models

In the following section, we recall mobile transaction models that support lazy 9.41
replication and pessimistic synchronization since they prevent the occurrence of
anomalies.

In order to find mobile transaction models with these characteristics, we recall 9.42
the following work: Hirsch et al. [Hir+01] survey several mobile transaction
models and compare them on the basis of typical requirements for this application
domain ([TG95], [Dun+97], [LS97]). Serrano et al. [Ser+01] [SA+04] and Panda
et al. [Pan+11] analyze the existing approaches in accordance to the well-known
ACID (Atomicity, Consistency, Isolation, Durability) paradigm in a similar way.
Mutschler and Specht [MS13] divide the mobile transaction models either into
first-class transaction models (which processes transactions offline but need to be
online to commit the transaction) or second-class transaction models (which processes
transactions offline).

Based on these reviews, we discard all approaches that are not able to prevent 9.43

154 Chapter 9. Context Support – Foundations and Definitions

conflicts and to work offline like the Kangaroo transaction model [Dun+97], the Preseri-
alization Transaction Management Technique (PSTMT) [DG00], the Prewrite Transaction
model [MB01], the Two-tier transaction model [Gra+96], the Clustering transaction
model [PB95] [PB99] [Pit96], the Reporting and co-transactional model [Chr93], and the
Isolation-only transaction model [LS94].

The remaining conflict-free transaction models can be subsumed under semantical9.44
approaches. Semantical approaches use the structure of the data or semantical
properties of transactions performed on replicas [GM83]. We have selected the
Keypool transaction model and the Escrow transaction model for use in our generic
architecture.

The number of products is still limited, outdated, and very homogeneous in terms9.45
of used mobile transaction models. OracleLite [38], IBM DB2 Everyplace [18],
Microsoft SQL Server CE [28], and Sybase Adaptive Server Anywhere [56] are
some commercial mobile database systems (mDBMS). In general, their architecture
corresponds to the extended client server model. All products use an image-based
synchronization and do not support conflict prevention. Thus, durable offline
transactions cannot be carried out locally.

With regard to the available products, we assume that the replication is possible9.46
within our scenarios but does not yet include a conflict-avoiding mechanism while
processing transactions offline.

Example (Payment App). A debit transaction decreases the replicated account value9.47
of the debtor and increases the replicated account value of the creditor. The applica-
tion checks the coverage of the replicated account value locally. The transaction can
happen offline via NFC. At a later date, the banking client reprocesses the debit or
credit transaction on the primary copy in order to synchronize the account balance
(online transaction). However, if the debtor withdraws money and changes the
primary copy before executing the synchronization, the coverage of the account
cannot be ensured. The bank is unaware that the customer has already transferred
money from the replicated account. Since the account may be in debit state, a conflict
may arise. �

Example (Course booking App). The gym member uses a copy of the entire data9.48
set, i.e., of all course spots. A reservation transaction checks whether a course spot
is unselected by other members and selects it. At a later date, the gym member(s)
synchronize the changed course spots with the primary copies. If another gym
member selected the same course spot, the transaction of one member gets lost
during synchronization. Nevertheless, both members get a local commit of their
transaction. Since a course spot may be overbooked, a conflict may arise. �

9.4.3 Problem Statement

Although conflict-preventing mobile transaction models exists, the available prod-9.49
ucts do not use them. As stated by Gollmick [Gol06], barriers are the demarcation
of the mobile database management systems (mDBMS) and the semantics of trans-
actions located at the mobile client or at the server. Either the mobile application
realizes a mobile transaction concept on the level of application logic, or the mobile
database management system supports a seamless interface to use the semantical
information of transactions being defined by application logic. With the focus on
mobile development, the following question arises: how does a generic architec-
ture that allows different mobile transaction models for online- and offline-capable
mobile applications look like?

The existing work of mobile transactions models focuses on relational data models.9.50
Following object-oriented design, data models of mobile applications are object-
oriented (i.e., class models). Thus, the existing concepts must be rethought and

9.4. System Context Support 155

adapted to the context of object-oriented data modeling. Mobile application de-
velopers are often familiar with the object-relational mapping (ORM) to serialize
objects into relations but unsettled in applying this concept in the context of mobile
transactions involving replication and synchronization. Therefore, the next ques-
tion is: can mobile transaction models be applied in the context of object-oriented
application development and what are the effects?

Finally, the existing mobile transaction models have not been evaluated well. From 9.51
the perspective of a mobile application developer, the conditions (e.g., connectivity,
number of users, and data) under which mobile transaction models should be
used are unclear. Mobile transaction models may bring profit to disconnected
clients but may also cause additional costs (w.r.t. replication and synchronization).
They may cause reduced performance for highly connected users (clients). These
considerations lead us to the third question: which kinds of context conditions are
assumed for a mobile application to profit from using mobile transaction models?

9.4.4 Generic Online- and Offline-Capable Architecture Design

Based on the extended client server model and the working model presented in Section 9.52
9.4.2, we present a generic architecture for online- and offline-capable applications
that can be instantiated with different transaction models (see Figure 9.5). In this
section, we focus on the instantiation with conflict-free mobile transaction models,
namely Keypool and Escrow. They seem to be especially promising for online- and
offline-capable transaction processing. Knowing the differences between these mo-
bile transaction models in terms of their individual replication and synchronization,
we can modify the working model in order to use both mobile transaction models
in a single generic architecture. Finally, we present the developed design along the
steps of a modified working model.

Generic Extended Client (GEC)

Application GUI

Application logic

Local transaction
manager (TM)

Replication manager

Synchronization/Re-
integration manager

Log

 offline online

Local
DBMSDB

Server (S)

Central transaction
manager (TM)

DB

Central DBMS

M
ob

ile
tr

an
sa

ct
io

n
m

od
el

(s
)

FIGURE 9.5: Generic extended client-server architecture

9.4.4.1 Conflict-Free Mobile Transaction Models

We focus on conflict-free mobile transaction models. The selected models use 9.53
different strategies to prevent conflicts:

156 Chapter 9. Context Support – Foundations and Definitions

Keypool Transaction Model

The Keypool transaction model [54]; [55] uses the structure of the given dataset.9.54
The basic idea of the Keypool method is to split the entire dataset into subsets
that are distributed among the participating mobile clients. Figure 9.6 illustrates a
data split to three mobile clients within the replication step. Every client gets an
amount of data that is exclusively replicated. When a client is offline, it can operate
on the replicated data without limitations. Within the synchronization step, the
partial data is reintegrated into the primary copy using image-based synchronization.
Independent of the operation to be performed while being offline, the result can be
adopted by substituting the value of the primary copy for the value of the changed
replica (i.e., the image). The Keypool approach avoids deletion and modification
anomalies by design. Without additional provision, insertion anomalies may occur.
During the course of this work, we ensured that insertion anomalies cannot occur
by the use of an object-relational mapping framework.

Key ...

1 ...

2 ...

3 ...

Key ...

1 ...

Key ...

2 ...

Key ...

3 ...

Key ...

1 ...

2 ...

3 ...

replica
tio

n

replication

replication

synchron.

synchron.

synchron.

Online dataset Offline datasets Online dataset

Mobile client 1:

Mobile client 2:

Mobile client 3:

FIGURE 9.6: Keypool replication and synchronization

Escrow Transaction Model

The Escrow transaction model [O’N86]; [LL09] is well suited to access and modify9.55
aggregate data. The basic idea of the Escrow method is to restrict the set of transac-
tions and/or the domains of their arguments when being performed offline. While
the Keypool transaction model splits the dataset, and thereby, may risk to provide
an undersized or empty dataset, the Escrow approach always provides the full
dataset. Figure 9.7 shows the replication scheme of the data to two mobile clients.
Every client gets a full copy of the dataset. Assuming that the semantics of provided
transactions are known, every record is transformed at the step of replication such
that conflicts cannot occur at the synchronization step. Considering mobile pay-
ment, for example, the debit transaction may cause conflicts. Therefore, the domain
of its argument is restricted such that just small amounts may be withdrawn. One
possible strategy is to equally distribute the amount among all participating clients
as shown for the example aggregate values in Figure 9.7. Since several mobile
clients may change the same value, this strategy always guarantees conflict-free
synchronization afterward.

An image-based integration does not work here since either one or another image9.56
can be written back to the primary copy but not both. The other values would be
lost (called Lost-update [Ber+95]; [Ady+00]). Thus, the reintegration of changed

9.4. System Context Support 157

values has to be based on a transaction-based approach. It collects all transactions
performed offline and replays them on the primary copy. The repeated transactions
must have the same effects as being performed online but usually do not achieve
the same value on the primary copy as on the replicated copies. This property
is called semantical serializability [Ouz+09]. To ensure it, all operations must be
repeatable (such as decrement and increment) and their semantics on restricted
values has to correspond to the one on non-restricted ones. The Escrow approach
avoids insertion, deletion, and modification anomalies by design. A generalization
beyond aggregated values is the PRO-MOTION transaction model [WC97]. Within
that approach, so-called compacts form local constraints and guarantee semantical
serializability.

Key ...

1 90

2 30

Key ...

1 45

2 15

Key ...

1 45

2 15

Key ...

1 90

2 30

rep
lic

atio
n

rep
lic

atio
n

replicationreplication

synchron.synchron.

synch
ron.

synch
ron.

Online dataset Offline datasets Online dataset

Mobile client 1:

Mobile client 2:

FIGURE 9.7: Escrow replication and synchronization

9.4.4.2 Modification of the Working Model

As presented in Section 9.4.2.1, replication and synchronization are the major steps 9.57
of the working model. The mobile transaction models Keypool and Escrow use their
own approaches to replicate and synchronize data. Keypool replicates data sets by
splitting while keeping their values unchanged; Escrow, however, does not split
the dataset but replicates it by changing every value of the dataset in accordance
with the number of mobile clients. Synchronization is performed image-based by the
Keypool method and transaction-based by the Escrow method. Hence, the replication
and synchronization steps of these mobile transaction models cannot be mixed for
providing more than one mobile transaction model in a single architecture. Each
mobile transaction model needs an individual implementation.

In order to circumvent this problem, we modify the working model by adding the 9.58
following conditions: (1) The replication step is not allowed to limit the dataset or to
transform its values. If a mobile transaction model requires a limited or modified set
of data, the dataset must be preprocessed accordingly within the offline transaction
processing step. (2) If a synchronization method is more powerful than another one
(i.e., transaction-based covers image-based synchronization), the weaker method can
be substituted by the stronger one. A set of mobile transaction models that satisfies
these two conditions can be applied in our architecture, like the Keypool and Escrow

158 Chapter 9. Context Support – Foundations and Definitions

method. Furthermore, most of the conflicting mobile transaction models satisfy
these conditions.

Offline
transaction
processing

Pre-processing

Synchronization
and

Reintegration

Online
transaction
processing

Replication
Initial setup

Mobile
transaction model(s)

Offline Online

FIGURE 9.8: Working model of a local transaction manager
(Generic extended client-server model)

Figure 9.8 shows the working model of local transaction managers being used in our9.59
architecture. Replication, Synchronization and Reintegration are independent generic
steps, while the offline transaction processing implements the mobile transaction
model including some pre-processing (gray colored area). Different mobile transac-
tion models like Keypool and Escrow may be plugged in and work independently
to the steps performed online.

Data Modeling and Initial Setup

Mobile applications are usually designed in an object-oriented way. Hence, the9.60
data model does not define relations, but uses object classes instead. If a database
is used underneath, a class model can be translated into a relational data model
by object-relational mappers (ORM). ORM frameworks can create empty database
schemas from class models, and convert objects into table rows. Vice versa, database
records may be translated back to object structures. In our presented data models,
classes and attributes may be annotated by an asterisk (∗) to indicate that objects of a
certain class should be split (Keypool) or that an attribute is an aggregate (Escrow).

According to Figure 9.5, the server-side architecture is lightweight (i.e., no server9.61
facilities to set up the database), but it needs at least a database management system
or a similar service to persist data. In our prototype implementation (described
below), we use a relational database (MySQL 5.6) at the server side. The initial setup
is triggered and performed remotely by a mobile client. It can only be performed
once by the first appearing mobile client (cf. Section 7.3.3.1).

Example (Payment App). Figure 9.9 shows the data model of the payment app. It9.62
consists of the class Account only. A valid instance of this data model may have
only one Account object; the asterisk at the attribute amount indicates that this object
may be split and allocated to mobile clients. Thus, mobile clients may share this
account object, particularly the attribute amount. �

Example (Course booking App). Figure 9.10 shows the data model of the course9.63
booking app. It contains course spots and persons. Course spots are not summable
since each course spot is an individual object. This kind of modeling allows using
the Keypool approach. However, it may lead to a large set of objects being difficult
to handle. A reservation of a course spot is made by setting the participant pointer to
a person. The asterisk at class CourseSpot denotes that its objects may be distributed
among mobile clients. �

9.4. System Context Support 159

Account

amount:Int*

cashWithdraw(Int)
cashDeposit(Int)
debit(Int)
credit(Int)
getAmount():IntR

ep
ea

ta
bl

e
op

er
at

io
ns

Summable objects

FIGURE 9.9: Data model of the payment app

CourseSpot*

courseKind:CourseKind
time:Date

makeReservation(Person)
cancelReservation(Person)
isCourseAvailable():Boolean

≪enumeration≫
CourseKind

Yoga
Pilates
Spinning

Person

...

...

FitnessStudio

...

...

0..*
courses

0..* members

participant
0..1

C
om

pl
ex

op
er

at
io

ns

Individual objects

FIGURE 9.10: Data model of the course booking app

Online Transaction Processing

The online transaction processing step of our generic architecture is not affected by 9.64
the changes made to the working model. It operates as stated in Section 9.4.2.1.

Replication

Due to working model modifications, the replication step of our generic architecture 9.65
copies the entire set of data to the mobile clients (full replication). The replication
step is – similar to the initial setup of the server-located database – triggered by the
clients. This is called pull-based replication in opposite to the push-based replication
[Ita+05].

Offline Transaction Processing

The offline transaction processing is the crucial part of our generic architecture. 9.66
Replication is required to operate offline but also involves the risk of synchroniza-
tion conflicts. The selected mobile transaction models should ensure conflict-free
synchronization and commit transactions immediate without having to wait for
reconnection.

Synchronization conflicts may occur every time when a schedule (i.e., a sequence 9.67
of offline transactions on replicas) cannot be serialized on the primary copy. Such a

160 Chapter 9. Context Support – Foundations and Definitions

schedule is serializable if it is equal to a serial schedule on the primary copy. The most-
commonly used definitions of this equivalence concern the order of reading and
writing operations (conflict equivalence) or the view relation (view equivalence) on
relational variables. This is hardly applicable to replicated isolated objects because
mobile clients cannot communicate while they execute the transaction and therefore
they cannot detect conflicts with other isolated mobile clients [Ber+87].

A conflict is given if at least two transactions t1 and t2 are performed successfully9.68
offline and cannot be re-processed later on the primary copy in an arbitrarily chosen
order (no state commutativity) or the transactions return values dependent on the
re-processing order (no return value commutativity [WV02]).

Requiring state commutativity and return value commutativity implies strict read9.69
and write operations. Dependent on the mobile application, it might be appropriate
to relax the conflict definition and tolerate weak read but strict write operations
[PB95]. For the course booking app, for example, the operation isCourseAvailable
may use inconsistent copies, but the operation makeReservation is allowed only on
consistent copies.

The mobile clients only know how many concurrent mobile clients are registered at9.70
the time of replication and which operations they may perform. Based on that fact,
a conflict matrix can be set up in advance. Tables 9.1 and 9.2 show which conflicts
may occur between the transactions involved in our example apps. We consider
only transactions finished successfully.

TABLE 9.1: Conflicts in the payment application1

t1/t2 debit credit getAmount
debit Yes No Yes (No)2

credit No No Yes (No)2

getAmount Yes (No)2 Yes (No)2 No

TABLE 9.2: Conflicts in the course booking application

t1/t2 makeReservation cancelReservation isCourseAvailable

makeReservation Yes Yes Yes (No)2

cancelReservation Yes Yes Yes (No)2

isCourseAvailable Yes (No)2 Yes (No)2 No

Using the Escrow method, the aggregate that is processed by conflicting offline9.71
transactions is divided among the set of mobile clients beforehand. Besides a full
allocation of the aggregate to the mobile clients, it can also be limited by a factor so
that a part of the aggregate may remain unallocated. In case of the payment app,
the amount is distributed among the set of mobile clients. All clients can access the
summable account object. However, the conflicting offline transactions accept just a
limited domain of argument values (e.g., a limited debit amount) compared to the
online processing.

The replication strategy for the Keypool method filters the whole set of objects. The9.72
filter function maps objects uniquely to mobile clients but can also keep objects
unallocated. Round-Robin is an example filter function that assigns data objects
to one mobile client after the other and starts again at the first client as long as
objects are available. To allocate preferred objects, mobile clients may indicate
their intention with so-called preference sets. In that case, the filter function maps
objects according to the users’ preferences if possible. However, filtered-out objects
cannot be accessed in a disconnected state, and consequently, cannot be involved in
synchronization conflicts. For the course booking app, every course spot is mapped
1 The transactions cash debit and cash credit are deactivated for the mobile client.
2 Relaxed conflict definition (tolerate weak read).

9.4. System Context Support 161

to one mobile client at most. Every mobile client can work on a disjoint subset of
objects. All the transactions processed offline are logged for both mobile transaction
models to allow the subsequent synchronization after re-connection (as explained
below).

Example (Money transfer). In this scenario, a couple shares a banking account. 9.73
Before accessing the account object offline, the amount value (aggregate) will be
divided into equal amounts. For example, an amount of 100$ will be divided into
50$ located at one person (client 1) and 50$ at the other person (client 2). Both
can transfer 50$ offline. In doing so, the account is always on the credit side. The
downside of this strategy is that they cannot transfer 100$ (online4 or offline),
although they have the amount of money. �

Example (Reserving a course spot). Given a set of course spots being replicated 9.74
to a set of mobile clients, the filtering functions map the course spots according to
the preferences of gym members. That way, the subset of course spots assigned
to a mobile client may contain a preferred spot offline (to make a reservation).
Thus, an offline transaction can take place. Hence, a gym member can make
his/her reservation offline without causing a conflict during synchronization. A
disadvantage of this strategy is that a gym member cannot reserve a course spot
which is not mapped to his/her identification, even if the spot is not selected by
any other member. �

Synchronization and Reintegration

A modified replica must be synchronized with the primary copy and the replicas of 9.75
the other mobile clients at some point in time.

Synchronization scheme: The proposed generic architecture uses a hub-oriented 9.76
synchronization scheme. Every mobile client synchronizes modified replicas with
the primary copy on the server (hub). Since the server does not push the announced
changes to the mobile clients, the mobile clients are asked to pull all the changes
from the server.

Image-based synchronization: As mentioned before, all commercial products use an 9.77
image-based synchronization which exchanges the primary copy by the image (or
value) of the modified replica. For this synchronization method, it is not necessary
to know the semantics of the performed transaction. Unfortunately, the image-
based synchronization requires an (n− 1) consistency of the replicas which requires
that at most one replica is modified. A consistency less than (n− 1) produces more
than one modified image which cannot all be synchronized with the primary copy
(i.e., lost updates would occur). Image-based synchronization is sufficient for the
Keypool method because an object is accessed by at most one mobile client.

Transaction-based synchronization: A rarely used synchronization method is the 9.78
transaction-based method which synchronizes the primary copy by reprocessing
all the transactions performed on the replicas. This is possible if every transaction
performed offline preserves the precondition of every other transaction performed
offline. Thus the synchronization method requires that the semantical effects of
all the performed transactions are known. The transaction-based synchronization
does not require any consistency level and may integrate fully inconsistent sets of
replicas. Transaction-based synchronization is adequate for the Escrow method
because the distribution of the aggregate preserves the preconditions of the involved
conflicting transactions. Since the transaction-based synchronization method covers
the image-based synchronization method, the transaction-based synchronization is
used for both transaction models within our architectural design assuming that the
semantics of all transactions is known.

4 If both mobile clients are online they can transfer 100$ while using a standard transaction model.

163

Chapter 10

Requirements for Context Support

The following requirements reflect the context support of mobile applications. 10.1
Since the two-level modeling approach mostly backs context support (cf. Figure
1.3), only a few additional modeling elements are required to provide context
modeling. Following the notion of model-driven development, mobile application
developers can create mobile applications with a context-aware architecture (cf.
Figure 1.4), but not directly by modeling such an architecture in an explicit manner.
That is because the context-specific variants are specified and realized by different
design and runtime models, and a few additional model annotations and code
generator settings (e.g., to produce online- and offline-capable versions of a mobile
application).

10.1 Architectural Requirements

The architectural requirements of mobile applications to be generated are mostly 10.2
driven by the goal of context-awareness. The first two requirements, support of user
roles and heterogeneous device support, focus directly on the user and the device context.
The former requirement of single user systems with back-end access (cf. Section
4.2.2) is extended by the multi-user interoperability requirement to the extent that
mobile applications also work on a shared set of data objects (e.g., reintegrate local
modifications). Moreover, the generated mobile applications should be online- and
offline-capable.

10.1.1 Support of User Roles (User Context)

Description: The generated mobile applications should be able to support role- 10.3
driven variants.

Explanation: User roles hide, in general, the complexity of a mobile application 10.4
and provide only the functionality needed for a certain role. Since the generated
mobile applications will support role-driven variants for different purposes, this
feature is motivated by a particular design decision. The mobile applications
should be interoperable and provide the data acquisition or sent data from/to a
back-end server. Usually, back-end servers also have to provide facilities to create
and maintain application data. This requires additional development effort for
the back-end system. To circumvent this development effort, especially using
additional technologies (e.g., HTML and JavaScript) at the back-end site, the mobile
application should also be used to acquire and maintain data so that the back end
can be lightweight (e.g., only a database server without application logic). We will
not further elaborate on the development of a back end in a model-driven way, in
particular because the model-driven development of web applications is an already
developed approach (e.g., Bohlen [24]). To realize such a front-end administration,
the mobile application must support role-driven variants, providing user roles for
both administrative and mobile end-user tasks. Based on requirement 4.1.2, which

164 Chapter 10. Requirements for Context Support

claims that the process model might be used at runtime to instantiate parts of the
mobile application, the roles might be supported by this functionality.

Acceptance: The requirement is fulfilled if the deployed mobile application sup-10.5
ports the different predefined user roles without the redeployment of the mobile
application.

10.1.2 Heterogeneous Device Support (Device Context)

Description: The generated mobile applications should reflect the fact that they10.6
probably run on different mobile device types of the same software platform.

Explanation: The problem of heterogeneous device types should be handled by10.7
two functionalities. First, the model-driven development infrastructure should
provide the functionality to adapt an app model to a device type at the design
time before the mobile application is generated. The application of this technique
requires the targeted group of devices to be known at the design time. Thus,
the graphical user interface is configured for a particular device type but is static.
Second, the generated mobile applications should provide a runtime configuration
of the graphical user interface. This functionality exploits requirement 4.1.3, which
claims that the graphical interface model may be used at runtime. Moreover, the
runtime configuration is not limited to changes of the graphical user interface
because the device-specific processes can be instantiated at runtime as well.

Acceptance: The requirement is fulfilled if the graphical user interface and the10.8
behavior can be adjusted at the design time or the runtime to a specific device type.

10.1.3 Interoperable, Multi-User Systems

Description: The generated mobile applications should be able to access and modify10.9
data from external systems (e.g., a database server) as part of an interoperable, multi-
user system.

Explanation: Since most of the industrial and commercial mobile applications use10.10
external data and services, they can be characterized as interoperable systems. Thus,
our collaborating domain experts need the generated mobile applications to be
interoperable as well as to access external data and services. Since the accessed
back-end system usually performs data and transaction management functions
(e.g., by an underlying database management system), we call the data and the
transaction management centralized.

Acceptance: The requirement is fulfilled if the generated mobile applications can10.11
acquire data from a back-end system and/or write modified data back to a back-
end system. Additionally, they must be able to access external services (e.g., Map-
Services).

10.1.4 Online and Offline Capability (System Context)

Description: The generated mobile applications should be able to operate in online-10.12
and offline-contexts. The local transaction manager should organize transactions
depending on the required conflict level (e.g., allowing, avoiding, or prohibiting
conflicts).

Explanation: Mobile applications pertaining to an information system or a transaction10.13
system usually perform typical functions like processing data queries or execut-
ing transactions. Mobile applications that realize such systems must comprise

10.1. Architectural Requirements 165

additional architectural components and functions to operate reliably during the
changing connection states.

Considering a mobile application that implements an information system, its architec- 10.14
tural design must guarantee that the data is available even if the back end cannot be
reached. Hence, a hybrid data and transaction management system, which includes
at least a replication mechanism, is needed. Replication, in turn, needs a local storage
system (e.g., database) for acquired data. Thus, for a mobile application to realize a
hybrid data and transaction management system, local data and transaction manage-
ment is also needed, which can be used in standalone applications as well. To sum
up, a replication mechanism makes an information system more robust in changing
network conditions.

A transaction system needs another architectural component, i.e., synchronization. 10.15
This component is needed because offline transactions performed on the locally
stored data might modify this data. These modifications must be synchronized
with the primary copies when the device reconnects to the network. Assuming
that a transaction system is a multi-user system, any kind of conflict can occur when
modifications are written back to the primary copies. Thus, the generation process
and the resulting mobile application should reflect this and provide mechanisms
to allow, avoid, and prohibit conflicts. To increase the transactional throughput of
online- and offline-capable mobile applications, state-of-the-art techniques should
be applied. Utilizing the well-known mobile transaction models provided in the
literature, the generated mobile applications should work in a conflict-free manner,
even for potentially conflicting processes.

To sum up, the generated mobile applications should work both offline and online 10.16
by using appropriate architectural instantiation of data and transaction management
components and guarantee certain conflict levels.

Acceptance: The requirement is fulfilled if the generated mobile applications can 10.17
replicate and synchronize the modified data in a multi-user environment and
perform transactions locally even if the network connection is temporarily broken.

10.1.5 Non-Functional Architectural Requirements

The functional requirements for the support of user roles (user context) and het- 10.18
erogeneous device support (device context) should be realized by the two-level
modeling approach. Particularly, the app model should be used to realize a design
time instantiation of role-specific mobile applications. In turn, a role-specific runtime
instantiation of the generated mobile application should be possible by the provider
model.

The device support should be realized in the same manner. A design time adaptation 10.19
of the app model (e.g., a model transformation) supports the targeted devices if
known at design time. Additionally, the provider model should be used for a
runtime adaptation of the generated mobile applications, since the device context is
often unknown at design time.

Although other contextual dimensions and contexts are not in focus of this thesis, 10.20
the provider model (runtime model) could be used, in general, to adapt the mobile
application at runtime to further contexts. Hence, the design of the mobile appli-
cation architecture should be extendable in terms of context-support for further
contexts.

A non-functional requirement related to the online- and offline-capable functionality 10.21
of the mobile applications is the distribution of functionality among the mobile
client and the server. The functionality of the data and transaction management
should be located only on the mobile client i.e., the mobile client pulls the data
objects during the replication and pushes the data objects during the reintegration

166 Chapter 10. Requirements for Context Support

to the server. In turn, no functionality except the database management systems is
located on the server.

10.2 Modeling Language Requirements

Besides the modeling language requirements given in Section 4.1, the previously10.22
described online and offline capability needs the declaration of data classes, which
should be handled in a connectivity-aware manner. That is, they should be part of
a replication and synchronization scheme.

10.2.1 Declaration of Online- and Offline-Capable Data

Description: To provide online- and offline-capable data and transaction manage-10.23
ment, further annotations must be supported for the data model.

Explanation: While the modeling elements of the process model provide clear se-10.24
mantics regarding the operations to be performed on the object model, individually
modeled operations need a declaration of how to act on the data objects. These
implicit and explicit declarations of data access are necessary to perform a conflict
analysis on the app model and ensure conflict-allowing, conflict-avoiding, and
conflict-prohibiting mobile applications. Besides, the mobile application modelers
should declare which sets of objects should be managed in a context-aware manner.

Acceptance: The requirement is fulfilled if the modeling process provides mini-10.25
malistic model annotations that support the conflict analysis and the online- and
offline-capable management of data and transactions.

10.3 Tool Requirements

Finally, tool requirements describe the needs for the tools that support the model-10.26
driven development process of context-aware mobile applications. The main re-
quirements deal with modeling and the code generation and are already handled
in the first part of the thesis (cf. Sections 4.3.1 and 4.3.2). In addition to the graphi-
cal model editor (used for the app model) a model editor for the provider model
is required. Furthermore, the tooling set should also provide a simulation sys-
tem to predict the throughput of mobile applications during different connection
situations.

10.3.1 Provider Model Editor

Description: To create provider models, mobile application developers and provid-10.27
ing users need a model editor that provides the creation of provider models.

Explanation: Based on the app model, mobile application developers or providing10.28
users want to create valid instances of this app model. In particular, they should
be able to create Object-, Style-, or Process instance models (cf. Figure 6.1). Hence, a
graphical model editor should be available for the Style- or Process instance model.
The graphical concrete syntax of the GUI and the Process model should be reused
respectively. Since the data model is a standard Ecore model, a corresponding tree-
based model editor can be generated by the EMF. Moreover, object models can be
created with the generated mobile applications itself using the CRUD functionality.

Acceptance: Textual or graphical model editors to create provider models (i.e., Ob-10.29
ject-, Style-, or Process instance model) are available to mobile application developers
and providing users.

10.4. Discussion 167

10.3.2 Simulation System

Description: A simulation system should predict the transactional throughput of 10.30
the designed and generated online- and offline-capable mobile applications under
various system conditions.

Explanation: The consulted domain experts admit that it is generally hard to 10.31
predict how many conflicts actually occur during synchronization in a deployed
online- and offline-capable mobile application. The number of conflicts depends
on application-specific behavior (conflictuality), the available data records, and the
access behavior (e.g., hot spots) of the mobile end users. Hence, the simulation
system must predict the transactional throughput of a designed mobile application
based on the modeled application behavior. The simulation system should work on
initial artificial data (conforming to the application-specific data model). It should
also work on real-world data if the application has already been rolled out. Thus,
the simulation system delivers detailed data under which conditions an online- and
offline-capable mobile application can be used advantageously, particularly which
conflict levels should be selected.

Acceptance: The requirement is fulfilled if the simulation system can deliver de- 10.32
tailed simulation results for any app model that follows the domain-specific model-
ing language, i.e., its metamodel.

10.4 Discussion

We have again discussed the requirements of both the first and second parts of this 10.33
thesis in light of (i) completeness, (ii) consistency, (iii) feasibility, and (iv) testability,
as presented in the first part of this thesis (cf. Section 4.4). We can certify that the
overall set of requirements is also consistent without contradictions.

169

Chapter 11

Domain Analysis (Mobile Contexts)

In this chapter, we continue the domain analysis from Chapter 5 to add context- 11.1
related features to the feature model. We use the same sources of knowledge and
follow the same methodology as in Chapter 5. Hence, we start directly with the
feature identification and definition.

11.1 Feature Identification and Definition

We identify additional features inside the feature group data and transaction manage- 11.2
ment and context-awareness.

Data and transaction management: The feature group is extended by hybrid data 11.3
and transaction management. Hybrid data and transaction management requires
Replication, Synchronization, and Conflicting and Conflict-free transaction management
as possible features.

Context-awareness: The feature group user context-awareness is extended by three 11.4
sub-feature groups – user context-awareness, device context-awareness, and system
context-awareness.

User context-awareness: The feature group user context-awareness consists of the 11.5
features user preferences, user role, and user location. According to our approach, the
feature role can be subdivided into providing user and end user.

Device context-awareness: The awareness of the device context comprises the device 11.6
type feature group.

Device type: The feature group, device type contains Smartphone, TV stick, Wearable, 11.7
and Tablet as possible devices. Device type features usually require or excludes
different hardware features. For example, a TV stick device type has no sensors.

System context-awareness: The feature group, system context-awareness comprises 11.8
the feature group network condition. The feature group network condition can be
subdivided in online, offline, and hybrid.

Network connection: The required network connection is strongly related to the 11.9
data and transaction management. Features of this feature group are offline and
online.

11.2 Feature Model

The hierarchical feature model shown in Figure 11.1 extends the feature model from 11.10
the first part of this thesis (cf. Figures 5.2 and 5.3) by additional features of the
feature group data and transaction management (Figure 11.1b) and additional features
of the feature group context-awareness (Figures 11.1c, 11.1d, and 11.1e).

170 Chapter 11. Domain Analysis (Mobile Contexts)

Model-
driven

Design
model

Runtime
model

Abstract Detailed

(A) Model-
driven features

Local Hybrid

Data and
transaction

management

Central

Replication Synchro-
nization

Conflict-free Conflicting

(B) Data and transaction
management features

Context-
awareness

Device
context-
aware-

ness

User
context-
aware-

ness

Platform
context-
aware-

ness

System
context-
aware-

ness

De-
vice
type

User
prefer-
ences

User
role

User
loca-
tion

Network
connec-

tion

(C) Context features

Tablet
Wear-
able

Smart-
phone

TV
stick

eBook
reader

Device
type

(D) Device type features

Offline Online Both

Network
Connection

(E) Network condition
features

Graphical
User Interface

Static Dynamic

(F) User interface
features

Mandatory Optional Alternative Or

FIGURE 11.1: Feature model (Pt. III/III)

11.2.1 Feature Composition Rules

According to the extension of the hierarchical feature model, the feature composition11.11
rules must also be extended. Figure 11.2 shows the second part of the feature
composition rules.

Figure 11.2a shows that the device context-awareness requires a dynamic graphical11.12
user interface, which in turn requires a runtime model. The user context-awareness
feature also requires a runtime model. In turn, the runtime model requires an
interpreter application. The platform context-awareness indirectly (through the concrete
platform) implies the native application feature. Thus, both native and interpreter
application features are required. Hence, the generated mobile applications are hybrid
applications because they have native, compiled components as well as runtime
components.

Figure 11.2b shows the composition rules for the introduced system context-awareness11.13
feature. There is a strong relationship between the application type feature and
the system context-awareness which requires different ways of data and transaction
management. For example, a standalone system requires only an offline network
connection (and excludes an online network connection) which implies a local data
and transaction management. In turn, a transaction system which should be online-
and offline-capable (both) requires replication and synchronization as part of a hybrid
data and transaction management.

11.2.2 Feature Binding

Considering the feature binding, the introduced context features can be instantiated11.14
both as compile time features and as load-time features (cf. Section 10.1.5). The device

11.2. Feature Model 171

Device
context-

awareness
Dynamic

Graphical
User

Interface

User
context-

awareness

Runtime
model

Design
model

Model-
driven

Platform
context-

awareness

Android

iOS

...

Windows
Phone

Interpreter
application

Hybrid
application

Native
application

Web-based
application

Appli-
cation
archi-
tecture

Software
platform

(A) Composition rules for the feature groups Device context-awareness, User context-
awareness, Platform context-awareness, Software platform, Graphical user interface, Model-

driven, and Application architecture

Application
type

Standalone
system

Information
system

Transaction
system

Communication
system

Data and
transaction

management

Central

Hybrid

Local

Repli-
cation

Synchro-
nization

Online

Both

Offline

System
context-

awareness

Network
Connection

(B) Composition rules for the feature groups Application type, Data and transaction
management, and System context-awareness

Required Excluded

FIGURE 11.2: Feature composition rules (Pt. II/II)

context-awareness feature and the user context feature are additional runtime features
because they are not necessarily limited to load-time instantiation. However, a
running mobile application will not change the underlying device, since we see no
usage scenario for runtime device reconfiguration. According to the system context-
awareness feature, a runtime instantiation of this feature is not recommended. In
this case, i.e., switching from online- and offline-capable mode to an online-only
mode requires that all other clients will do the same because the data objects which
are distributed must be completely synchronized.

172 Chapter 11. Domain Analysis (Mobile Contexts)

11.3 Focused Features

The second part of this thesis will focus on all context-aware features. Different user11.15
roles (e.g., provider and end user) create the configuration of a mobile application
concerning functionality, graphical user interfaces, and data. Owing to the lack of
knowledge about hardware platforms (e.g., screen size) or device types of the applica-
tions’ host device and the targeted user group at design time, the mobile application
can be flexibly configured at runtime. Otherwise, a default runtime configuration
will be derived from the design model. The generated mobile applications also
support the integration of other services (e.g., calling other applications and using
web services). Given that such mobile applications should be runtime adaptable in
terms of user, device and system contexts, their architecture must support a dynamic
instantiation of graphical user interfaces, processes, and architectural components.
In order to support different network conditions (as part of the system context)
in a dynamic manner, the generated application architecture supports a hybrid
data and transaction management. In particular, the application can work offline
and online according to potentially changing network connections. The generated
mobile applications shall support replication and different modes of synchronization
including conflict-free and conflicting integration of locally performed transactions.

Table 11.1 shows which requirement is addressed by which feature.11.16

TABLE 11.1: Mapping of the focused feature groups to
the requirements of the MDD framework (Pt. II/II)

Part Require-
ment No. Requirement name Feature group/s

II 10.1.1 Support of User Roles (User Context) Context-awareness
(User context)

II 10.1.2 Heterogeneous Device Support (Device
Context)

Context-awareness
(Device context),
Hardware platform

II 10.1.3 Interoperable, Multi-User Systems
Data and transac-
tion management,
Application type

II 10.1.4 Online and Offline Capability (System
Context)

Context-awareness
(Systems context)

II 10.2.1 Declaration of Online- and Offline-
Capable Data

Context-awareness
(Systems context)

II 10.3.1 Provider Model Editor
Context-awareness
(User context,
Device Context)

II 10.3.2 Simulation System Context-awareness
(Systems context)

173

Chapter 12

User Contexts

As shown in the presentation of the requirements Chapter 10, an aspect of general 12.1
context support is the support of user contexts. As illustrated in Figure 9.1, a mobile
application is aware of the user context if it can be adapted to the requirements
of different mobile users. More precisely, a mobile application generated once
and distributed among several mobile devices should support different kinds of
mobile users. This should not be confused with a multi-user system, in which
different mobile users act simultaneously or asynchronously on an identical mobile
application installation, or with a multi-user capable back-end service. Besides, it
should be clarified that the user context should be well differentiated from the context
of use, which may apply to a mobile user but generally requires more sophisticated
context recognition methods (e.g., motion detection, social context detection, and
location-awareness) and complex context-processing mechanisms. A mobile user
is usually recognized by her/his credentials (e.g., user name) or other individual
properties. Hence, the context-sensing mechanism of a user context is trivial.

Different kinds of mobile users are characterized by user-roles (or groups) that 12.2
vicariously define the privileges of a set of concrete mobile end users. These
privileges can reduce the accessibility to data objects, or the number of use cases or
processes that are available in an installed mobile application. Hence user context-
awareness requires the instantiation of mobile application variants according to the
privileges a mobile user, and respectively, the associated user role, enjoys. While
the context-sensing mechanism of a user context is trivial, the adaptation of mobile
applications according to this user context is generally not. The design of the mobile
application must reflect the fact that some of its features must be limited or extended
depending on the current user, i.e., its user role.

When using a traditional software development process, the user roles of a mobile 12.3
application must usually be declared at design time. A textual description or a use
case diagram might declare/visualize the actors (roles) of a software system and
the use cases/processes that are available for a particular actor. Mobile application
developers will implement this specification in a static way. It is usually fixed
during the life cycle of the mobile application. In contrast to this traditional way
of user context support by statically coded role concepts, we will show how the
designed model-driven development infrastructure handles user roles dynamically
and, thus, supports user context-awareness in a more flexible way. The designed
model-driven development infrastructure provides both a design time and runtime
approach to support different user contexts:

12.1 Design Time Instantiation

The designed model-driven development infrastructure allows the modeling of 12.4
role-based mobile application variants by modifying the process model. Based on a
description of user roles and sets of accessible use cases (processes) for each user
role, the mobile application developers can create variants of the process model.

174 Chapter 12. User Contexts

Each supported user role needs a variant of the process model which is built as
follows: if the actor has a relation to a use case, the process representing this use case
and its occurrence in the process selector tasks will not be changed. If the actor has
no (transitive)1 relation to a particular use case, the representing process must be
removed from all process selector tasks in the process model. The resulting process
model manifests the mobile application variant for a particular user role. The
resulting mobile application provides only the specified processes, and respectively,
the use cases.

Example (Design user context-aware variants of the simple phone book application).12.5
Suppose a company uses the phone book application as a company phone book.
In such a scenario, a phone book manager might administer the records of the
company phone book using the management process (CRUD) or the individual
processes for creating, reading, updating, or deleting contacts. The employees use
the phone book in a limited way. They are only allowed to read the contact records
and make calls. This user role cannot make any modifications. Figure 12.1 shows a
use case diagram that models the relation between the different use cases and the
actors.

Company phone book
Company phone book

≪extend≫

≪include≫
≪include≫

Manager

Employee

Create Person

Edit Person

Delete Person

Call Person

Search Person

View Person

Person location

Person with
address Show address

on map

FIGURE 12.1: Actors and use cases of the company phone book application

Based on this information, the mobile application developer can modify the process12.6
model (cf. Figure 6.8a) according to the given roles. Figure 12.2 shows the variation
of the process model for the given roles. Processes that are no longer registered in
the ProcessSelector Task might still remain in the process model.

After the modifications to the process model, the code generator can translate12.7

1 A use case may relate to other use cases by an <<extend>> or <<include>> relation. Similarly,
a process relates to other processes by a sub-process relation.

12.1. Design Time Instantiation 175

(A) Main Process for the user role Manager

(B) Main Process for the user role Employee

FIGURE 12.2: Modified process model of the company phone book application (excerpt)

the app models into role-specific mobile application variants. The main entry
screens of these variants are shown in Figure 12.3. Besides, the code generator
recognizes the changes on the process model and generates an optimized version
of the mobile applications, as shown in Table 12.1. The optimized variants of the
mobile application contain only the program code that is required for the desired
user context. This can reduce the program code size of the generated mobile
applications considerably. �

(A) Main menu for the user role Manager (B) Main menu for the user role Employee

FIGURE 12.3: Resulting variants of the company phone book application

TABLE 12.1: Number of processes and lines of code (LoC) of the mobile application variants

Mobile application (role variant) Processes2 LoC
Corporate phone book 13 14324
Corporate phone book (Manager) 6 9606
Corporate phone book (Employee) 5 5643

2 This number includes transitively used processes.

176 Chapter 12. User Contexts

Providing different user contexts by design-time instantiation of processes has12.8
several advantages. The generated mobile application variants are minimalistic in
terms of code size because unused program code will not be generated. This also
provides more security since the generated mobile applications are steeled against
the malicious activation of use cases that should not be available for a certain user
context.

There are also disadvantages of the design-time instantiation method. Every user12.9
role needs its own model. More importantly, every user role runs on a separate
implementation variant of the mobile application. In our case, the company phone
book application might have up to 8,192 (213) variants because every subset of the
set of processes (here 13) form a potential variant of the mobile application. Besides,
a mobile user cannot easily switch between different user roles because s/he has to
install different mobile application variants, one of each of the desired user roles.

12.2 Runtime Instantiation

To overcome the high number of potentially producible mobile applications, we12.10
apply the two-level modeling approach (cf. Section 1.4.1). This approach allows
the deployment of an identical full-featured mobile application to any kind of
mobile end user. The full-featured mobile application interprets the user-specific
provider model and instantiates only the processes that are related to the role of
the mobile user. Hence, even if the number of provider models is very high, the
mobile application needs to be generated only once. This combination of the model
compiler and the model interpreter approach, called the hybrid approach, provides
an acceptable degree of security because the instantiated processes are static (hard-
coded) and cannot be modified (e.g., by the injection of harmful runtime models) in
a malicious way.

The graphical concrete syntax of the process instance model looks exactly like the12.11
process model. A part of it is shown in Figure 12.2. The only difference is that the
process instance model is interpreted at runtime whereas the process model is
processed at the design time of the mobile application. If the mobile application
modelers decide to apply both design-time instantiation and runtime instantiation,
the process instance model can only contain an equal set or a subset of the design
time processes. More precisely, the design-time model must contain all the processes
that should be potentially available at runtime. A design-time configuration cannot
be extended in terms of the available processes during runtime, since the required
program code is not included in the deployed mobile applications. Despite this,
redeployment might solve this problem.

The user roles may also cover the security and privacy aspects of mobile applica-12.12
tions. As explained earlier, one of the design decisions is to model permissions –
not globally, at the level of application security, but locally, at the level of process
tasks. Thus, the generated mobile application can be extended or limited according
to different permission levels. For example, a mobile user who wants the mobile
application to not access the phone application on a smartphone can select a cor-
responding user role that excludes the process Call person. Similarly, user roles
can be created for completely different motivations (e.g., security, privacy, energy
consumption).

Besides, the runtime instantiation method also offers the provision to extend or12.13
limit the available processes temporarily (e.g., disconnected mobile device, insecure
network connection). This is a very beneficial property regarding conflict-handling
in offline situations, as we will show later (cf. Chapter 13).

12.3. Demonstration 177

12.2.1 Runtime Instantiation Implementation

The runtime instantiation of provider models, i.e., process instance models, is imple- 12.14
mented in the following manner: the generated mobile application tries to load a
process instance model (provider model) at the start time. If no process instance model
is given, the mobile application uses the default configuration (cf. Figure 12.2) of
processes that are given by the process model (app model). Otherwise, the process
instance model will be loaded. According to requirement 4.1.2 (Abstract and Detailed
Behavior Modeling) and the domain-specific modeling language definition of the
provider model given in Section 6.3.4, a process instance model (provider model) is
on the same abstraction level as the process model (app model) and uses the same
syntax. Hence, the loaded process instance model also contains a Main process. This
Main process reconfigures the processes that are shown in the main menu of a mo-
bile application in the sense that it defines which processes are instantiated or not.
However, for reasons of safety, a process instance model cannot redefine an existing
process (e.g., introduce another behavior) or define a new process. Instantiated
processes must always be defined in the process model; otherwise, they cannot be
instantiated.

12.3 Demonstration

As stated earlier (cf. Section 10.1.1), the general architectural design of the generated 12.15
mobile applications also includes back-end functionality. Hence, the generated
mobile applications include processes that deal with either the creation or the
consumption of data objects. This often requires the separation of at least two user
roles – one for the data providing users and another for the mobile end users. In the
following section, we demonstrate the support of user contexts, i.e., the role-driven
variants, of our generated mobile applications with two case examples: a conference
application and a word trainer application.

In order to evaluate the feature of user context support, we discuss the question, 12.16
whether the two-level approach can be used in practice (e.g., real scenarios) as
support for user context. The case examples shall demonstrate that the two-level
approach can be used in practice and support the context of users by a flexible
runtime instantiation of processes according to user roles. Moreover, the approach
is also beneficial in a business case, e.g., to unlock different purchasable use cases
(not shown).

12.3.1 Case Example 4 (Conference Application)

The conference application guides participants through a scientific conference by 12.17
providing information about events and their scheduling and location similar
to a printed conference program. The mobile application provides additional
functionality for conference administrators to create and modify data objects (e.g.,
papers, session, rooms, speakers, session chairs, and authors). The generated mobile
application was given to all participants of the MoDELS 2014 conference in Valencia,
Spain [44].

The app model includes a data model (Figure B.16) that reflects the domain-specific 12.18
data objects mentioned before, a process model (Figures B.18 ff.) that provides
all the necessary processes for managing and viewing data objects (e.g., CRUD
processes), and a GUI model (Figure B.17) that provides a default design for the
generated mobile application. The app model can be reused for other conferences
because the customization (e.g., conference-specific design and color schemes) is
realized entirely by the provider models. Thus, the app model provides neither

178 Chapter 12. User Contexts

concrete data objects nor conference-specific processes or styles, which makes it
reusable in the same domain.

(A) Main Process for the user role Conference Administrators

(B) Main Process for the user role Conference Participants

FIGURE 12.4: Main processes of the conference application

TABLE 12.2: Use cases for the conference administrators (Providing User)

Icon Use Case Description

Main
Menu

The conference administrator variant shows the main menu
with a set of available use cases (ProcessSelectorPage) and
allows entry into a CRUD-process (CrudGui) with full per-
mission (ALL) for the selected entities: Institute, Paper,
Person, Room, Session, and Venue.

Institute
(CRUD)

These use cases allow creating, reading, updating, and
deleting institutes, papers, persons, rooms, sessions, and
venues. A CRUD use case is processed as follows: An entity
can be selected from a list of entities (SelectableListPage). The
simple selection of an entity just shows the user its details
in a non-editable-form (ViewPage). In this case, associations
with other entities are shown in a tabular form. Before
editing (updating) an entity, the user has to choose it from a
list of the available entities. A long tap on the screen opens
it in the edit mode. To edit an entity (create or update),
a single view is shown as well, allowing the user to edit
all details (EditPage). Associations between the entities
can be set in a drop-down-list (1:1 cardinality) or a list of
checkboxes (1:n cardinality).

Paper
(CRUD)
Person

(CRUD)
Room

(CRUD)
Session
(CRUD)
Venue

(CRUD)

The provider model for the conference administrators (cf. Figure 12.4a) enables the12.19
processes that are relevant for data acquisition (see Table 12.2). In turn, the processes
that are designed only for the mobile end users, i.e., conference participants, are
not available in the administrator’s variant. The object model might be empty, i.e.,
the mobile application starts without a prepared data set. The style model might
provide a conference-specific style, otherwise, the default style is used.

12.3. Demonstration 179

Figure 12.5 shows the generated mobile application being configured for the confer- 12.20
ence administrators.

(A) Main Menu with default CRUD processes
and the standard navigation of CRUD process for the entity Paper

(B) Main Menu with default CRUD processes
and the standard navigation of CRUD process for the entity Session

FIGURE 12.5: Conference Administrators (Providing user) view of the mobile application

The provider model for the participants of the conference (cf. Figure 12.4b) enables 12.21
the mobile end user processes (see Table 12.3), i.e., read-only access to papers, ses-
sions, rooms, etc., of this conference. Furthermore, the sessions can be marked as
favorites. A new entry in the user’s calendar can be inserted, so as not to forget a
favorite session. Since the standard read processes provide no convenient search
function, the processes SearchPaper and SearchPerson provide such functionality. The
object model contains the data objects that are created by the conference adminis-
trators beforehand. The style model usually provides a conference-specific design
scheme, as it is in our case.

180 Chapter 12. User Contexts

TABLE 12.3: Use cases for the conference participants (Mobile end user)

Icon Use Case Description

Main

Menu

This conference participant variant shows the main menu
with a set of available activities (ProcessSelectorPage). It of-
fers a CRUD-process (CrudGui) with restricted permission
(read-only) for the selected entities: Paper, Person, Session,
and Venue. Room is a special use case in this list, support-
ing the depiction of room plans. In addition, there is a
special use case, Favorites, and users can add a session to
it.

Add

Favorite

(Favorites)

In this use case, all the existing sessions are displayed in
a list (SelectableListPage). The user can select a session that
is added to her/his favorites. Furthermore, an entry (with
the selected session data) is created in the calendar.

Remove

Favorite

(Favorites)

In this use case, all the favorites are displayed in a list
(SelectableListPage). The user can remove a session from
favorites.

Paper (R) These use cases help list all the entities of the indicated type,
e.g., list all papers. The list entries may be selected to view
all details of those entries.Person (R)

Session (R)

Room (R)

In this use case, all existing rooms are displayed in a list
(SelectableListPage). The user can select one object and see
its details (Plans) in MediaPages. The details show all the
available plans saved for this room. The user can select one
plan and see an image with the marked room.

Search

Paper

These use cases offer a search function of the indicated type,
e.g., papers. The first appearing form (EditPage) gathers
the search criteria. Subsequently, a result list appears (Se-
lectableListPage). The user can select one object and see its
details in a separate view (ViewPage).

Search

Person

Venue
In this use case, all the existing venues are displayed in a
list (SelectableListPage). The user can select an object and
see the position in Google Maps (MapPage).

Figure 12.6 shows the generated mobile application being configured for the confer-12.22
ence participants.

12.3. Demonstration 181

(A) Main Menu with default read processes
and the standard navigation of read process Session

(B) Process Add/Remove Favorite

(C) Process RRoom

(D) Process SearchPaper

FIGURE 12.6: Conference Participants (Mobile end user) view of the mobile application

182 Chapter 12. User Contexts

12.3.2 Case Example 5 (Word Trainer Application)

The word trainer application is the result of an interdisciplinary project between the12.23
Institute of Computer Science (Software Engineering research group), in which
the model-driven development infrastructure was developed, and the Institute for
German Literature and Linguistics (research group of German as a Foreign Language),
both located at the University of Marburg.

The aim of this word trainer application is to support migrant learners with little or12.24
no knowledge of German and little literacy skills to learn vocation-based vocabulary.
The content is supported by pictures and videos. The word trainer application
provides pronunciation, as well as various means to test the learner’s knowledge.
Here again, two role variants are needed. First, language teachers create content
(e.g., words, pictures, audio records, and data for self-assessment) for the mobile
application. Second, the learners use this content to improve their job-specific
language skills. However, both user roles provide the ad-hoc creation of content,
using the facilities of the mobile device (e.g., record a spoken word, or take a
picture with the built-in camera). This design makes a back-end application for the
creation of a data object needless. Particularly, the hardware facilities of mobile
devices (e.g., microphone and camera) should be employed during the ad-hoc
creation of the learning content. The ad-hoc creation allows learners to add job-
specific vocabulary during on-the-job periods, i.e., while getting an instruction or
processing a task. Since a lot of study content already exists, the domain experts
need an import mechanism for the study content. A manually coded component
allows bulk import of data objects that are converted from widely accepted standard
format files (e.g., Spreadsheets). Figure 12.7 shows the final architecture of the
word trainer application. The generated word trainer application was tested during
different laboratory experiments with real learners and could finally be released for
the targeted group of learners [43].

The word trainer application was mostly realized as part of a student laboratory12.25
project and a final project (cf. Section 7.4.4). The final project included the realization
of the required changes to the model-driven development infrastructure (e.g., the
introduction of an eLearning Page, an extension of the code generator), as well
as the model-driven development of the word trainer application. Hence, the
developer acted both as the infrastructure developer and the mobile application
developer while applying the agile bottom-up approach presented in Section 3.1.

FIGURE 12.7: Architecture and roles of the mobile learning application

The app model includes a data model (Figure B.28) that reflects domain-specific data12.26
classes for learners and teachers, a process model (Figures B.30 ff.) that provides all

12.3. Demonstration 183

the necessary processes for managing and viewing data objects, and a GUI model
(Figure B.29) that provides a default design for the generated mobile application.

The provider model for the teachers (see Figure 12.8a) enables the processes that are 12.27
relevant for the creation of the vocabulary (see Table 12.4). In contrast, the processes
that are designed only for the end users, i.e., the learners, are not available in the
teacher’s variant. The object model might be empty, or a set of records could be
imported from another device. In its current form, the word trainer use no specific
style set, i.e., the default style set is used.

(A) Main Process for the user role Teacher

(B) Main Process for the user role Learner

FIGURE 12.8: Main processes of the word trainer application

Figure 12.9 shows the generated mobile application being configured for the teach- 12.28
ers.

FIGURE 12.9: Teachers create a word object starting from the main menu

The provider model for the learners (Figure 12.8b) enables the mobile end-user 12.29
processes (see Table 12.5), i.e., the learning and testing processes of the different
topics. Furthermore, the learner can create favorites and search within the vocabu-
lary. The object model contains the records prepared by the teachers. In addition,
the learners can add own words to the vocabulary. A particular style model is
not provided. Hence, the teacher’s and the learner’s variants of the word trainer
application follow the default design.

184 Chapter 12. User Contexts

TABLE 12.4: Use cases for the teachers (Providing User)

Icon Use Case Description

Main
Menu

This word trainer variant shows the main menu
with a set of available activities (ProcessSelector-
Page), and allows the user to enter a CRUD process
(CrudGui) with full permission (ALL) for the se-
lected entities: Word, Picture, Audio, Video, Topic,
Answer, Category, Priority, PartOfSpeech, and Gen-
der. Additionally, the application variant provides
five individual processes for the creation of the
learning content.

Word (CRUD) These use cases allow creating, reading, updating,
and deleting of words, pictures, audios, videos, top-
ics, answers, categories, priorities, part of speech,
and gender objects. The modification of data ob-
jects by the CRUD processes works as described
for the conference application (cf. Figure 12.5).
However, the dependency of the data classes re-
quires a particular order of creation. For example,
the creation of a word object first requires the cre-
ation of dependent objects like a picture, an audio,
or the like. Otherwise, the required features of the
word objects cannot be offered, and the object is in-
valid. To circumvent this problem, the word trainer
variant for the teachers provides customized pro-
cesses to make the creation of data objects more
convenient.

Picture (CRUD)

Audio (CRUD)

Video (CRUD)

Topic (CRUD)

Answer (CRUD)

Category (CRUD)

Priority (CRUD)

PartOfSpeech
(CRUD)

Gender (CRUD)

Picture
(Create)

In this use case, a new picture object can be created.
The process opens a TakePicturePage, which uses
the built-in camera of the device to take a picture.

Audio
(Create)

In this use case, a new audio object can be created.
The process opens a RecordPage, which uses the
built-in microphone of the device to record a spo-
ken word.

Create Word

The use case Create Word case provides the creation
of a new word object. It processes the steps for cre-
ating the referred sub-objects (e.g., audio or picture
objects), and eases the creation of word objects.

Search Word
The use case Search Word provides a search function
on the vocabulary.

Delete Word
The use case Delete Word allows the deletion of
word objects.

Figure 12.10 shows the generated mobile application being configured for the12.30
learners.

12.3. Demonstration 185

TABLE 12.5: Use cases for the learners (Mobile end user)

Icon Use Case Description

Main
Menu

This learner variant shows the main menu with a set
of available activities (ProcessSelectorPage). It offers
only individual processes for learning and testing the
vocabulary. Furthermore, the existing words can be
added or removed to/from a personal vocabulary, new
words can be created or deleted, and the vocabulary
can be searched.

Jobs

This use case guides the learner to different job-specific
topics (e.g., Catering, Cleaning, Construction, and
Warehousing). Each of these categories provides a
study mode and different testing modes.

Safety These use cases guide the learner to a general vocabu-
lary of the respective category.Workwear

Weights and
Measures

Learn

This use case displays the word that should be learnt,
a picture of this word, and an audio file for its pronun-
ciation. The user can add or remove the word to/from
her/his personal favorites.

Test The use case Test guides the learners to a selection of
different test modes.

Picture-Write

The Picture-Write test checks the learner’s writing
skills. The learners see the picture of a word learnt
earlier and try to write the corresponding word. Due
to ambiguity in the pictures (the learners may recog-
nize different objects), an audio file replays the word
in question.

Audio-Write
The Audio-Write test activity is similar to the Picture-
Write test activity, with the sole difference being that it
displays no picture of the word in question.

Picture-Word
The Picture-Word test checks a learner’s reading com-
prehension by showing a picture and offering multiple
choices of answers.

Audio-Word
The Audio-Word test is similar to the Picture-Word
test, but with the difference that an audio is used in
this case instead of a picture.

Self-Evaluation
The Self-evaluation test presents a word, a picture, and
an audio. The learners can decide if they know the
word or not.

Favorites/
My Words

The use case Favorites/My Words provides learning and
test modes for the personal vocabulary. Furthermore,
new words can be created and deleted.

Create Word
The use case New Words is a customized process that
provides the creation of personal words.

Delete
Favorites/
My Words

The use case Delete Favorites/My Words removes words
from the personal vocabulary. If the word is part of
the existing vocabulary, the learner cannot delete it. It
is only removed from the personal vocabulary. If the
word was created by the learner, it will be deleted.

Search Word
The use case Search Word provides a search function
on the vocabulary.

186 Chapter 12. User Contexts

(A) Structure of the word trainer application

(B) Learning and testing activities (excerpt)

(C) Sub-menu of Favorites/My Word and New word use case

(D) Delete Favorites/My words use case and the Search use case

FIGURE 12.10: Learners view of the mobile application

187

Chapter 13

Device Contexts

Although platform-specific code generators (e.g., Android, iOS) already handle the 13.1
support of the software platform context, these software platforms are installed
on different device types. For example, an Android application might be run on
a smartphone, a tablet, a TV-stick or another device (cf. Figure 11.1d). Moreover,
each device type is represented by a concrete device from a plethora of different
devices from different vendors. Actually, many mobile applications lack device
compatibility, since graphical user interfaces cannot be guaranteed to always work
as expected. Similarly, the functionality – which relies on specific sensors, interfaces,
or other facilities (memory, processor) – cannot be executed if a device does not
support it. Many mobile applications are rated poorly based on negative user
experiences. In general, mobile application developers cannot specify (or test) all
device-specific variants to cover the vast set of different device types. A pragmatic
way to deal with device heterogeneity is to reduce the set of platform-supported
devices. An example would be iOS which runs only on a very small number of
vendor-specific devices (iPad, iPhone, and iPod). In turn, more open platforms,
such as Android, do not follow such a paradigm.

The device type (cf. Figure 11.1d) often implies the available features, such as Screen, 13.2
Sensor, Interface, and Memory properties. Hence, the device context-awareness
needs a mobile application to be adapted to the features of the device. While the
context-sensing of the device type or the particular features are provided by built-in
functions of the platform, the adaptation of graphical user interfaces and the ap-
plication functionality is not trivial. For example, since most software platforms
provide both declarative and programmatic specifications of graphical user inter-
faces, not all properties that can be set in a declarative manner (i.e., an XML layout
description) are configurable at runtime by a programmatic specification. Addi-
tionally, parts of an application that require specific sensors, which might not be
available on every device, must react adequately to the hardware configuration of a
particular device, which must be managed by the mobile application developers.
Currently, the facilities to adapt a designed graphical user interface automatically
are very limited (e.g., relative layout dimensions, graphical resources with different
resolutions and sizes), even if the literature proposes several concepts. Similarly, a
written native program code that deals with hardware features must be adapted
manually to provide an adequate variant for every potential device.

The model-driven development infrastructure deals with the problem of device 13.3
context-awareness in the following way: the different concerns (data, behavior, and
graphical user interfaces) that are captured in an app model can be transformed
at design time to meet the needs of a device type or a particular device. Hence, in
this work, we show the general application of app model transformations, rather
than a comprehensive catalog of app model transformation rules of every potential
device type. Unfortunately, the resulting app model variants lead to a huge set of
mobile applications. To alleviate this problem, runtime adaptation of device-specific
options can be used. Hence, the designed model-driven development infrastructure
provides both a design time and runtime approach to support the different device
contexts:

188 Chapter 13. Device Contexts

13.1 Design Time Adaptation

The model-driven development infrastructure supports the adaptation of mobile13.4
applications to device-specific requirements by adapting the corresponding app
model at the design time. Although an app model can be modified manually, a
transformation-based and semi-automated adaptation of the app models is used
based on the available model transformation tools (cf. Section 6.9.2). Generally,
the app model transformation is not fully automated because its rules might need
manual post-processing steps (e.g., fixing the annotated code, which cannot be
transformed automatically). An app model is transformed endogenously, i.e., input
and output models are expressed in the same modeling language. An advantage of
transformation-based adaptation is that the transformation rules can be reused for
the different app models. Moreover, the transformation rules may be composed,
which is useful because the device features can occur in almost any combination.
Whether the app model transformation rules can be composed arbitrarily or obtain
a particular order depends on their conflicts. We do not discuss this conflict analysis
within this work, but refer to the available foundations and tooling [Bor+15].

To sum up, the procedure of design time adaptation is as follows: the app model13.5
will be transformed in such a way that it (more precisely the generated mobile
application) fits better to a particular device. This transformation runs automatically.
If the device requires very specific adaptations, different transformation rules may
be applied. Hence, these transformations should keep the original model for further
adaptations.

Example (Transform the simple phone book app model to a tablet/notebook ver-13.6
sion). As Figure 6.2b (right-hand side) and Figure 7.5 show, the separation of classes
generates the tabbed fragments or widgets that allow convenient access to the data
while using a smartphone. Not too much information is displayed inside a single
screen, nor is the information truncated.

Assuming again that the phone book application is used in a company scenario, the13.7
phone book managers might prefer a device with a keyboard and/or a large screen,
e.g., a tablet or a notebook, because their tasks focus on the creation of data. The
screen of the tablet or notebook should be used optimally. Reusing the formerly
used app model, particularly the data model, leads to a poorly utilized screen with
only a few graphical user interface elements. Moreover, a hardware keyboard is
used instead of an emulated software keyboard, which frees some space on the
screen. Hence, to provide more information on a single screen, the data model is
be transformed. A class that contains another class (max. upper bound=1), such
as Person and Address (cf. Figure 6.4), is merged by moving the attributes and the
operations to the container class. Figure 13.1 shows the transformation rule and the
sub-rules that implement the model transformation. The rules are formulated in
the abstract syntax. The color scheme indicates the parts that should be matched
and preserved, deleted, created, and the structures that are forbidden. The argument
classname (e.g., Address) of the main rule (cf. Figure 13.1a) denotes the class that
should be merged with the container class. This argument is mapped according to
the sub-rules.

Particularly, the rule consists of four sub-rules that affect the data model and the13.8
process model. The first sub-rule GetAttribute (cf. Figure 13.1b) deletes the relations
from the containing class to the structural features (e.g., EAttribute, EReference),
preserve the structural feature, and create relations from the container class to the
structural feature. Hence, the structural feature now belongs to the container class.
This rule is applied several times inside a Loop Unit (not shown) until it cannot be
matched i.e., executed again.

The second sub-rule GetOperation (cf. Figure 13.1c) works in an analogous way and13.9

13.1. Design Time Adaptation 189

(A) Move containing class to container (Sequential Unit)

(B) Moving attribute from containing class to container class

(C) Moving operations from containing class to container class

(D) Rename context of shifted operations

(E) Delete (empty) containing class

FIGURE 13.1: Rule #1 – Move containing class to container (rules and sub-rules)

moves all operations (EOperations) from the containing class to the container class.

The third rule (cf. Figure 13.1d) deals with operation calls, which refer to the shifted 13.10
operations. The attribute context of the task InvokeOperation refers to a Variable which

190 Chapter 13. Device Contexts

holds a typed object. The operation will be executed on this object. Since the type
(eType) of the Variable is no longer valid due to the shifting of the operation, it must
be changed to the correct type, since it is the container class (e.g., Person). This
transformation affects the process model.

Finally, the fourth sub-rule (cf. Figure 13.1e) deletes the containing class. Since the13.11
structural features and operations are removed in the preceding steps, the container
class must be empty. However, the containing class can serve as a type or supertype
of another class or part of an inherited relation. In this case, the containing class
cannot be deleted and the steps executed before are not saved.

However, model transformations that allow adaptation to specific devices are not13.12
always focused on the data model or pure reorganization. The following model
transformation affects both the process model and the GUI model by introducing
tasks and pages. While using a notebook without a touch-screen, it might be difficult
for the users to scroll through the long lists as they appear on several pages (cf.
Figure 6.2c and Figure 6.2d). But, text input can be done better by using however
the hardware keyboard. Thus, the user might want to specify the search criteria
beforehand, instead of selecting an item from an unfiltered set. Thus, it would be
beneficial to provide a search-criteria page before every list-selection page to reduce
the number of objects appearing in a list. Figure 13.2 shows a rule that transforms
such processes by introducing a search page.

FIGURE 13.2: Rule #2 – Introduce search criteria pages before read tasks

The app model transformation rule shown in Figure 13.2 recognizes the sequences of13.13
Create tasks followed by a Read task. In such a case, an InvokeGUI task is introduced
between these tasks by shifting the Read task to a newly created Sequence task.
The introduced InvokeGUI task needs a corresponding EditPage for editing the
search criteria. The EditPage is part of an existing Page Container and refers to a
StylePageSettings element.

Before showing the resulting device-specific mobile application, we will discuss the13.14
advantages of applying app model transformations over the traditional refactoring
or modification of the codebase without model-driven development methods. First,
the app model transformation rules are defined at the metamodel-level. Hence, the
app model transformation rules can be reused potentially for any instance of the
domain-specific modeling language, i.e., any app model. In contrast, a modification
of the mobile application at the code level could not be reused to adapt other
implementations to a device type or device.

Second, we can evaluate the effort needed to adapt a mobile application using13.15
traditional code refactoring in contrast to the high-level approach of model trans-
formation. Therefore, we generate the native program code from the unmodified
phone book app model. Subsequently, the presented app model transformations

13.1. Design Time Adaptation 191

TABLE 13.1: Number of adapted elements at modeling level and implementation level

Applied
rule/s

Modeling level (counting
ENamedElements)

Implementation level
(counting files)

Deleted Modified Added Total Deleted Modified Added Total
- 0 0 0 165 0 0 0 291
Rule #1 13 11 0 152 26 102 0 265
Rule #2 0 12 18 183 0 58 10 301
Rule #1◦#2 13 23 18 170 26 104 10 275

are applied to the phone book app model and the native program code is generated
anew. Based on both implementations, the number of adapted artifacts can be
determined. Hence, we can estimate how many traditional changes at the level of
code would be necessary by comparing both generated implementations. Table
13.1 shows the results. Since the number of changed code-based artifacts is very
extensive in contrast to the small set of used rules and affected model elements,
we have the premise that app model transformation could generally benefit the
modification of mobile applications to meet device-specific requirements.

FIGURE 13.3: Tablet/Notebook version of the phone book application

Finally, Figure 13.3 shows the resulting device-specific mobile application variant 13.16
of the corporate phone book application from the perspective of a providing user.
Compared to the smartphone version of the phone book application, the creation of
a contact (cf. Figure 6.2b) is more convenient on a tablet, because the whole record

192 Chapter 13. Device Contexts

can be entered on a single form and the user may enter data more efficiently using
a hardware keyboard. �

13.2 Runtime Adaptation

As presented in the previous section, the app model transformation always deliv-13.17
ers an individual app model and a corresponding individual mobile application.
At present, the app stores or app marketplaces provide no device-specific query
response, i.e., they cannot automatically deliver a mobile application variant opti-
mized for the mobile user’s device. The reason for this policy is that most mobile
application vendors cannot or will not provide several device-specific versions of a
mobile application because the development effort will increase considerably. Due
to this deployment policy, a single mobile application that should cover device-
specific features of different devices must be configurable at runtime.

Again, the two-level modeling approach (cf. Section 1.4.1) is used to adapt the13.18
mobile application to specific device contexts. According to the requirements of the
domain-specific modeling language given in Sections 4.1.1, 4.1.2, and 4.1.3, only
the process model and the GUI model should be interpreted at runtime. Similarly
to the runtime instantiation of the mobile application for the user context support,
the process instance model can also be used to activate/deactivate device-specific
variants of the processes. Additionally, the style model is used to adapt the graphical
user interface of the mobile application to a particular device. This feature can also
be used to provide custom settings for the graphical user interface (user settings).
The ability of runtime adaptation should not be confused with a self-adaptive
system. The architecture of the generated mobile application provides device-
specific adaptation as shown in the following example. However, the adaptation is
always triggered manually (e.g., loading a particular instance model at runtime).

Example (Transform the phone book runtime model to a non-GPS compatible and13.19
low-resolution variant). Suppose the corporate phone book application has to be
installed on older devices without GPS and with a small screen size. The lack of GPS
functionality causes an error when displaying the contacts NearToMe (cf. Process
B.1.3.13). The low screen density might, in general, cause problems in the legibility
of the graphical user interface widgets.

FIGURE 13.4: Non-GPS variant of the process NearToMe

First, to deal with the lack of GPS functionality, mobile application developers13.20
should offer processes that can provide the required functionality in other ways.
The process NearToMe (NonGPS) (Figure 13.4) models the same functionality of the
original process NearToMe (cf. Section B.1.3.13). However, getting the location of the
mobile application user is realized without using the GPS functionality. Particularly,
the mobile user enters a postal address of his/her current position, and an address

13.2. Runtime Adaptation 193

look-up service delivers the geographical coordinates (like GPS does). Figure 13.5
shows the processes and their differences NearToMe and NearToMe (NonGPS) from
a mobile user perspective. The instantiation of these processes is done in the same
way as that for the user context support (cf. Figure 12.1).

(A) Main Menu with NearToMe Process using GPS functionality

(B) Main Menu with NearToMe Process
using address look-up service for emulating GPS

FIGURE 13.5: Device-specific variants of the process NearToMe

Second, the low screen size of the used device causes downscaling of the graphical 13.21
widgets, which makes the text inside these widgets barely legible, especially if the
contrast between the background and the font color is not very high. Thus, the
downscaling may violate the given guidelines (cf. W3C WAI WCAG 2.0 – Web
Content Accessibility Guidelines 2.0 [76]; also [Mei+10]), which are obligatory for
mobile applications of certain sectors (e.g., public administration1). For example,
Guideline No. 1.4.3 of the mentioned WCAG requires a contrast ratio of 4.5:1 for
normal text (<18 points) and 3:1 for large text (>= 18 points). Suppose the mobile
application shown in Figure 6.2 is deployed and executed on a 4.7" device with
a resolution of 325 x 578 pixels (density 141 pixels per inch). Given that the font
size of the generated mobile application is 36 dp (device-independent points)2,
the physical font size that appears on the screen is greater than 18 physical points
(0.25 inches/0.635 cm). Hence, the given contrast ratio of the font color (#555555;
RGB[85,85,85]) and the background of a selected element (#7ecce8) is 4.15:1, and
thus valid for the font size occurring in the mobile application. In turn, if the same
mobile application runs on a 4.7" device with a resolution of 415 x 737 pixels (density
180 pixels per inch), the font size in the mobile application is only 14.4 physical
points. In this case, the provided contrast ratio of 4.15:1 violates the required

1 In October 2016, the European Parliament approved the directive 2016/2102 that requires websites
and mobile applications of public sector bodies to conform to WCAG 2.0 Level AA. New web-
sites must comply from September 23, 2019, old websites from September 23, 2020, and mobile
applications from June 23, 2021, onwards.

2 One device-independent point is defined by 1/160 inch.

194 Chapter 13. Device Contexts

FIGURE 13.6: Style model of the simple phone book application

(A) Low contrast of
selected list elements

(exaggerated)

(B) Increased contrast
due to the runtime

style model

(C) General adapta-
tion of style setting at

runtime

FIGURE 13.7: Device-specific runtime adaptation of the mobile application’s style

contrast ratio of 4.5:1. A style model can be used to fix the insufficient initialization
of the mobile application and provide a sufficient color scheme at runtime. Figure
13.6 shows a style model with additional style settings which fixes the WCAG
guideline violations and provides a more contrasted mobile application (Figure
13.7a and Figure 13.7b) by using the font color (#444444; RGB[68,68,68]) on certain
pages (ListablePages). The layout shown in Figure 13.7a is not device compatible.
Only the runtime adaptation shown in Figure 13.7b leads to a device compatible
layout, i.e., style. Besides, the style model could also be used to configure the style
of the mobile application in general (Figure 13.7c). �

13.2.1 Runtime Adaptation Implementation

The runtime adaptation of provider models, i.e., process instance models and style13.22
models, is implemented as follows: the generated mobile application attempts to
load a process instance model or a style model at the start time. If the device’s specific

13.3. Demonstration 195

context adaptation is realized with device-specific process instantiation, a process
instance model will be processed as already described in Section 12.2.1. If the device-
specific context adaptation is realized with a device-specific style adaptation, then
a style model holds device-specific styles for the pages of the generated mobile
application. Every generated page (e.g., Activity in Android) evaluates the runtime
information and changes the interface according the modeled information given in
the style model.

13.3 Demonstration

The previously shown examples deal only with devices that are primarily designed 13.23
for the Android operating system. However, an increasingly number of devices
from other application domains also use this operating system nowadays. For
example, Android is increasingly being used for TV boxes, cameras, game consoles,
and eBook readers. An ongoing trend is the so-called E-Ink Optimization of mobile
applications to enable them to run on eBooks. Major eBook vendors provide offline
application installation or access different app stores for online installation. Hence,
the following case example will show how the word trainer application can be
made compatible with an eBook reader (e.g., Icarus E654BK Android 4.2.2). Please
note that the modifications follow the one-fits-all concept. Particular, one mobile
application is suitable for different devices (e.g., Tablet, eBook reader) based on
runtime adaptation. Different device types (e.g., Smartphones and eBooks) can
share the same app store, instead of using individual app stores.

In order to evaluate the feature of device context support, we ask: how easy is it 13.24
to adapt a real-world mobile application to a specific device? Since we already
showed (cf. Table 13.1) that a few changes to the app model affect many files and
thus lines of program code on the implementation level, we will not compare the
modeling level and the implementation level in a quantitative way within the case
example. However, an adaptation of the codebase by handwritten modification
would not be effective compared to the model-based transformation approach.

13.3.1 Case Example 6 (Word Trainer Application – eBook)

To make the word trainer application additionally compatible with an eBook reader, 13.25
the processes and widgets of the graphical user interface which are affected by the
desired device and their hardware facilities must be analyzed. Incompatible parts
of the mobile application must be re-modeled (or re-implemented when applying a
traditional development approach). Moreover, parts of the original application and
the re-modeled parts must be instantiated depending on the used device type.

Since eBook readers are very homogeneous in terms of hardware facilities, we 13.26
assume that a standard Android-operated device (e.g., Android 4.2.2) has an E-Ink
display (4-Bit Grayscale, 200-300 dpi, low refresh rate), touch screen, memory card
or internal memory, Wi-Fi access, no camera, no microphone and no other sensors.

13.3.1.1 Device-Specific Processes

Given this hardware setting, the processes CreatePicture (cf. Section B.3.3.3) and 13.27
CreateAudio (cf. Section B.3.3.4) cannot be executed because an eBook reader offers
neither a built-in camera nor a microphone is available on an eBook reader. Al-
though these processes could simply be disabled to provide a variant of the mobile
application for eBook readers, we are heading towards a more elegant solution.
We would provide a variant of the mentioned processes that must be modeled
manually by the application developer. The original process CreatePicture creates a

196 Chapter 13. Device Contexts

Picture object and associates this object with a picture taken subsequently. Hence,
the process returns a Picture object with a corresponding picture file. Since the
eBook provides a file system in which picture files can be stored, a process variant
for eBooks might select existing picture files and create associated Picture objects.
Figure 13.8 shows the device-specific process variant for the eBook. Figure 13.9
shows the device-specific variant (eBook variant) of the CreatePicture process from
the mobile user perspective. The process CreateAudio is re-modeled in an analogous
way. The mobile application can now run on an eBook providing the re-modeled
process is used.

FIGURE 13.8: Device-specific variant of the process CreatePicture

(A) Main menu with device-
specific processes (SelectAu-

dio/SelectPicture)

(B) Device-specific implementation of the
process CreatePicture (using a file selection

dialog due to lack of a built-in camera)

FIGURE 13.9: eBook variant of the word trainer application

13.3.1.2 Device-Specific Style Configuration

However, the text inside the mobile application might be barely readable due to13.28
the style and color settings. Moreover, animations – i.e., the visual feedback to a
mobile user while interacting with the mobile application (e.g., highlighting one
or more selected list elements) – are hardly feasible since the E-Ink displays need
several refresh cycles to change a pixel within a large contrast range (e.g., from black
to white and vice versa)3. To circumvent these problems, the style of the mobile
3 This problem is called ghosting because the so-called ghost pixels from prior content may remain on

the screen.

13.3. Demonstration 197

application can be instantiated with a style that is optimized for an E-Ink display.
Particularly, the style model uses only high-contrast values. Widget animations
are avoided by using animation colors that are identical to the background. Figure
13.10 shows the effects of an E-Ink optimized style model in comparison to a non-
optimized mobile application.

(A) Ghosting effect due to the
changing focus of edit widgets

(B) Disabled selection animation while
changing the focus of edit widgets

FIGURE 13.10: Using device-specific styles to avoid ghosting effects on eBooks

199

Chapter 14

System Contexts

The system context encompasses every context that a mobile application might be 14.1
able to detect in the real world. While many system contexts can be used in an
advantageous way, i.e., to realize smart behavior or innovative services, changing
technical contexts (e.g., connectivity, energy supply) often cause problems and are
currently handled insufficiently. While mobile devices and mobile applications
could be used in numerous situations and locations, one serious disadvantage
compared to traditional devices (e.g., stationary personal computers) is that physical
mobility limits access to resources like the network or power supply. Hence, we
will demonstrate in this chapter how mobile applications can deal with changing
technical contexts, particularly with respect to network connection.

The impact of an interrupted network link ranges widely in terms of its severity. 14.2
Suppose the mobile application is used to transmit/receive a real-time audio- or
video stream to/from another mobile client. In such a scenario, the broken network
link makes the mobile application inoperable. Generally, real-time communication
needs a network link with a low latency and sufficient bandwidth. However, when
the network link is being used to access a remote database or invoke a processor-
intensive remote service, a broken link might be tolerable. This is particularly true
when the architecture of the mobile application can compensate for the interrupted
network link by taking over the functionality of the service that could not be reached.
For example, a mobile application can maintain local replicates of the application-
specific data or compute processor-intensive tasks locally. Of course, there are
drawbacks, such as conflicts of locally-performed transactions that might occur
during data synchronization or bad performance of the mobile application due
to the use of the local and limited processor facilities. Varshney and Vetter listed
the network requirements of several kinds of mobile applications in [VV01] and
described the effect of a broken network link.

To construct a mobile application that is both online- and offline-capable, additional 14.3
architectural components are needed for replication, synchronization, and local
transaction management. If data can be modified locally, mobile applications shall
avoid or prevent the execution of potentially conflicting transactions [Gra+96], and,
thus, ensure conflict-free reintegration of modified data. Currently, mobile applica-
tion developers have to acquire a lot of knowledge about online- and offline-capable
data and transaction management before they can design such a mobile application.
While initiating a mobile application development project, teams often have to
make an architectural and platform choice [Puv+16] [Bre+14], which dominates
or limits the development process thereafter. Forced to decide whether to realize
an online-only or offline-only mobile application or an online- and offline-capable
variant, mobile application developers must first thoroughly understand the use
cases, i.e., the processes and the accessed data of the planned mobile application.
Currently, there is no conceptual tooling for the evaluation of mobile application
designs regarding their online and offline capability. Mobile application developers
do not get any support to assess whether the effort to implement such an online-
and offline-capable mobile application is reasonable, i.e., whether the number of
successfully executable transactions (called throughput) increases considerably in

200 Chapter 14. System Contexts

comparison to an online-only application variant. Moreover, the improper applica-
tion of an offline-capable architecture can also drastically reduce the throughput.
Besides, once a mobile application developer has decided to realize an online- and
offline-capable mobile application, further issues emerge. For example, mobile
information and transaction systems may support different consistency and conflict
levels. Accepting lower conflict levels usually increases the throughput of transac-
tions but may lead to data inconsistencies. Thus, mobile application developers are
often unsure which conflict level should be favored, because the throughput for a
certain conflict level is hard to predict.

In this chapter, we present four main contributions. First, we propose to model14.4
the core data structures and the behavior of a mobile application using a domain-
specific modeling language. Based on this concise formulation of application data
and behavior, a static conflict analysis can be carried out. This analysis identifies
all potentially conflicting transactions, which must be managed in an online- and
offline-capable mobile application. The model analysis shows the overall capability
of a mobile application to be operated in an online and offline context.

Second, potentially conflicting processes may be tolerable in certain scenarios. For14.5
example, if a few mobile users act on a huge set of data objects, conflicts might occur
rarely and could be tolerated. Using the results of the static conflict analysis and a
simulation configuration, a model-based simulation system can predict the number
of actual conflicts for an individual app model. Mobile application developers can
test different (expected) operational conditions without implementing the planned
mobile application beforehand.

Third, the design process allows the generation of prototypical online- and offline-14.6
capable applications. The goal of this software prototype generation is to provide
an evolutionary prototype [Cri92] that can be studied and extended manually. The
generated prototype follows the notion of horizontal prototyping [Bac+12, Sec. 4.3],
i.e., specific layers of offline-capable applications are built for reuse. More precisely,
the generated prototype focuses on the architectural components (e.g., application
logic, replication and synchronization functionality) that are required [TG95] to
realize online- and offline-capable applications, while, for example, the generated
user interface is simple and may be replaced in further iterations. The generation
step builds upon an existing framework for the model-driven development of
mobile applications [Vau+18b] as presented in the first part of this thesis.

Fourth, the proposed design process is evaluated following different research14.7
questions. We will show how diverse the results of the analysis of different app
models can be and how different contexts (e.g., the number of data objects, and
mobile users) affect the throughput. Furthermore, we demonstrate the applicability
of the design process by re-engineering a real-world application.

14.1 Design Process Overview

The starting point of our design process can vary: a new online- and offline-capable14.8
mobile application may be developed from scratch, or there may already be a mobile
application that shall be made online- and offline-capable. In both cases, we want
to find out under which conditions the introduction of online- and offline-capable
data and transaction management is better than a pure online-only or offline-only
solution. Figure 14.1 shows the main activities of our design process:

14.1.1 Modeling

The first step deals with the creation of an app model that describes the data14.9
structure and the behavior of the mobile application. It is sufficient to model

14.1. Design Process Overview 201

Simulation
configuration

Simulation
results

App

 Modeling

App
model

Conflict
analysis results

 Simulate Generate Analyse

FIGURE 14.1: Design process of online- and offline-capable mobile applications

only that part that shall be available both online and offline. The app model
follows the domain-specific modeling language presented in Chapter 6. A few new
language features are introduced to facilitate the online and offline capability. The
modeling step is carried out manually, but model editors support mobile application
developers in creating models.

14.1.2 Model-Based Analysis

The first automated step of the design process takes the app model and identifies 14.10
the conflicting processes using a static conflict analysis. An appropriate conflict
definition will be introduced later. The result of this analysis is a conflict matrix,
showing which processes are in conflict. Besides, this step delivers one or more
conflict-free subsets of processes.

14.1.3 Model-Based Simulation

Given the conflict-free subsets delivered by the analysis step, the simulation takes 14.11
these subsets and determines how many transactions (instantiated processes) can
be executed in certain usage scenarios. Mobile application developers mainly have
to specify how many mobile users and data objects are expected in the existing or
planned system. Finally, the simulation results denote the expected throughput for
different subsets of processes and certain simulation conditions.

14.1.4 Model-Driven Generation

Once mobile application developers have identified a beneficial design, they can 14.12
generate a prototype of the online- and offline-capable mobile application. The code
generator processes the app model to generate the basic functionality of the mobile
application. The core components of the generated application, namely the data
and application logic layer, the runtime part (enables/disables processes according
to the connection state), and the local transaction manager, shall be reused because
they are mature. The parts for replication and synchronization are also mature for
mobile applications that process a medium-sized set of data objects. They may be
manually optimized in case the mobile application processes a significant higher
number of data objects. The user interface is robust but simple. It can be modified
easily as the generated application separates the application logic and the user
interface strictly.

202 Chapter 14. System Contexts

We will introduce an example to illustrate the used domain-specific modeling
language as well as to exemplify the steps that are presented in the next sections.

14.1.5 Running Example (Simple Payment Application)

Mobile applications that support mobile payments, such as Apple Pay [07], Google14.13
Wallet [14], PayPal [42], or in-app payment such as in-app Billing [13] do not yet
support offline execution. The main obstacle may be the high-level of transaction
security that is required by payment systems since conflicts can result in loss of
money. Although no corresponding mobile application is yet available [SK12],
the discussion about offline capability of mobile payment has started (read e.g.,
[29]). We choose mobile payment as running example since it illustrates very well
the facilities for online- and offline-capable but conflict-free data and transaction
management as offered by our design process. Note that our example is reduced to
its core functionality. Hence, the data model and the application logic are kept rather
simple. The generated mobile application shall function as a software prototype
to explore if and under which conditions online- and offline-capable data and
transaction management is useful for mobile payment.

Example (A simple payment application). A banking account is administered on a14.14
server at the banking site. It may be accessed by the server as well as from one or
more clients. We assume to have a credit account, i.e., it is never in the debit state
(which would give rise to a conflict).

Account
balance.:.Int
withdraw(Int):Boolean
deposit(Int)
getBalance():Int

Payment
Customer
surname.:.String
forename.:.String

account

1..1

customer

0..*

(A) Data model

Main

MainProcesses

ProcessesOverview : ProcessSelectorPage
Withdraw , Deposit , GetBalance

(B) Process Main

Withdraw

Account Amount Result MessageOK MessageNOK

GetWithdrawAmount

Amountf:fAmount
EditAmount
Amountf:fAmount

WithdrawAmount

Amountf:fAmount
withdrawf:fEBooleanObject
Accountf:fAccount
Result

If/Else

Result
ShowMessageOK

MessageOK
ViewMessage

ShowMessageNOK

MessageNOK
ViewMessage

(C) Process Withdraw

Deposit

Account Amount

GetDepositAmount

Amount : Amount
EditAmount
Amount : Amount

DepositAmount

Amount : Amount
deposit
Account : Account

(D) Process Deposit

GetBalance

Account

GetBalance

getBalance : Account
Account : Account
Account : Account

ShowBalance

Account : Account
ViewBalance

(E) Process GetBalance

FIGURE 14.2: App model of a simple payment application

This simple payment application is modeled as follows: the data model in Figure14.15
14.2a mainly contains a class Account modeling a banking account. It comprises an

14.2. Model-Based Analysis 203

attribute representing the current balance. It can be checked by using getBalance()
and modified by operations deposit() and withdraw(). Both modifying operations
need an amount that should be added to or subtracted from the balance. The
operation withdraw() requires that sufficient funds are available to cover the required
amount. Its return variable is set to true if covered and to false if not. The main
process of the process model in Figure 14.2b is a process selector which refers to all
the available processes. The user may invoke processes GetBalance, Withdraw, or
Deposit. The process GetBalance invokes the operation getBalance() and displays the
value. The process Deposit requests the amount of money that should be added and
then invokes deposit(). The process Withdraw also requires the amount of money
to be withdrawn, invokes withdraw(), and displays whether the transaction can
be carried out or not. A simple graphical user interface can also be modeled and
generated (not shown).

(A) Main (B) GetBalance (C) Deposit

(D) Withdraw

FIGURE 14.3: The simple payment application working online-only

The mobile application shown in Figure 14.3 is generated by the already existing 14.16
code generators, presented in Chapter 7. The architecture of this mobile application
follows a traditional client-server architecture, i.e., the mobile front end is not
operable without a network connection. �

14.2 Model-Based Analysis

The purpose of the model analysis is to evaluate how many processes are potentially 14.17
in conflict and which conflict-free configurations exist. For example, an online- and
offline-capable mobile application requires replicated data objects on the mobile
device which it is running on. The replicated data objects may be modified locally
while the mobile device is disconnected. In parallel, another mobile client would
do the same on its replicated data objects. This is a concurrent access to shared
data objects, but traditional online conflict detection cannot be applied due to the
network partition of the mobile clients [Ber+87]. Hence, the question arises: which
conflicts may occur while all the mobile clients try to synchronize their modified
copies and how can these conflicts be prevented or solved? Thus, we first introduce
an appropriate conflict definition. Since this conflict definition is based on read and

204 Chapter 14. System Contexts

write access to data objects, the data model must be equipped with corresponding
annotations. Finally, the conflict analysis can run automatically; it delivers a conflict
matrix as well as conflict-free subsets of processes.

14.2.1 Conflict Definition and Conflict Levels

Transactions that are performed offline on replicated data objects, must be repeatable14.18
on the primary copy (located at the server) in any order because the mobile clients
will reconnect and synchronize in an arbitrary order. An offline transaction is
repeatable only if it always returns the same value, i.e., fulfills the return value
commutativity, and has the same effect, i.e., satisfies the state commutativity, when
being re-executed on the primary copy [WV02] [Ouz+09]. This separates the set
of transactions into potentially conflicting ones and conflict-free transactions. It
should be noted that we consider only offline transactions on different mobile
devices (users) to be synchronized with the server-sided copy, i.e., repeatability is
not required for offline transactions performed on the same device.

To achieve a well-accepted online- and offline-capable mobile application, it seems14.19
to be more suitable (e.g., in order to increase the throughput) to use a fine-grained
set of requirements for conflict-freeness in style of the ANSI/ISO SQL (Structured
Query Language) [Ber+95] (cf. [Ady+00]) transaction isolation levels. This fine-
grained conflict definition is beyond the state-of-the-art conflict definition for trans-
action systems, as it requires a more detailed description of data object access. In
order to get a fine-grained conflict definition, we propose weak and strict versions of
the return value commutativity and the state commutativity, respectively. Two offline
transactions are called weakly return value commutative if their return values may
differ when being re-processed on the primary copy. This happens if other clients
have changed the primary copy in the interim period. Otherwise, they are called
strictly return value commutative.

Example (Return value commutativity conflict). We assume that two clients access14.20
a banking account with an initial balance of $50. One of them requests the account
balance while being offline. The operation getBalance() delivers the last consistent
value of balance being $50. In the meantime, the other client deposits $50 in an offline
context. The operation deposit() returns no value and is therefore not affected by
other transactions. But the return value of the operation getBalance() is not the same
on the primary copy (assuming an arbitrary order of synchronization), because
it may deliver $100 instead of the locally returned value of $50. Thus, there may
be a return value commutativity conflict between the operations getBalance() and
deposit(). �

Two offline transactions are weakly state commutative if the transformation of one14.21
state to another one may fail. This happens if other clients have changed the
primary copy in the interim period and hence the execution condition of the failed
transaction is no longer satisfied. They are strictly state commutative otherwise.

Example (State commutativity conflict). In this scenario, we assume that a bank14.22
account is accessed offline by a mobile client and online from an ATM (Automatic
Teller Machine). Its initial balance is $50. The client withdraws $30 through the
offline transaction Withdraw (e.g., transferring money via NFC). This transaction is
performed on a local copy. It can be carried out locally because the paid amount is
covered by the local balance of $50. The local copy of the balance is $20 now. In the
meantime, the user withdraws $30 from an ATM. This is an online transaction. It is
checked whether the account is covered based on the primary copy (which is still
$50) and debits the requested amount. Finally, the primary copy has a value of $20.
While synchronizing the offline transaction, a conflict occurs because the amount
has to be covered. In particular, the state condition (balance − amount >= 0)

14.2. Model-Based Analysis 205

is violated. Thus, there is a state commutativity conflict between the Withdraw
processes. �

The resilience to conflicts is highly application-dependent. We define three relevant 14.23
conflict levels to be able to define conflict strategies. The conflict strategy is a global
property, i.e., all offline transactions have to follow the same conflict level:

Level C1 (Conflict allowing) requires weak return value commutativity and weak 14.24
state commutativity.

Level C2 (Conflict avoiding) requires weak return value commutativity and strict state 14.25
commutativity.

Level C3 (Conflict prohibiting) requires strict return value commutativity. Note 14.26
that weakness or strictness of state commutativity does not matter because state-
changing operations, i.e., write operations, are not allowed requiring strict return
values.

Example (Conflict levels). Considering our running example, all processes fulfill 14.27
C1. Level C2 dismisses the process Withdraw because the state condition is not
fulfilled for this process. Hence, Withdraw is self-conflicting. Level C3 dismisses
processes Withdraw and Deposit or GetBalance. �

If a mobile application has either read-only processes or processes with a write 14.28
access albeit without a conditional read access, it may profit most from the con-
nectivity awareness as its processes are conflict-free. All other mobile applications
have to accept or resolve conflicts. We can identify different kinds of mobile ap-
plications for which the different conflict levels can be employed beneficially. The
conflict allowing level C1 is recommended for mobile applications that realize an
information system, where the information flow mostly is from the server to mobile
clients. Conflict levels C2 and C3 are rather suitable for transaction systems, where
the information flow is bidirectional between the server and mobile clients. How-
ever, the appropriateness of a conflict level is mostly determined by the number of
users and data objects, i.e., by the conflicts that actually occur.

Input of the analysis step: According to Figure 14.1, the input of the analysis 14.29
step is an app model. Since conflicts are based on read or write access to shared
data objects, such access has to be recognized by analyzing the modeled processes,
namely process steps (called tasks). For example, processes may contain CRUD
tasks that act on a specific data type. The model analysis can automatically recognize
potential conflicts for all completely modeled tasks. For customized operations
that are invoked inside modeled processes, mobile application modelers must
explicate the data access of these operations manually by using additional language
features. In the running example, 3 of 4 processes use customized operations. This
is not usual because most data-oriented applications use rather standard tasks
(e.g., CRUD) than custom functionality, as we will see in the evaluation. We chose
this example to have the possibility of discussing the explication of data access as
presented below.

14.2.2 Explicating Data Object Access

In order to apply a conflict analysis, determining whether an operation is potentially 14.30
involved in a conflict or not, all the operations must declare their data accesses. The
following language features denote the data access of operations:
i) An operation has a Condition:Read relation to an attribute or object if it reads
this attribute or object as part of a condition.
ii) An operation has an Action:Read (Action:Write) relation to an attribute or
object if it returns (writes) this attribute or object.

Example (Explicating data access of operations). Listing 14.1 shows the operation 14.31

206 Chapter 14. System Contexts

withdraw() of the class Account. This operation reads the attribute balance to check
whether the account is covered.

LISTING 14.1: Operation withdraw()

1 public boolean withdraw (i n t amount) {
2 i f (balance

Condition:Read

− amount>=0) {

3 balance
Action:Write

= balance − amount ;

4 return true ; } e lse { return f a l s e ; } }

Account
balance : Int
withdraw(Int) : Boolean
deposit(Int)
getBalance() : Int

Condition:Read

Action:Read
Action:Write
Action:Write

FIGURE 14.4: Access modes of the class Account

Hence, it has a Condition:Read relation to balance. It writes the attribute balance14.32
inside the body of the conditional statement, leading to an Action:Write relation
to balance. Figure 14.4 shows the data access declarations for all the operations of
Account by using newly introduced language features. �

Conflicting operations are identified as follows: two operations are C2-conflicting14.33
if one has a Condition:Read and the other one has an Action:Write relation
to the same attribute. They are C3-conflicting if one has an Action:Read or a
Condition:Read and the other one has an Action:Write relation to the same
attribute.

14.2.3 Running the Model-Based Conflict Analysis

Based on the conflict definition, an app model equipped with read and write14.34
annotations can be analyzed. As shown in Figure 14.4, only the data model is
equipped with annotations, but the whole app model (with process model) is taken
into account. The tasks of all processes are analyzed for conflicts. In the second
step, conflicting processes are identified based on their sets of conflicting tasks.

Example (Conflict analysis). For our payment application, the result of the conflict14.35
analysis is shown in Table 14.1. It is a conflict matrix where X marks conflict-free
processes and × marks conflicting ones for the corresponding levels.

TABLE 14.1: Conflict matrix (C1, C2, C3)

Processes Withdraw Deposit GetBalance
Withdraw (X, ×, ×) (X, ×, ×) (X, X, ×)
Deposit (X, ×, ×) (X, X, X) (X, X, ×)
GetBalance (X, X, ×) (X, X, ×) (X, X, X)

TABLE 14.2: C3 configuration variants

Processes Withdraw Deposit GetBalance
Withdraw × × ×
Deposit × X ×
GetBalance × × X

14.2. Model-Based Analysis 207

A conflict-free configuration can be found by removing (cf. Table 14.2 - crossed- 14.36
out processes) i) self-conflicting processes and then ii) processes involved in a
conflict until the set is conflict-free. Table 14.2 shows the removed self-conflicting
process Withdraw (case i)). The remaining processes Deposit and GetBalance are still
C3-conflicting. Hence, the inhibition of either the process Deposit or the process
GetBalance delivers a conflict-free application variant. �

Output of the analysis step: As shown in Table 14.1, the analysis step delivers a 14.37
conflict matrix that shows, at first, all potentially conflicting processes. From this
conflict matrix, a conflict-free configuration for a particular conflict level can be
derived (cf. Table 14.2), which will be part of the input for the simulation step.

Example (Online- and Offline-capable payment application). Figure 14.5 shows the 14.38
generated online- and offline-capable payment application that applies the results
of the analysis step at runtime.

(A) online (standard)
/offline (C1 conflict allowing)

(B) offline
(C2 conflict avoiding)

(C) offline
(C3 conflict prohibiting)

(D) offline (C3 conflict prohibiting)
alternative configuration

FIGURE 14.5: The generated online- and offline-capable payment application

The mobile application provides the available processes at runtime according to the 14.39
connection context and the selected conflict level. Choosing the conflict allowing
level C1, all processes can be offered (as in online mode). Conflict level C2, however,
requires to remove at least one conflicting process, here Withdraw. To reach conflict
level C3, even two processes have to be removed to prohibit conflicts, here Withdraw
and Deposit or Withdraw and GetBalance. We recommend the conflict-avoiding level
C2 for the payment application. It ensures that the balance is always funded because
money cannot be withdrawn without checking that sufficient funds are available. In
turn, mobile users can check the balance and deposit money while being offline. �

However, the conflict level is not only driven by the requirements of an application 14.40
(w.r.t. conflict-freeness), but it is also dependent on the number of actual conflicts
occurring in the system. Mobile application developers may be interested in under-
standing how the throughput improves if such conflicts were accepted. Hence, a
model-based simulator can support mobile application developers by estimating
the throughput for different conflict levels.

208 Chapter 14. System Contexts

14.3 Model-Based Simulation

As Tables 14.1 and 14.2 show, the conflict analysis delivers conflict-free subsets of14.41
processes by discarding conflicting processes (cf. Figure 14.5). The inhibition of con-
flicting processes is effective, but the question that may arise is: how many conflicts
will there be if potentially conflicting processes are not inhibited? For example, an
online-only architecture might be generally non-operable in an offline context, but
an online- and offline-capable mobile application might be too restrictive and hence
non-operable due to process-starvation.

The actual throughput of mobile applications depends on several factors such14.42
as the number of mobile users and data objects. Further factors are the activity,
connectivity, and behavior of mobile users. The structure of the data objects (e.g.,
loosely coupled or strongly related) also affects the throughput. We observed that
these runtime factors can considerably influence the number of actual conflicts both
positively and negatively. For example, an app model with high conflict potential,
i.e., many potentially conflicting processes, might be uncritical in the case that only
a few users are involved who even show low activity. In turn, an app model with
less conflict potential might become critical in the case that a lot of highly active
users act on a small set of shared data objects.

14.3.1 Dynamic Conflict Analysis by Simulation

To better support mobile application developers in evaluating the results of the static14.43
conflict analysis, the proposed design process contains a simulation step. Based
on the app model and different sets of processes, mobile application developers
can predict and compare the throughput of their mobile application, based on a
dynamic conflict analysis.

Input of the simulation step: A mobile application developer designs an app14.44
model equipped with access declarations (if needed). The simulation system addi-
tional requires a conflict-free configuration, determined by the prior analysis step
(cf. Table 14.2). Furthermore, values for all the independent simulation variables
have to be set. They are shown in Table 14.3.

TABLE 14.3: Independent simulation variables

Name Description Domain
#Users Number of mobile clients. 1 .. 10,000
Activity Average activity level of users. 0 .. 100
Connectivity Average connectivity level of users. 0 .. 100
App model DSML
#Objects Number of objects or aggregate size for

each class.
1..5,000 or custom instance

#Users denotes the number of simulated mobile clients. Activity denotes the average14.45
activity level of all users. A level of 50 means that, on average, half the users are
active in each iteration. Connectivity denotes the average connectivity of all users,
again in each iteration. By setting the number of objects (#Objects) of each class, the
simulation system constructs a corresponding instance of the data model used in
the simulation. Mobile application developers can also load an existing instance
of the data model in order to simulate on the basis of data taken from a running
system. This is indicated by the phrase “custom instance” in Table 14.3.

Output of the simulation step: In turn, the simulation system delivers the so-14.46
called dependent simulation variables as output, which is shown in Table 14.4. The
number of transactions processed by Client i is given by #Processed_Client_i. The

14.3. Model-Based Simulation 209

TABLE 14.4: Dependent simulation variables

Name Description
#Processed_Client_i Number of transactions processed by Client i.

Throughput
∑#Users

i=1 #Processed_Client_i

overall system throughput is the sum of these values. These dependent simulation
variables are determined for all conflict levels.

14.3.2 Running the Model-Based Simulation

Based on the app model and the input parameters, i.e., the independent variables, 14.47
the simulation system determines the throughput of the desired mobile applica-
tion. With the exception of the app model, not all input parameters must be set.
For example, in order to investigate how the throughput varies due to different
connectivity levels of the mobile clients, this parameter may be left uninitialized.
The simulation system selects values for the uninitialized parameters according to
their corresponding domain (cf. Table 14.3). By default, every run passes 10,000
simulation iterations to get stable results.

Example (Predicting the throughput of the online- and offline-capable payment 14.48
application). We apply the simulation system to the model of our simple payment
application shown in Figures 14.2 and 14.5. Figure 14.6 shows the results of the
simulation with 500 mobile clients and 100 accounts. The results are normalized
with respect to the maximum theoretical throughput. The Online graph represents
the throughput for the online-only architecture while using a traditional transaction
model and conflict definition (cf. Weikum und Vossen [WV02, Def. 2.2]). At the
best connection level (100%), the overall system reaches a throughput of 50%. The
throughput is not higher than that due to the occurrence of conflicts. It decreases
as the average connection level of the clients (users) declines. At the worst (0%
connectivity), there is no throughput (0%). The Offline (C1/C2/C2 MTM/C3) graphs
show the throughput at different conflict levels.

FIGURE 14.6: Throughput of the payment application (Configuration 1)

While even the most restrictive level C3 provides a higher throughput than the 14.49
online variant, the best variant is actually shown by graph C2 MTM which denotes
level C2 using mobile transaction models (cf. Section 9.4.2.4) in addition. This
variant is explained in the next section. The throughputs of the C1, C2, and C3
variants are almost equal for the simulated configuration.

210 Chapter 14. System Contexts

FIGURE 14.7: Throughput of the payment application (Configuration 2)

Another tested configuration, shown in Figure 14.7, demonstrates that a conflict-14.50
prohibiting conflict level (C3) drastically decreases the throughput in case that
conflicts occur only rarely. In this case, it is advisable to select the conflict-allowing
level C1. Besides, the use of a mobile transaction model will provide only marginal
improvements. �

14.3.3 Restricting Data Object Access

Considering the conflict-avoiding level C2, processes are discarded if they do14.51
not preserve the state conditions of other processes. Hence, online and offline
capability can heavily restrict the behavior of mobile applications. It is possible
to improve this situation by introducing mobile transaction models (MTM) that
allow potentially conflicting processes if they do not operate on the same data.
To this end, the collection of potentially concurrently accessed objects may be
split in such a way that the conflicting processes work on disjointed sets of data
(Keypool method [54] [56] [55]). Furthermore, object attributes containing single
numeric values (called aggregates) may be fragmented to preserve a global state
condition, e.g., not negative balances of a banking account (Escrow method [O’N86]
[LL09]). For example, an Integer value might be an aggregate that can be split into
fragments. Depending on whether mobile application developers declare objects as
summable objects (aggregates) or individual objects (collections), the corresponding
mobile transaction models are used in the simulation as well as in the generated
application. The simulation and generation automatically select an appropriate
mobile transaction model, i.e., the Escrow method is used if attributes are declared
as aggregates, while the Keypool method is used when collections are declared as
online- and offline-capable. Although the Keypool and the Escrow methods are
independent approaches, our simulation and generation approach supports the
combination of these methods in a single architecture. Similarly to the read and
write access introduced in Section 14.2.2, the data model can be equipped with
annotations that declare the previously mentioned restrictions of data accesses.
As a result, processes also become available for the conflict level C2. Although
mobile application users can utilize these additionally gained processes, they are
limited in terms of argument values or data objects. While the online-only variant
of a process can act on the whole set of a collection or an aggregate, the online-
and offline-capable variant of this process is limited to a subset of a collection or a
fragment of an aggregate.

Example (Application of mobile transaction models). Figure 14.8 shows a snippet14.52
of an annotated data model for our simple payment application. The annotation

14.4. Model-Driven Generation 211

<<ca>> (connectivity-aware) of the attribute balance indicates that this object may
be split and allocated to mobile clients. Thus, mobile clients may share Account
objects, particularly its attribute balance, but only in fragments. The parameter
#AllocObjects denotes the number of objects/fragments that should remain at the
server (i.e., not distributed among clients).

Account
balance=:=Int=<<ca>>
withdraw(Int)=:=Boolean
deposit(Int)
getBalance()=:=Int

Condition:Read

Action:Read

WAllocObjects=50

Action:Write
Action:Write

FIGURE 14.8: Access modes and restrictions of the class Account

In the generated online- and offline-capable payment application that uses mobile 14.53
transaction models, the process Withdraw is now also available at conflict level
C2. However, the process Withdraw is limited: assume that there are five mobile
clients sharing one account and the online value of balance is $300. According to the
#AllocObjects annotation, $50 remains at the server, while the remaining amount of
$250 is distributed among the clients applying the Escrow method. Hence, every
client can withdraw $50 while being offline. Graph C2 MTM in Figure 14.6 shows
the simulation results for using a mobile transaction model. Its throughput is above
those of all other variants; hence, this conflict level is optimal. �

14.3.4 Design and Implementation of the Simulation System

The purpose of the simulation system is to predict how many conflicts would 14.54
occur if the designed application was implemented. Thus, the simulation system
generates a set of mobile users, a functional implementation of the data model
and process model, and a conforming set of data objects. During a simulation
run, mobile users execute processes (transactions) generated by a customizable
transaction generator. The simulation system logs every transaction (even if they
fail) that is executed offline or online and finally provides a global history. This
history is analyzed and the throughput is computed. For an example, see Figures
14.6 and 14.7.

Finally, the Eclipse plugin pimar.simulation.modelbased implements the simulation 14.55
system. The simulation system reuses the model-based analysis form the plugin
project pimar.generator.frontend.android (cf. Table 14.5).

TABLE 14.5: Fifth set of plugins shaping the MDD infrastructure

Plugin project name Content Type
pimar.simulation.modelbased Simulation system manual
pimar.generator.frontend.android Model analysis manual

To conclude, the simulation system ca be used to decide if an online- and offline- 14.56
capable architecture is preferable to purely online- or offline-capable architectures.
Moreover, the simulation system shows which throughput could be achieved by ac-
cepting different conflict levels. Finally, the simulation system predicts the through-
put for using mobile transaction models.

14.4 Model-Driven Generation

While the first steps of the design process focus on the analysis of an application 14.57

212 Chapter 14. System Contexts

design based on its online and offline capability, the final step is applied to generate
a software prototype of the designed mobile application. However, the results of
the analysis and the simulation considerably affect the architecture of the prototype
that is generated. The framework used is, in its present form, able to generate native
online-only or offline-only applications, with a traditional rich-client or client-server
architecture respectively (cf. Figure 7.3). A client-server design should be favored
if the predicted throughput for such an online-only architecture is higher than for
the online- and offline-capable architecture. In turn, the existing code generator for
Android was extended – one of our contributions – to produce mobile applications
with an online- and offline-capable architecture (cf. Figure 9.5).

Input of the generation step: The generation step requires an app model. To gen-14.58
erate an online- and offline-capable mobile application, the app model must be
equipped with annotations that declare the data access (cf. Section 14.2.2) and,
optionally, restrict it (cf. Section 14.3.3). The simulation results are not directly
processed by the generator because it seems more appropriate to let the mobile ap-
plication developers decide the conflict level to be applied in the resulting prototype.
They can select between Online, C1, C2 (MTM), and C3.

Output of the generation step: The output of the generation step is a native mobile14.59
Android application that either has a simple client-server/rich-client architecture
or an online- and offline-capable architecture.

The model-driven generation completely conceals the architectural design from14.60
mobile applications developers. Mobile application developers control the resulting
architecture only implicitly by the modeled processes, the annotations they made
inside the app model, and the selected conflict level. For example, an app model that
comprises solely read-only operations results in a mobile application architecture
without components for transaction logging or synchronization because no data
objects will be changed or needed to be synchronized.

14.4.1 Introducing Online and Offline Capability

Given an app model as presented in Section 14.1.5, the code generator produces14.61
a connectivity-aware Android application with a generic extended client-server
architecture (see client GEC in Figure 9.5). Hence, the existing generator [Vau+18b]
was extended to generate applications containing a local TM and a local database.
The following functions were realized based on the working model of the TM (cf.
Figure 9.8):

Initial setup: Given the data model, the model-object mapping framework Teneo14.62
[71] and the object-relational mapping framework Hibernate [LM10] allow setting
up a relational data base scheme and to persist model instances to a server-located
database.

Online transaction processing: Since Hibernate is a certified Java Persistence API (JPA)14.63
Provider [KS13] [53], it includes transaction session management that can be reused
to handle the online transaction processing.

Replication: Data replication is realized by loading the model instances from the14.64
database (server), detaching them from the online session, and storing them locally
on the mobile devices.

Offline transaction processing: Offline transaction processing follows the selected14.65
conflict level. All transactions are logged for later synchronization and will be
executed on the server when the mobile devices are online again.

Synchronization and reintegration: Since we use a data model that contains the defini-14.66
tion of operations in terms of attached platform-specific program code, the mobile
applications can realize a transaction-based synchronization (cf. [Shi+12]). By log-
ging the object identifiers of accessed objects and performed operations (including

14.5. Evaluation 213

parameters) in the offline context, a transaction can be repeated on the server in the
online mode.

Finally, the Eclipse plugin pimar.generator.frontend.android is modified in order to gen- 14.67
erate online- and offline-capable mobile applications. However, mobile application
developers can also still use the generator without this functionality.

To sum up, model-driven generation allows the creation of online- and offline- 14.68
capable mobile applications. By understanding the concepts presented here, mobile
application developers can generate online- and offline-capable applications that
might serve as prototypes for further development.

14.5 Evaluation

In this section, we aim to answer the following question: is our design process for 14.69
online- and offline-capable mobile applications useful and applicable? To address
this research question, we investigate two sub-questions: given the app model of an
existing or planned app, does our design process help to evaluate it with respect to
online and offline capability? (RQ1) Can mobile application developers easily apply
our design process to create software prototypes with an online- and offline-capable
architecture? (RQ2)

14.5.1 Usefulness of the Design Process (RQ1)

As claimed previously, the design process helps mobile application developers 14.70
to evaluate any given app model regarding the online and offline capability of a
remodeled or planned mobile application. It should be considered that both static
and dynamic conflict analysis may reveal that some mobile applications may not be
suitable to operate online and offline. Thus, the design process could be considered
as useful if suitable and unsuitable app models can be identified.

TABLE 14.6: Key data of considered mobile applications

Application name Model elements Processes Classes LOC
Conference Guide 168 15 8 35137
Word Trainer 843 24 15 43076
Phone Book 142 9 3 16241
App Shop 161 9 9 19691
Air quality application 118 2 7 13348

We will discuss analysis and simulation results of selected app models. Table 14.6 14.71
shows the key data (i.e., the number of model elements and lines of code) of five
data-oriented mobile applications that are considered within this evaluation. Three
mobile applications have already been published, namely the phone book [45] (cf.
Section B.1), conference guide [44] (cf. Section B.2), and word trainer [43] (cf. Section
B.3). The app shop and the air quality application have been newly developed. All
these mobile applications have been modeled, analyzed, simulated, and generated.
These app models contain only standard tasks, except the AppShop model, which
includes custom operations. The app models, generated code and simulation results
are available at [46].

The static conflict analysis (cf. Table 14.7) determines the available processes 14.72
according to the required conflict level. Only the app shop has processes with
Condition:Read annotations in such a way that two more processes can become
active by using mobile transaction models (denoted in column C2 MTM). The other
mobile applications perform non-conditional read and write operations only.

214 Chapter 14. System Contexts

TABLE 14.7: Analysis results of considered mobile applications

Application name Available processes
C1 C2 C2 MTM C3

Conference Guide 15 15 - 7
Word Trainer 24 24 - 11
Phone Book 9 9 - 5
App Shop 9 7 9 2
Air quality application 2 2 - 2

TABLE 14.8: Simulation results of considered mobile applications

Application name
Average improvement of the throughput

(compared to online-only) #Users #Objects
C1 C2 C2 MTM C3

Conference Guide 49.27% 49.66% - 51.31% 500 390
Word Trainer 50.01% 50.79% - 4.15% 300 2601
Phone Book 51.49% 51.41% - 29.58% 40 40
App Shop 50.58% 34.19% 40.46% 1.12% 200 10609
Air quality
application 54.96% 54.96% - 54.96% 50 118

Table 14.8 shows the simulation results of the considered mobile applications. #Users14.73
and #Objects denote the number of simulated users and used objects, respectively.
Now, we want to know how the throughput may be improved (or worsened) by
using an online- and offline-capable architecture at a specific conflict level compared
to the online-only variant. These differences are considered for all levels of average
connectivity and then summed up. The average of this sum is shown in the columns
below Average improvement.

The considered mobile applications show an improvement of the throughput at the14.74
conflict level C1. The reason for this is that both the replication and transaction-
based synchronization generally provide a higher throughput compared to a tra-
ditional transaction model. Concerning the conference guide, the throughput can
be further improved by selecting the conflict level C3, because seven among 15
processes are conflict-prohibiting and conflicts will occur frequently (500 users act
on 390 objects). In turn, the app shop has a low improvement of about 1% at the
level C3. This improvement is so small, as only two processes are available at the
C3 level. The execution of all other processes is not successful. In contrast, the
throughput of the online-only variant is pretty high, since the ratio of users to
objects is about 53. However, the application of mobile transaction models for the
App Shop shows an improvement compared to the conflict avoiding level C2.

The simulation of the presented and other mobile applications leads us to the14.75
realization that the static analysis – the ratio of conflict-free and conflicting processes
– is a non-robust indicator of the expected throughput. Only a dynamic simulation
helps to determine whether a mobile application could be used advantageously in
an online and offline context and what the thresholds are in terms of the number of
users and objects.

14.5.2 Usability of the Design Process (RQ2)

The usability of the design process is evaluated using a real-world development14.76
project. This includes both an observation as to how a mobile application developer
applies the proposed model-driven design process as opposed to a traditional
development approach, and how powerful the software prototype will be in terms
of online- and offline capability. The goal of the demonstration is to show that the

14.5. Evaluation 215

proposed design process requires less effort (i.e., development time) to obtain better
results, i.e., mobile application with a higher transactional throughput.

14.5.2.1 Case Example 7 (Air Quality Application)

This case example presents the model-driven re-engineering of an air quality ap- 14.77
plication (cf. Figure 14.9) developed by the Technical University of Eindhoven (TU/e)
in Netherlands and the Istituto di Informatica e Telematica in Italy. The air quality
application provides real-time air pollution data for the cities Eindhoven, Breda,
and Helmond. The mobile application relies on the Aireas network1. The Aireas
network provides measurements of particulate matter emission, ozone, nitrogendioxide,
temperature, and humidity. This data is made available via a JSON-based (JavaScript
Object Notation) application programming interface (API) in real time. The Aireas
measurement infrastructure forms the back-end service of the air quality app. Mo-
bile application users can get real-time information (see Figure 14.9a) of the air
pollution in their surroundings. In addition, mobile application users can share
their comments, pictures, or videos on critical air quality values (see Figure 14.9b)
to provide additional information to the user community. Hence, WeSense is not
only an environmental information system but rather a social platform that helps to
create cities that are more attractive and healthier, appealing to individual responsi-
bility and collaboration (cf. Jean-Paul Close et al. [Ham+16]). WeSense could rather
be classified as information system (cf. Section 7.1.1) than a transaction system (cf.
Section 7.1.2), because the air pollution data is static, and the user comments can
always be added conflict-free. Concurrent modification of data does not occur in
this mobile application.

(A) Air pollution data (B) Comment function (C) Offline context

FIGURE 14.9: Air quality application WeSense

In its current version, the mobile application has some limitations. Due to the 14.78
external Aireas measurement infrastructure, the architectural design of the mobile
application requires that it stay permanently online to acquire the latest measure-
ment values. Although the measurement infrastructure provides only a 10-minute
interval as the shortest update period, the application cannot operate temporar-
ily offline during these periods and remains stuck if the network connection is
interrupted (cf. Figure 14.9c). Acquired and displayed data is not cached during
a session and will be lost after disposing of an activity. Besides, the mobile appli-
cation does not save the data permanently on the device. All data is lost every
time a user terminates the mobile application. Hence, at first, the re-engineered air
quality application should be online- and offline-capable and, by this, provide a

1 www.aireas.com/welcome-to-aireas/

216 Chapter 14. System Contexts

higher throughput of transactions. Second, the re-engineering of an already existing
application additionally provides the opportunity to compare concurrently used
development approaches, i.e. the model-driven development approach vs. the
traditional development approach.

Model-Driven Implementation

According to the modeling approach, the model-driven implementation requires14.79
an app model comprising a data-, process-, and GUI model. The app model of the
air quality application is similar to the app models shown before. The developed
app model requires no additional model elements to realize the online- and offline-
capable application features because all of the required architectural features will
be realized by the code generator. Hence, app models developed with the model-
driven development infrastructure might be used to create (i) only online, (ii)
only offline, and (iii) online- and offline-capable mobile applications. Solely the
configuration of the code generator or the configuration set at the first start-up of
the mobile application (cf. Section 7.3.3.1) defines the instantiation of the different
mobile application variants. The model-driven re-engineered version of the air
quality application provides the use cases show air pollution data on map and create
comment, which are comparable to their implementations in the original applications.

FIGURE 14.10: Data model of the air quality application (without class methods)

Data model: The data model was derived from the data format provided by the14.80
JSON-based application programming interface (API). The data model (see Figure
14.10) consists of the five main entities Measurement, MeasurementLocation, State,
Sensor, and Threshold. Each measurement is attached to a measurement location.
Measurements are ordered by date and contain the air quality values, characterized
by the attribute readings. They make use of several sensors to arrange the measured
values. Each sensor value is associated with a set of thresholds. If a threshold
value has been exceeded, a specific color code is set as the attribute color in the
entity MeasurementLocation. Each measurement location is associated with GPS
coordinates characterized by the attribute’s longitude and latitude and suitable
address data. The entity Comment is used for storing user comments containing the
GPS position data, a text value, and the path of an optional photo. User comments
are displayed along with the air pollution data on the map.

Process model: The obligatory Main process (cf. Figure 14.11a) refers to three14.81
processes namely ShowMap (cf. Figure 14.12), CreateComment (cf. Figure 14.13),
and ManagementProcesses (cf. Figure 14.11d). While the first two processes (i.e.,
ShowMap and CreateComment) are implementations of the given use cases, the third
process ManagementProcesses might be used only by administrators to manage the
application data. The process ManagementProcesses contains several CRUD processes
(cf. Figures 14.11b, 14.11c, 14.11e, 14.11f, 14.11g, and 14.11h), providing the creation,

14.5. Evaluation 217

modification, and deletion of objects (e.g., MeasurementLocation, Measurement, State,
Sensor, Threshold, and Comment). Additionally, the process Init (cf. Figure 14.14)
provides a hook mechanism to acquire data from an existing custom back end. Such
a process is only necessary if a custom back end should be used rather than the
automatically generated default back end.

Main

ProcessSelector

ProcessSelector : ProcessSelectorPage
ShowMap , CreateComment , ManagementProcesses

(A) Process Main

CRUDState

CRUDState

ALL
State

(B) State

CRUDComment

CRUDComment

ALL
Comment

(C) Comment
ManagementProcesses

ManagementProcessSelector

ProcessSelector : ProcessSelectorPage
CRUDState , CRUDThreshold , CRUDSensor , CRUDMeasurement , CRUDMeasurmentLocation , CRUDComment , Init

(D) Process ManagementProcesses
CRUDSensor

CRUDSensor

ALL
Sensor

(E) Sensor

CRUDMeasurmentLocation

CRUDMeasurementLocation

ALL
MeasurementLocation

(F) MeasurementLocation

CRUDThreshold

CRUDThreshold

ALL
Threshold

(G) Threshold

CRUDMeasurement

CRUDMeasurement

ALL
Measurement

(H) Measurement

FIGURE 14.11: Air quality application process structure and CRUD processes

The process ShowMap (cf. Figure 14.12) first gathers the current spatial position 14.82
of the device by invoking the sub-process GetPositionAndColor (not shown). The
second task of the process ShowMap uses the sub-process GetAllPositionsAndColors
(not shown) to retrieve the measurements of the measurement locations including
coloring to visualize the level of air pollution. Subsequently, the sub-process Ge-
tUserPositionCommentAndPath delivers all user comments including the geographic
position where they are created. The next three tasks are being used to join the
results of the prior steps in a comprehensive list of data. Finally, the task Show-
GoogleMap invokes a MapPage that renders the collected data within the previously
processed tasks.

218
C

hapter
14.

System
C

ontexts

ShowMap

Latitude Longitude Color LatAll LongAll ColorsAll TextAll UserColor1 UserLats1 UserLongs1 UserComments1 WeSenseMap JoinedLatLists JoinedLongLists JoinedTextLists JoinedColorList PathList

InvokeGetPosition

GetPosition
LatitudeG:GEDoubleObjectGRGLongitudeG:GEDoubleObject

InvokeGetAllPositionsAndColors

GetAllPositionsAndColors
LatAllG:GEDoubleObjectGRGLongAllG:GEDoubleObjectGRGColorsAllG:GEStringGRGTextAllG:GEString

InvokeGetUserPositionCommentAndPath

GetUserPositionCommentAndPath
UserColor1G:GEStringGRGUserLats1G:GEDoubleObjectGRGUserLongs1G:GEDoubleObjectGRGUserComments1G:GEStringGRGPathListG:GEString

CreateWeSenseMap

WeSense
WeSenseMapG:GWeSense

ShowGoogleMap

ACCESS_NETWORK_STATE

ACCESS_FINE_LOCATION

JoinedLatListsG:GEDoubleObjectGRGJoinedLongListsG:GEDoubleObjectGRGJoinedTextListsG:GEStringGRGJoinedColorListG:GEStringGRGPathListG:GEStringGRGLatitudeG:GEDoubleObjectGRGLongitudeG:GEDoubleObjectGRGColorG:GEString
Map

InvokeJoinLatLists

LatAllG:GEDoubleObjectGRGUserLats1G:GEDoubleObject
joinDoubleListsG:GEDoubleObject
WeSenseMapG:GWeSense
JoinedLatListsG:GEDoubleObject

InvokeJoinLongLists

LongAllG:GEDoubleObjectGRGUserLongs1G:GEDoubleObject
joinDoubleListsG:GEDoubleObject
WeSenseMapG:GWeSense
JoinedLongListsG:GEDoubleObject

InvokeJoinTextLists

TextAllG:GEStringGRGUserComments1G:GEString
joinStringListsG:GEString
WeSenseMapG:GWeSense
JoinedTextListsG:GEString

InvokeJoinColorLists

ColorsAllG:GEStringGRGUserColor1G:GEString
addStringListG:GEString
WeSenseMapG:GWeSense
JoinedColorListG:GEString

FIGURE 14.12: Process ShowMap

14.5. Evaluation 219

The process CreateComment (cf. Figure 14.13) provides the creation of a comment 14.83
including the current geographic position and a photo. The first task of the process
acquires the current spatial position of the device via the sub-process GetPosition.
The following task invokes a TakePicturePage, which takes a picture and returns the
picture path and file name under which the picture was saved. A new comment
is created. Then an EditPage for setting the user comment appears and the user is
allowed to enter the text of the comment. Finally, a task of the type InvokeOperation
joins the geographic position, the path information, and the comment text in a
comprehensible comment object, which will be stored on the mobile device.

CreateComment

File CommentLimited WeSenseComment LatPosition3 LongPosition3

InvokeTakePicturePage

TakePicturePage
FileO:OEString

CreateCommentPage

CommentLimitedO:OCommentLimited
CreateCommentPage
CommentLimitedO:OCommentLimited

CreateWeSenseComment

Comment
WeSenseCommentO:OComment

InvokeCreateComment

CommentO:OCommentO,OLatPosition3O:OEDoubleObjectO,OLongPosition3O:OEDoubleObjectO,OFileO:OEString
takeDataFromComment
WeSenseCommentO:OComment

InvokeGetPosition

GetPosition
LatPosition3O:OEDoubleObjectO,OLongPosition3O:OEDoubleObject

FIGURE 14.13: Process CreateComment

The process Init (cf. Figure 14.14) is used to initialize the data of the air quality 14.84
application. The first task invokes the method init of the data model, which, in
turn, uses an external library to access the back-end services. This external library
contains a handwritten JSON-to-EMF adapter. This adapter acquires and converts
the data from the back end to model instances used internally by the generated
mobile applications. Thus, the generated mobile application can deal with various
back-end systems, as well as a default EMF-based back-end infrastructure. The sub-
sequent tasks of the Init process show a notification after the successful replication
and conversion of data.

Init

WeSenseInit MessageOK

InvokeInit

init
WeSenseInit : WeSense

InvokeDisplayMessageOK

MessageOK : MessageOK
ViewMessageOK

CreateMessageOK

MessageOK
MessageOK : MessageOK

FIGURE 14.14: Process Init

GUI model: Finally, the GUI model (cf. Figure 14.15) defines the pages and styles 14.85
that are used inside the air quality app. The ProcessSelector will be used by the
processes Main (cf. Figure 14.11a) and ManagementProcesses (cf. Figure 14.11d).

220 Chapter 14. System Contexts

The Map is referred to by the process ShowMap (cf. Figure 14.12). The process
CreateComment (cf. Figure 14.13) uses the pages TakePicture and CreateComment.
Finally, the page ViewMessageOK displays the result of the process Init (cf. Figure
14.14).

PROCESSSELECTORPAGE

ProcessSelector

StyleSetting

Color2Black2m0w0w0K

Color2White2m255w255w2...

StyleListSettings

StyleMenuSettings

StylePageSettings

StyleSelectionSettings

Menu2Menu

MAPPAGE

Map

EDITPAGE

CreateComment

TAKEPICTUREPAGE

TakePicture

VIEWPAGE

ViewMessageOK

FIGURE 14.15: Pages and style of the air quality application (without attributes)

Back end interoperability and compatibility: As described earlier in this chapter,14.86
the model-driven development infrastructure aids in the generation of both a
front end (mobile application) and a compatible default back end (cf. Figure 1.4).
However, since the presented air quality application uses the Aireas platform
as an already existing back end, the re-engineered mobile application should be
compatible to this back end. Hence, the re-engineered air quality application
exploits the presented mechanism to inject custom code into the mobile application
developed in a model-driven way (cf. Section 7.3.5.2).

Gen. Ext. Client (GEC)

Application GUI

Application logic

Local transaction
manager (TM)

Replica manager

online

 Local
 DBMS

Synchronization/
Reintegration m.

Log

DB

offline

Client (C)

Application GUI

Application logic

Server (S)

Aireas API v2
(JSON)

JSON2EMF

EMF2JSON

Ext. Library

FIGURE 14.16: Generic extended client-server architecture with custom back end

This external library bridges the Aireas platform, which is using JSON, and the14.87
generated mobile application, which uses EMF. The external library creates and
updates the runtime instance of the data model with the data from the custom back
end. Figure 14.16 shows the architecture and the interaction of the re-engineered
air quality application. The re-engineered air quality application, represented
by the generic extended mobile client GEC (left-hand side), provides additional
architectural components to store data and synchronize transactions. The existing
air quality application (mobile client C right upper corner) might further operate
unaffected by the unmodified back-end system.

Online- and Offline-capable Air Quality Application

Based on the presented app model a code generator generates an online- and offline-14.88

14.5. Evaluation 221

capable mobile application. Figure 14.17a shows the main screen of the mobile
application (cf. its model in Figure 14.11a). The mobile application was initially
started in an online context, recognizable by the Wi-Fi-symbol (). The mobile
application automatically triggers the process Init every time the mobile application
starts. The local instance data model will be created during the first start-up, or else
it will be updated. An update can also be triggered manually by the menu item
Update data (cf. Figure 14.17b) that triggers the process Init (cf. its model in Figure
14.14). The process Update data is context-sensitive and will not be available in an
offline context (cf. Figure 14.17c).

(A) Main menu of the
air quality application

(B) Management
processes (online)

(C) Management
processes (offline)

FIGURE 14.17: Re-engineered air quality application (Part I/II)

Figures 14.18a, 14.18b, and 14.18c show the use case Post a comment (cf. its model in 14.89
Figure 14.13). Assuming the mobile application is now disconnected, Figure 14.18d
shows the use case show air pollution data on map. It does not matter if the connection
is interrupted while the application runs or the mobile application starts without
a network connection. Finally, Figures 14.18e and 14.18f show the selected CRUD
operations (cf. the model shown in Figures 14.11f and 14.11c respectively). Having
demonstrated that the re-engineered application can work both online and offline,
we will go on to show how this online- and offline-capable architecture affects the
overall throughput at different connection situations and how beneficial such an
architecture could be.

Comparing the Online-only and the Online-and-Offline Solution

When comparing the versions of the air quality application, we are interested in 14.90
the transactional throughput (number of successful transactions) that they can
achieve. The presented simulation system (cf. Section 14.3) was used to predict
the transactional throughput of an online-only architecture (as implemented by
the original air quality app) and an online- and offline-capable architecture (as
implemented by the re-engineered air quality application). The simulation considers
different stages of device connectivity.

Figure 14.19 shows the simulation results, i.e., the transactional throughput of the 14.91
application versions. The simulation considers 50 mobile application users, which
are fully active (100%). They operate on a set of 118 data objects. This simulation
data was taken from the already running back-end system.

The first plot (Online) shows the throughput of the online-only architecture. As 14.92
in almost all mobile applications that implement an online-only architecture, the
throughput increases when the connectivity increases. Mobile clients with low

222 Chapter 14. System Contexts

(A) Take a picture (B) Write a comment (C) Show a comment

(D) Show measurement val-
ues (offline)

(E) Edit measurement
location (offline)

(F) Delete a comment
(offline)

FIGURE 14.18: Re-engineered air quality application (Part II/II)

FIGURE 14.19: Transactional throughput of the application versions

bandwidth or connectivity cannot commit many transactions because they cannot
reach the primary copies located at the back end. A better connectivity usually
enables a higher throughput, but it may also lead to higher conflict rates. Hence,
an excellent connection of the mobile device does not necessarily lead to a 100%
success rate of the performed transactions.

The second plot (On/Offline (inconsistent)) shows the throughput of an online- and14.93

14.5. Evaluation 223

offline-capable architecture such as implemented by the re-engineered mobile ap-
plication. Due to the read-only character of the air quality application (except the
create comment use case) it is not necessary to synchronize the locally performed
transaction with the back end because shared data records will never be modified
by the mobile clients. Only comments must be reintegrated at the back end, but they
are typically just added, i.e., cannot be edited in a concurrent manner. Operating
with read-only transactions on a local copy of the data enables a success rate of
100%. Weakly connected or disconnected mobile clients can increase the throughput
considerably compared to the online-only architecture. However, one may argue
that the locally performed transaction might show outdated, i.e., inconsistent values
due to changes performed intermediately on the primary copies.

Hence the third plot (On-/Offline (consistent)) shows the simulation results while 14.94
considering strictly consistent return values. Locally performed transactions which
deliver inconsistent return values were not counted as performed successfully.
Consequently, a difference of 5% on average between the consistently and incon-
sistently performed transactions could be recognized. In the case that the mobile
application contains several modifying processes, the gap between consistently and
inconsistently performed transactions might be higher.

Comparing the Development Approaches

Furthermore, we compared the development effort using the proposed model- 14.95
driven development approach to the development effort when using a traditional
development approach. The re-engineered mobile application was developed by
a graduate assistant. The assistant had already gained knowledge by using the
model-driven development infrastructure before. He spent 128 hours on this project,
which included the review of the existing mobile air quality application, the back
end, including its application programming interface (8 hours), the construction of
the back-end adapter (cf. center of Figure 14.16) library (24 hours), the modeling
of the data-, process-, and GUI models (56 hours), the indoor and outdoor tests of
the mobile application (16 hours), and the corresponding documentation (8 hours).
Besides, the project needs some minor changes and extensions on the model-driven
development infrastructure (e.g., showing pictures on the map page), which needed
an effort of 16 hours. Compared with the effort of using a traditional development
approach by TU/e and the Istituto di Informatica e Telematica, our model-driven
development approach requires less development effort and provides more features
at the same time.2

14.5.3 Threats to Validity

An external threat to validity is our choice of case examples: the result of our studies 14.96
may not be generalized in the context of other cases. We attempted to mitigate this
threat by choosing at least three real-life applications from different application
domains – the conference guide, word trainer, and the air quality application
WeSense. Moreover, we have not considered large app models, but both simulation
and prototype generation scale well, as tested with artificially generated models
(e.g., up to 7500 processes). Since simulations and generation are performed at
development time, these activities are not too performance-critical.

Our focus is on improving the throughput of transactions. However, we have to 14.97
admit that replication of data may deteriorate it. In most cases, the standard replica-
tion is sufficient, for example, for mobile applications with read-only processes. For
other cases (e.g., location-aware data), a more efficient replication strategy should

2 Since the development times in the original project were not logged, we compare the times based
on the size of the codebase. The original online-only version of the mobile application is a result of
about 14.788 LOC. We assume that the creation of such a codebase needs much more time than 128
hours.

224 Chapter 14. System Contexts

be considered. Since the architecture of a generated prototype application is highly
modular, components may be exchanged by more suitable ones to overcome this
threat.

Finally, we have to admit that we have not evaluated the validity of simulation14.98
results in practice, except in our case study. We are convinced that they are valid due
to the following reasons: the simulation system executes exactly the generated code
during simulation since parts of the simulation system are generated from the app
model. Hence, the mobile application is likely to behave exactly in the same manner
as in the simulation. The used simulation data and parameters, however, may
deviate from the runtime environment. In that case, the throughput will deviate
from the predicted one. To deal with this threat, the deployed application can be
simulated again using real-world datasets and parameters. Besides, comparing the
simulation with generated data objects to the simulation with data objects taken
from existing applications has shown little deviation of the throughput.

Sargent’s [Sar14] guidelines for verifying and validating simulation models, which14.99
states that the real-world entity (e.g., generated mobile applications), the conceptual
model, and the implemented simulation system must be consistent in order to
get accurate simulation results. Our simulation system meets these requirements.
The only drawback is the data validity since the simulation data may deviate from
the data used in the runtime environment. However, Sargent also states that data
which is used only for experiments (e.g., simulation runs) and not for the simulation
model construction can be omitted during validation process of a simulation model.

225

Chapter 15

Related Work: Model-Driven
Development of Context-Aware
Mobile Applications

In the following sections, the approaches and software engineering toolsets for 15.1
context-aware software development are presented and compared with our model-
driven development approach and its context support facilities. Since we have
already discussed the work related to the model-driven development part of mobile
application engineering in Chapter 8, this chapter will focus on the work related to
context-aware mobile software systems.

Since there is a wide variety of work related to context-aware software development, 15.2
we cluster them into three groups, and, finally discuss only the last group in more
detail. The first cluster contains the middleware-based context-aware systems.
These are state of the art for the development of traditional context-aware systems.
The second cluster consists of several model-driven techniques and methods for the
development of context-aware systems that are proposed in the literature. Finally,
in the last cluster, the available frameworks for the model-driven development of
context-aware systems are presented and discussed.

15.1 Middleware-Based Context-Aware Systems

Early context-aware mobile applications realized a direct sensor access, mostly to 15.3
physical sensors, but not limited to those ([IS03, Sec. 2]). Consequently, the process-
ing of sensor data, context recognition, and context processing was implemented
inside a single mobile application. However, mobile applications with such archi-
tecture are very specific to a software platform or a device. Hence, they could not
be easily installed on other devices or platforms. Besides, recurring functionality,
which deals with context processing, could not be reused in other context-aware
mobile applications. Thus, the first architectural improvement was the introduction
of a middleware. As shown in Figure 15.1, the abstract layered architecture [Ail+02]
[Dey+01] for context-aware applications uses a sensor layer to access physical or
virtual sensors. This layer is device- as well as platform-specific. The raw data
retrieval layer acquires sensor data. The acquired data can be very complex (e.g., a
series of records) and extensive. The next layer, i.e., the preprocessing/reasoning layer,
is responsible for reasoning and interpreting raw data. This layer might aggregate
or join data from different sensors to recognize more complex contexts. The fourth
layer – storage and management – saves the recognized contexts (sensor fusion), pro-
vides querying functionality, and sends the events to the subscribing application(s).
This layer acts as a public programming interface that can be accessed by top-level
applications with a programming toolkit. An essential component of the storage and
management layer is the context model. This is needed to define and store context
data. Different competing approaches, such as ontology and graphical models,

226 Chapter 15. Related Work: MDD of Context-Aware Mobile Applications

are discussed [SLP04] [Bet+10] as the methodology for context modeling. We will
see later that the elements of the context model can be mapped to the elements of
an app model to specify the context-aware functionality. A distributed variant of
such a middleware framework is broker architecture [Che04], which is also called a
context server. Broker architecture is a centralized service that gathers sensor infor-
mation from several mobile devices, allows performance-intensive data analysis,
and provides remote sensors. Hence, contexts that occur through the interaction of
different mobile devices and mobile users could be detected with such architecture.

Mobile
Application ...

Storage/
Manage-

ment
Context
model

Preprocessing/
Reasoning

Raw data
retrieval

Sensor access

A
ct

in
g

Su
bs

ys
te

m
Th

in
ki

ng
Su

bs
ys

te
m

Se
ns

in
g

Su
bs

ys
te

m

Notify User/
Execute Service

Service
Discovery

(Nearby services)

Users Latitude
and Longitude

GPS
measurements

GPS Sensor access Physical

Raw data

Semantic

Inference

Application

LayerExampleComponents of a
context-aware system

FIGURE 15.1: The abstract layered architecture for context-aware applications

Some of the most popular context-aware frameworks that follow the layered ar-15.4
chitecture before mentioned are the Context Managing Framework [Kor+03], the
Service-Oriented Context Aware Middleware – SOCAM [Gu+04], the Context-Awareness
Sub-Structure – CASS [FC04], the Context Broker Architecture – CoBrA [Che+03], the
Context Toolkit [Sal+99] [DA00] [Dey01], the Hydrogen Approach [Hof+03], the COR-
TEX system which base on the Sentient Object Model [BC04], and the Gaia project
[Rom+02] [74]. Hong et al. [Hon+09] give a more comprehensive overview of
context-aware frameworks and applications.

A drawback of the middleware approach is that the applications layer is out of the15.5
methodological focus. More precisely, it is up to the mobile application developers
to specify the actions that a mobile application shall perform if the middleware
detects a particular context. For example, the detection of an offline context might
be very simple, but the adequate adaptation of the mobile application needs a
lot of changes at the application layer. Another drawback is that the middleware
approach focuses merely on runtime contexts. Many contexts, such as the platform
or the device type, are known at the design time. Hence, contexts are also relevant
at design time, which is often out of focus of the mentioned frameworks.

The middleware-based architecture is useful if a complex context can be recognized15.6
at runtime, and only minor runtime adaptations of the application layer are required.

15.2. MDD Techniques for Context-Aware System Design 227

Hence, the focus of the middleware-based approaches is on context recognition
rather than on context processing, which is a part of the acting subsystem. Since the
work presented in the previous chapters focuses on the acting subsystem, i.e., the
mobile application, we will move to the techniques and methods for context-aware
system design which are more focused on the application layer.

15.2 MDD Techniques for Context-Aware System Design

In the following section, the existing model-driven development techniques for 15.7
the design to context-aware systems are presented. These approaches are mostly
general and independent to a specific domain. Moreover, these methods are often
not implemented or tool-supported because they have a conceptual character. We
will position our approach after each of the presented approaches:

Vale and Hammoudi [VH08] proposed a model-driven development method that 15.8
exploits parameterized model transformations. The parameterization of model
transformation rules promotes the reusability, adaptability, and interoperability of
model artifacts within a context-aware application development process. At first, a
mobile application modeler must annotate a platform independent model (PIM)
with markers that declare which types are context-dependent. A parameterized
transformation rule gets an annotated PIM and context arguments. The transfor-
mation rule binds the given context arguments to the annotated PIM, particularly
the marked variability point. The authors called this step contextualization. The
output of the parameterized transformation is a Context PIM (CPIM). Depending
on the number of the provided context arguments, several CPIMs can be created.
Subsequently, the CPIMs will be translated to platform specific models (PSMs1).
The approach provides context-awareness at the design time. The contextualization
and the subsequent generation of an application code provide a set of applications
that are tailored to different contexts. The specification of a context-aware applica-
tion happens at a very low level since only the types of modeling elements can be
contextualized.

Our approach is very similar to the parameterized model transformation approach 15.9
but has a larger scope in terms of the affected modeling levels (e.g., PIM, PSM, and
Code). As shown in Figure 15.2 (left-hand side), the approach proposed by Vale
and Hammoudi focuses mainly on endogenous model transformation at the level
of the PIM. In turn, our approach provides contextualization both by an endogenous
model to model transformation (cf. Section 13.1) and by an exogenous model to
code transformation (cf. Section 12.1), as well as through runtime-contextualization.
Hence, our approach provides contextualization at every stage of development, even
at runtime.

Ayed et al. [Aye+07b] (cf. also [Aye+07a]) presented a model-driven development 15.10
approach for context-aware applications. Mobile application developers specify
several models (context model, context collection model, application variability
model, and application adaptation model) based on the UML and the UML pro-
files. The final step of their approach requires the definition of the target platform
and model-to-model transformations, which are used to translate these models
to program code of the desired platform. In contrast to the approach of Vale and
Hammoudi, the approach of Ayed et al. focuses on runtime adaptations of applica-
tions instead of design time adaptation. The specification of application variability
supports structural, architectural, and behavioral adaptation. This variability is

1 The authors named a transformed CPIM a CPSM instead of a PSM, but their approach provides no
contextual arguments while transforming the CPIM to a PSM.

228 Chapter 15. Related Work: MDD of Context-Aware Mobile Applications

M2M
Context

Information

M2M

M2C

PIM

CPIM

PSM

Code

Running
application

M2M
Context

Information

M2M

M2C
Context

Information

Context
Information

PIM

CPIM

PSM

Code

Running
application

Vale and Hammoudi Our approach

FIGURE 15.2: Comparison of the approaches

supported by overriding functionality through the inheritance of objects, the op-
tional instantiation of classes (class diagrams), and the context-sensitive execution
of functionality modeled in sequence diagrams.

Similar to the approach of Ayed et al., our approach supports runtime adaptability.15.11
However, our approach is limited in terms of the supported contextual dimensions.
The approach of Ayed et al. requires mobile application developers to specify both
the context collection and the context adaptation for potentially any contextual
dimension, as well as the model-to-model transformation required for the imple-
mentation of this contextual awareness. In contrast, our approach provides an
implicit context-collection and context adaptation mechanism for the mentioned
contextual dimensions. Additionally, our approach considers contexts that are
known at design time.

Ou et al. [Ou+06] (cf. also Georgalas et al. [Geo+07]) proposed a model-driven15.12
integration architecture for ontology-based context modeling and context-aware
application (CAA) development. They proposed to extend the development pro-
cess of the OMG’s Model-Driven Architecture by a Context Ontology Model (COM).
The authors named the resulting architecture Model-Driven Integration Architecture
(MDIA). This architecture contains a Process metamodel, a Component metamodel, a
GUI metamodel, and a Data metamodel for application specification. The Context
Ontology Model defines context ontology data in the architecture. The essential
Integration metamodel defines the way all these models associate and integrate. More
metamodels – for example, J2MEMetaModel, CSharpMetaModel, and XMLMetaModel
– are used to generate technology-specific context-aware applications. Model trans-
formations provide the transformation of multiple technology-neutral metamodels
into a single technology-specific metamodel. Similar to the approach of Ayed et al.,
runtime adaptation of mobile applications is in the focus of this approach.

Similar to our approach, Ou et al. provides several metamodels for the specification15.13
of a mobile application. Additionally, some contexts, such as the platform context,

15.3. MDD Frameworks for Context-Aware System Creation 229

are implicitly processed at the design time by applying the corresponding platform-
specific transformation rules. The reuse of the existing context ontologies by context
ontology models is beyond our approach, since we deal only with a limited set of
contexts. The approach of Ou et al. requires the specification of integrated model
transformations, which transform platform-independent modeling elements to the
modeling elements of platform-specific models (e.g., J2MEMetaModel). This does
not seem to be very practical and is rather untypical. Compared to our model-
to-code transformation (e.g., template-based generation), a direct model-to-model
transformation is very complex in terms of required transformation rules and rule
maintenance.

Finally, we also want to refer to further model-driven development techniques for 15.14
context-aware system design, those offered by Almeida et al [Alm+06], Sindico and
Grassi [SG09], Tesoriero et al. [Tes+10], Guo and Heckel [GH04], and Jaouadi et al.
[Jao+16].

15.3 MDD Frameworks for Context-Aware System Creation

Since the previously mentioned approaches are more focused on the conceptual 15.15
design and the techniques to create context-aware systems and applications, this
cluster focuses on the frameworks that can be used practically to create context-
aware systems. Before the examination of the existing frameworks and tool sets
for the model-driven development of context-aware systems, we present some
evaluation criteria to classify the existing approaches, as well as our own approach.

Domain: While most of the conceptual approaches named in the previous section 15.16
are designed for general-purpose usage in different domains, the more practical
frameworks are often tailored to a specific domain. The presumption of a domain al-
lows putting more abstraction in the model-driven development infrastructure, i.e.,
mobile application developers do not have to model the technical functionality of
context-awareness in detail. Instead, they model context-awareness with high-level
modeling elements. Hence, the targeted domain is a relevant piece of information
for the mobile application developers to find and select an appropriate framework.

Implicit/Explicit definition of contextual dimensions and adaptation mechanisms: The 15.17
existing frameworks for context-aware system development can either provide an
implicit or an explicit definition of contextual dimension and adaptation mecha-
nism. An implicit definition has the advantage that mobile application developers
do not have to specify the context and the context adaptation. Instead they use
a prepared modeling element. A disadvantage is that the number of these well-
supported contexts is limited. Furthermore, facilities for easily adapting the mobile
application may not exist or only work superficially. However, frameworks that
support an explicit definition of context and application context adaptation provide
more flexibility. In order to provide this flexibility, however, they need more elabo-
rate specification of context-aware behavior by the mobile application developers.
If a framework provides an implicit context definition and application context
adaptation, the following two criteria are relevant:

Supported Contextual Dimensions: The different model-driven development ap- 15.18
proaches for developing context-aware mobile applications can be classified accord-
ing to the supported contextual dimensions such as platform, device, user, and system
context (cf. Figure 1.2). Moreover, these contextual dimensions might be evaluated
at design time or runtime.

Adapted concerns: Assuming that mobile applications have separate concerns, such 15.19
as data, behavior, and GUI, we evaluate which of these concerns are adaptable at
runtime by the different frameworks.

The following model-driven development frameworks with context support are 15.20

230 Chapter 15. Related Work: MDD of Context-Aware Mobile Applications

the most relevant to our work. We have already considered these frameworks in
Chapter 8 (cf. Table 8.1) during the discussion of the related work to model-driven
development infrastructures for mobile applications. Now, we reconsider some
frameworks that are additionally able to deal with contexts:

Serral et al. [Ser+10] [Muñ+06] presented a model-driven development method for15.21
developing context-aware systems. The authors demonstrated their development
method and a resulting context-aware mobile application in a home automation
scenario. The development method exploits a domain-specific modeling language
named Pervasive Modeling Language (PervML). PervML contains sub-models to
address different concerns. These are the Service model, the Structural model, the
Interaction model, the User model, the Functional model, the Component structure model,
and the Bind providers model. The last three are maintained by developers who
are called Architects. The other models are created by developers who are called
Analysts. The Analysts’ models are used for a complete generation of a mobile
application. The Analysts are not obliged to implement the program code manually.
On the contrary, the Architects’ models are used only for the partial generation of
stubs. Architects manually complete the hardware-related part of a context-aware
application. The approach of Serral et al. contains the creation of an OWL (Web
Ontology Language) specification and program code that maintains a context model
at runtime. The framework supports the evaluation of platform, user, and location
contexts. The change of a context causes a corresponding event, which will invoke
several services as a reaction to an event. This event-driven behavior is specified
in the interaction model. The framework provides a context-specific behavior. The
other concerns (e.g., GUI and Data) are not affected by the context-awareness.

The approach of Serral et al. shows many similarities to our model-driven devel-15.22
opment infrastructure. Both approaches use a domain-specific modeling language
to model data and behavior. The facilities for the modeling of a graphical user
interface are not well provided by the approach of Serral et al. On the other hand,
the management of a runtime context model is not provided in our model-driven
development infrastructure, since we deal only with simple contexts. Moreover,
our model-driven development infrastructure provides no facilities to introduce
new context definitions and definitions of context adaptations.

Ceri et al. [Cer+07] presented a model-driven development method for developing15.23
context-aware web applications. Thus, the proposed solution is highly tailored
to the domain of web applications. The development framework is based on a
domain-specific visual modeling language named Web Modeling Language (WebML)
(cf. [Cer+03], [Cer+02], and [Cer+00]). WebML provides a model-driven spec-
ification and the generation of web-based and data-driven mobile applications.
A WebML model primarily describes the organization and presentation of data
content in one or more hypertext views. Similar to other approaches, Ceri et al.
provided different sub-schemas or sub-models. To handle contextual information,
an extended, context-aware version of WebML contains a user profile sub-schema, a
personalization sub-schema, and a context model sub-schema. These schemes contain
meta-information, such as the used device, the current user location, and the user
role and group. At runtime, context-aware hypertext pages filter the data records
based on this modeled meta-information in different context-related criteria. The
approach evaluates user and location contexts at runtime and adapts the data to
these contexts. The behavior or the graphical user interface is not adapted by the
appearance of different contexts.

The approach of Ceri et al. is different in many ways from our model-driven devel-15.24
opment infrastructure. While Ceri et al. focused on the generation of mobile web
applications, our approach focuses on the generation of native mobile applications.
Thus, we have to additionally deal with platform contexts at design time. Moreover,
web applications are usually not offline-capable. Therefore, some system contexts
are not relevant for mobile web applications because they cannot support these due
to architectural limitations. The location-aware filtering of application data seems to

15.3. MDD Frameworks for Context-Aware System Creation 231

be state of the art for mobile applications, as Baldauf et al. argued [Bal+07, Sec. 3.1].
The fixed and limited modeling of contextual dimensions is a similarity between
the framework of Ceri et al. and ours. None of the frameworks provide any facility
to introduce new context definitions and definitions of context adaptations.

Escolar et al. [Esc+14] proposed a model-based approach to generate online- and 15.25
offline-capable mobile applications. The framework focuses on the domain of web
applications. It is based on the open-source project MyMobileWeb (MMW) [30].
MMW’s modeling facilities comprise a data model that captures the application
data as well as the contextual data, an IDEAL2 [AI10, pp. 166] model for the
user-interface specification, and a State Chart XML model (SCXML) [75] to specify
the navigation through the mobile application. The authors extended the SCXML
model of the existing MMW framework to provide additional online- and offline-
capable behavior of the generated mobile applications. For example, the added
attributes denote where the data elements should be located (client-server) and
how the data should be synchronized. Mobile applications that are generated
based on this extended models can evaluate device and connection contexts at
runtime and adapt the behavior (navigation) and the graphical user interface to
these contexts. However, the mobile application developers cannot define custom
contexts or application adaptation.

Comparing our model-driven development infrastructure with the framework of 15.26
Escolar et al., we recognize a lot of commonalities. The evaluated contexts and the
adapted concerns of the generated mobile applications overlap, i.e., both support
the evaluation of the system and the device context and can adapt the behavior
(navigation) and the graphical user interface of the mobile application. Concerning
the online and offline capability, both solutions show a lot of similarities, i.e., both
realize architectural components like replication and synchronization. The solution
of Escolar et al. provides a detailed configuration on how data entities should be
managed. However, it provides no model analysis and cannot deal with conflicting
processes, which appear in multi-user transaction systems. The solution of Escolar
et al. could be used if a mobile application needs neither complex hardware access
to the device’s sensors nor contains conflicting multi-user access to data objects.

Finally, Kapitsaki et al. [Kap+09] (cf. also [Kap+08]) presented a model-driven 15.27
development method for developing context-aware web applications based on
context-aware web services. This approach also focuses on the domain of mobile
web applications. The modeling language used is UML, which is extended with
profiles. A web services profile describes the used web services of a mobile application.
A context profile provides the specification of contexts. Finally, a presentation profile is
used to model the graphical user interface presentation, its flow, and the navigation
properties. The web application runs on an application server, i.e., the architecture is
client-server-based. We find particularly interesting that the proposed architecture
provides the concept of a context server (cf. Section 15.1). Both context sensing and
business services are provided through web services. Thus, this server also provides
context information that may come from the requesting client or from any other
remote source. For example, a context sensor could be a web service providing
weather data. The provided demonstration scenario shows a ticket-booking system
for a cinema. The evaluated contexts are the location and the user context. The
mobile application adapts the data shown according to these contexts.

The approach of Kapitsaki et al. shows the least amount of similarity with our 15.28
model-driven development infrastructure. The contradictory nature of both ap-
proaches reveals that the context server based mobile applications cannot be online-
and offline-capable since they heavily rely on services. On the other hand, our
model-driven development infrastructure can hardly implement a context-server
architecture while being online- and offline-capable at the same time. Once more,
the proper selection of an appropriate architecture becomes important when starting
a mobile application development project.

232 Chapter 15. Related Work: MDD of Context-Aware Mobile Applications

TABLE 15.1: Model-driven development approaches for context-aware mobile applications

Name Domain
(Example1)

Implicit
definition
of context

and context
adaptation

Evaluated
contextual

dimensions
...

Automatic con-
text adaptation

Adapted
concerns

... at
design
time

... at
runtime

Serral
et al.

Native
application

(Home
automation)

×
Platform X × Behavior

Location × X

User × X

Ceri
et al.

Data-driven
web

applications

X
Location × X Data

User × X

Escolar
et al.

Data-driven
web

applications

X
System × X Behavior

GUIDevice × X

Kapitsaki
et al.

Data-driven
web applica-

tions (Cinema
ticket system)

× Location × X Data

User × X

Our
Frame-
work

Data-driven
native

applications X

Platform X × Behavior
GUI
Data

User X X
Device X X
System X X

Table 15.1 shows the model-driven development approaches and the software15.29
engineering toolsets for context-aware software development and the classification
of their main characteristics. A X-symbol indicates that the corresponding feature
is supported, whereas an ×-symbol indicates that it is not supported.

To sum up, as shown in Table 15.1, most of the model-driven development ap-15.30
proaches for context-aware software development do not consider the contextual
dimension of system contexts, particularly the connectivity context. Only one of
the evaluated frameworks provides the generation of online- and offline-capable
mobile applications. Although nearly half the frameworks provide custom con-
text definitions and custom definitions of application adaptation, the relevance of
these mechanisms for further potential contextual dimensions is difficult to deter-
mine. Moreover, the frameworks without a customizable definition and adaptation
mechanism often implement the adaptation of only the data layer, instead of the
application behavior or the graphical user interface.

Our framework for the model-driven development of mobile application supports15.31
most of the identified features. A major feature that is intentionally not supported
by our solution is the custom definition of contexts and application adaptation.

1 If any given.

233

Chapter 16

Summary and Outlook

This concluding chapter summarizes the main contributions of this thesis. In 16.1
the outlook section, we point to limitations of the framework for model-driven
development of mobile applications with context support and discuss how further
work could remove these limitations. Moreover, we show how the presented work
can be extended. We also outline possible directions for future research.

16.1 Summary

As shown in the introduction to this thesis, the software engineering of mobile 16.2
application poses many challenges for mobile application developers, making it
difficult to complete a development project successfully. Competing technical ap-
proaches (web-based, native, hybrid), different architectures (client-server, rich
client, (generic) extended client-server), heterogeneity of software platforms and
devices, and different types of mobile applications (standalone application, infor-
mation system, multi-user transaction system) are only a few decision points where
mobile application developers have to make the appropriate choices. Software engi-
neering for mobile applications lacks a one-fits-all solution. Moreover, some types
of mobile applications, such as multi-user transaction systems, are not covered
by the existing approaches. Model-driven development seems to be a promising
approach to tackle these problems. Models are an ideal abstraction from technical
concerns. They allow mobile application developers to focus on certain aspects
of mobile applications, such as data, behavior, or graphical user interface mod-
eling. Subsequently, code generators can transform an app model into a partial
or complete implementation on multiple platforms. Moreover, the model-driven
development infrastructure can provide model analysis and simulation techniques
to further support mobile application developers.

This thesis introduced a framework for the model-driven development of mobile 16.3
applications that is beyond many features of the existing model-driven develop-
ment infrastructures in terms of modeling aspects, modeling techniques, application
implementation approaches, and the supported application architectures (cf. Table
8.1). Moreover, the proposed model-driven development infrastructure provides
the processing of different contextual dimensions and the contextual adaptation of the
generated mobile application at design and runtime (cf. Table 15.1). Key elements
of the framework are a two-level modeling approach that provides design time
models and runtime models, and a generic extended client-server architecture of
the generated mobile applications.

The elementary contribution (Part I) of a model-driven development infrastruc- 16.4
ture was developed rigorously and following an agile bottom-up development
process. The domain-specific modeling language and the corresponding editors
provided an adequate toolset for the specification of mobile applications. The
domain-specific modeling language and the model editors were validated with
respect to the guidelines for domain-specific modeling languages and the guidelines

234 Chapter 16. Summary and Outlook

for user interface description languages. Moreover, a user experience evaluation
showed the applicability of the model-driven development infrastructure.

The supplementary contribution (Part II) of context support demonstrates that the16.5
app models can be reused and extended easily to support static contexts, such
as user contexts or device contexts. The two-leveled modeling approach also
provides runtime adaptation of an already-deployed mobile application. Mobile
applications can be adapted to dynamic contexts at runtime. The generic extended
client-server architecture shows serious advantages creating online- and offline-
capable mobile applications. In particular, online- and offline-capable multi-user
transaction systems, which are beyond the capability of state-of-the-art systems,
can be created. Based on the high abstraction level due to the application of model-
driven development techniques, mobile application developers need fewer technical
skills to realize context-aware mobile application with an appropriate architecture.

In addition to the tangible contributions listed in Section 1.5, we applied different16.6
methods for artifact evaluation and validation to follow a rigorous research method-
ology. Most of the designs are developed in a constructive way, such that we use a
persuasive validation (cf. Shaw’s research taxonomy [Sha01]). We use the defined
functional and non-functional requirements as well as the feature model, to show
that our contributions fulfill these requirements, i.e., features. The requirements and
the domain analysis are based on a collaboration with experts from industry. Thus,
we consider the set of requirements and the domain analysis to be credible and
realistic. The domain-specific modeling language was validated by an evaluation
taking existing guidelines for the design of domain-specific modeling languages
into account. Different case examples (Case example 1-3) demonstrate that the
generated mobile applications cover both the requirements and the desired features.
A user experience evaluation shows the applicability and usability of the developed
toolset. Moreover, technical evaluation of the contributions shows that model-
driven development infrastructure scales well and works correctly i.e., generates
correct program code of high quality. Further case examples (Case example 4-7)
demonstrate that the context support that is enabled by our approach can be used
in practice.

In this thesis, we emphasized that model-driven development of mobile appli-16.7
cations is a promising approach to tackle the challenges of mobile application
development, in particular, the realization of context-aware mobile applications.
As a crucial part of the development process, app models can be transformed
and adapted to support many potentially contextual dimensions. Moreover, the
co-existence of design time and runtime models within a two-leveled modeling
approach can be useful in dealing with static and dynamic contexts. A two-leveled
modeling approach such as this is beyond the state of the art. Therefore, we con-
sider this as a new concept in the area of model-driven development and we are
convinced that this concept might be useful in model-driven development for other
domains as well (e.g., embedded systems).

16.2 Outlook

The model-driven development infrastructure focuses on the generation of native16.8
applications, which are data-oriented, i.e., used merely in business environments.
The domain-specific modeling language and the code generators are tailored to this
application domain. Hence, neither complex algorithms nor sophisticated graphical
user interfaces can be specified by the provided domain-specific modeling language.

Further work could provide additional modeling elements or even additional sub-16.9
models to specify further concerns of mobile applications which are related to other
domains (e.g., gaming, social and medical applications).

The model-driven development infrastructure intentionally provides a high abstrac-16.10

16.2. Outlook 235

tion level. Mobile application developers can not directly change the generated
architecture of the mobile applications. The model-driven development infras-
tructure produces mobile applications that can be run directly. Mobile application
developers do not have to complete the generated implementation manually (e.g.,
filling program code stubs). In turn, the model-driven development infrastructure is
not designed for manual code completion or modification (e.g., providing protected
regions). Like most model-driven development frameworks and environments, the
manual extensibility of the generated code is limited.

In order to specify the architecture of the generated mobile application explicitly, 16.11
architectural sub-models could be introduced. Domain experts may use the existing
modeling facilities (e.g., data, behavior and GUI model) while technical experts may
complete the app model with technically-oriented models, such as an architectural
sub-model. Mobile application developers might use an architectural sub-model to
more explicitly specify the design of the generated mobile apps. Currently, code
generators make a lot of design decisions (e.g., full replication of data records for
offline transaction processing), which can often be optimized (e.g., partial replica-
tion of declared data records). Moreover, an architectural sub-model allows the
specification of interfaces to other services or mobile applications.

Supporting the manual completion of program code will remain a major problem 16.12
since only a round-trip engineering approach will provide a co-evolution of model
and code artifacts.

A further limitation lies in the fixed number of supported contextual dimensions. 16.13
Although the author is convinced that the design of the model-driven development
infrastructure, as well as its iterative bottom-up development approach, is beneficial
for adding further contextual dimensions, the custom definition of the context and
context adaptation mechanisms were not part of this thesis. Moreover, except
of the connectivity context, the generated mobile application will not trigger the
adaptation automatically (e.g., self-adaptive systems [Lem+13]).

Thus, to be able to model and generate context-aware mobile applications for 16.14
arbitrary contexts, the context sensing and reasoning sub-system (cf. Figure 15.1)
must be developed in more detail. For example, the generated mobile applications
currently provide neither an internal context model which stores appearing and
disappearing contexts over time, nor do they provide reasoning about such data.

In opposite to the future work that is motivated by theses limitations, we consider 16.15
other obvious tasks as future work:

Even if we focus on a graphical model editor with a graphical concrete syntax, a 16.16
textual concrete syntax is also conceivable and has some advantages. The advantage
of a textual concrete syntax is that the platform-specific parts (e.g., program code)
could be embedded in the domain-specific textual concrete syntax. Many technical
experts like the modeling approach, but dislike modeling with a graphical model
editor. Writing the model in a domain-specific textual concrete syntax is more akin
to programming, and many benefits are provided by state-of-the-art language tool
kits (e.g., auto-completion and quick-fixes).

Since we argued earlier that a model-driven development approach covers the 16.17
cross-platform approach, we can demonstrate this by creating a cross-platform code
generator (e.g., generating Cordova applications, web application). Moreover, other
native platforms (e.g., Windows Phone) could be also supported by a corresponding
code generator.

Considering a setting more focused on industrial applications, future work encom- 16.18
pass a comprehensive model-driven development environment which combines

236 Chapter 16. Summary and Outlook

model-driven development, model quality assurance, and model versioning. More-
over, since we generate a complete mobile application from the entire app model
within each of the iterations, a partial generation might be more beneficial.

Finally, as any other framework that was designed for software developers, we16.19
could conduct further evaluations such as developers studies or more qualified case
studies to compare the model-driven development approach with the traditional
development approach.

The following research directions are related to model-driven development, mo-
bile applications, and context-awareness but not directly focused on the designed
framework:

Empirical Evaluation of Design Variants: Mostly, any model-driven development16.20
infrastructure offers the opportunity to modify the app models rapidly without
considerable effort. As a result, many different variants of a system could be
created by the code-generation facilities. These design variants are well-suited for
further investigation concerning different criteria. For example, any two variants
of a mobile application could be compared by the existing techniques and tools
according to the usability, energy consumption, or security. The gained insight could
be used to select the most effective app model or to optimize the code generators.

Model-Driven Testing of Mobile Applications: Our domain-specific modeling language16.21
for describing mobile applications is usually used as the design specification of
mobile applications that should be generated. In contrast, the domain-specific
modeling language, i.e., the app models, can also be used as implementation models
to describe the existing mobile applications that are not necessarily developed in
a model-driven way. Hence, the app models can describe an existing mobile
application in an abstract manner. Such an abstract description of an already
existing mobile application can be used for model-driven testing. A test model
could be deduced from the app model, which describes test cases for the mobile
application. Moreover, code generators can generate a test implementation, i.e., test
cases, for several potential test frameworks and platforms. The different contexts
in which mobile applications may operate could be taken into account during
the test-case generation. Model-driven testing will ease and reduce the effort of
testing, particularly if more than one platform must be maintained by the mobile
application developers. The derivation of test models and the context-aware test
case generation are future research directions.

Model Extraction from Mobile Applications: Although the model-driven testing of exist-16.22
ing mobile applications seems to have tremendous potential since testing activities
are often ignored in mobile application development projects, the extent of effort
the mobile application developers must exert to construct a corresponding analysis
model must be taken into account. The creation of an analysis app model from
an existing mobile application can be considered as an inverse mobile application
generation. The mobile application developers map the generated program code, or
the known functionality and data structures, to the more abstract model elements of
the domain-specific modeling language. In contrast, the model-driven development
infrastructure contains these mapping rules between abstract model elements and
program code inside its code templates. Hence, a further research direction could
be the construction of semi-automated extraction tools based on the information
provided by the model-driven development infrastructure.

Context Description, Context Collection, and Context Adaptation: As mentioned earlier,16.23
our proposed model-driven development framework is not a holistic context-aware
framework. Mobile application developers can neither specify new contexts and
their collection nor define the adaptation mechanism of the generated mobile
application to newly defined contexts (e.g., security contexts, social contexts, or
energy contexts). The presented work can be extended to realize these features.
To do this, the domain-specific modeling language must be extended with an
additional sub-model. This model captures the contextual information. The context

16.2. Outlook 237

collection and context-adaptation functionalities could be added by the injection of
custom code, as shown in Section 7.3.5.

Design Time vs. Runtime Instantiation: The model-driven development framework 16.24
proposed by us uses models at design time to generate native program code, and
additional runtime models to configure the generated mobile applications at run-
time. The infrastructure developers of the model-driven development framework
decide which model elements are translated at design time to the native program
code and which model elements are interpreted at runtime by the generated mo-
bile application. For several reasons (e.g., security, privacy, and performance) it
is desirable to maintain both variants, i.e., model synthesis (code generation) and
model interpretation, and decide later which variant should be deployed. As a
result, the mobile application developer could control whether the resulting mobile
application is an interpreter or runs from static, compiled code.

239

Appendices

241

Appendix A

Well-Formedness Rules

The declarative language definition of the app models by metamodels also includes A.1
a number of well-formedness rules. The following three sections specify the well-
formedness rules of the domain-specific modeling language.

A.1 Constraints for the Data Model

The constraints of the Ecore model have been completely adopted, which is why we A.2
refer only to the implementation. You will find the constraints or their respective im-
plementations, in the class org.eclipse.emf.ecore.util.EObjectValidator
and its subclass org.eclipse.emf.ecore.util.EcoreValidator. So far, ad-
ditional constrains have not been formulated.

A.2 Constraints for the Process Model

1. There is exactly one process with name Main. This process is the first one to
be executed.

1 context ProcessContainer inv :
2 s e l f . processes−>s e l e c t (p : Process | p . name = ’Main ’) −>
3 s i z e () = 1

2. There is at least one task of type ProcessSelector in a Main process.

1 context Process inv :
2 s e l f . name = ’Main ’ implies c o n t a i n P r o c e s s S e l e c t o r T a s k (
3 s e l f . s t a r t T a s k . oclAsType (wcore : : Task))

1 def c o n t a i n P r o c e s s S e l e c t o r T a s k (t : Task) : Boolean
2 i f (t . oclIsTypeOf (wcore : : I f)) then
3 c o n t a i n P r o c e s s S e l e c t o r T a s k (t . oclAsType (wcore : : I f)
4 . _body . oclAsType (wcore : : Task)) e lse
5 i f (t . oclIsTypeOf (wcore : : While)) then
6 c o n t a i n P r o c e s s S e l e c t o r T a s k (t . oclAsType (wcore : : While)
7 . _body . oclAsType (wcore : : Task)) e lse
8 i f (t . oclIsTypeOf (wcore : : I f E l s e)) then
9 c o n t a i n P r o c e s s S e l e c t o r T a s k (t . oclAsType (wcore : : I f E l s e)

10 . _body . oclAsType (wcore : : Task)) and
11 c o n t a i n P r o c e s s S e l e c t o r T a s k (t . oclAsType (wcore : : I f E l s e)
12 . _elseBody . oclAsType (wcore : : Task)) e lse
13 i f (t . oclIsTypeOf (wcore : : Sequence)) then
14 c o n t a i n P r o c e s s S e l e c t o r T a s k (t . oclAsType (wcore : : Sequence)
15 . _body . oclAsType (wcore : : Task)) or
16 c o n t a i n P r o c e s s S e l e c t o r T a s k (t . oclAsType (wcore : : Sequence)
17 . fo l lower . oclAsType (wcore : : Task)) e lse
18 t . oclIsTypeOf (wcore : : P r o c e s s S e l e c t o r)
19 endif endif endif endif

242 Appendix A. Well-Formedness Rules

3. A Process, which is registered in a ProcessSelector, contains - potentially transi-
tively - at least one task of type InvokeGUI or a CrudGui task.

1 context P r o c e s s S e l e c t o r inv :
2 s e l f . oclAsType (wcore : : P r o c e s s S e l e c t o r) . processes −>
3 s e l e c t (proc : wcore : : Process|containInvokeGUITask (
4 proc . s t a r t T a s k . oclAsType (wcore : : Task))) −>
5 s i z e () = (s e l f . oclAsType (wcore : : P r o c e s s S e l e c t o r) . processes
6 −> s i z e ())

1 def containInvokeGUITask (t : Task) : Boolean
2 i f (t . oclIsTypeOf (wcore : : I f)) then
3 containInvokeGUITask (t . oclAsType (wcore : : I f)
4 . _body . oclAsType (wcore : : Task)) e lse
5 i f (t . oclIsTypeOf (wcore : : While)) then
6 containInvokeGUITask (t . oclAsType (wcore : : While)
7 . _body . oclAsType (wcore : : Task)) e lse
8 i f (t . oclIsTypeOf (wcore : : I f E l s e)) then
9 containInvokeGUITask (t . oclAsType (wcore : : I f E l s e)

10 . _body . oclAsType (wcore : : Task)) and
11 containInvokeGUITask (t . oclAsType (wcore : : I f E l s e)
12 . _elseBody . oclAsType (wcore : : Task)) e lse
13 i f (t . oclIsTypeOf (wcore : : Sequence)) then
14 containInvokeGUITask (t . oclAsType (wcore : : Sequence)
15 . _body . oclAsType (wcore : : Task)) or
16 containInvokeGUITask (t . oclAsType (wcore : : Sequence)
17 . fo l lower . oclAsType (wcore : : Task)) e lse
18 i f (t . oclIsTypeOf (wcore : : InvokeProcess)) then
19 containInvokeGUITask (t . oclAsType (wcore : : InvokeProcess)
20 . subProcess . s t a r t T a s k . oclAsType (wcore : : Task)) e lse
21 i f (t . oclIsTypeOf (wcore : : P r o c e s s S e l e c t o r)) then
22 t . oclAsType (wcore : : P r o c e s s S e l e c t o r) . processes −>
23 s e l e c t (proc : wcore : : Process|
24 containInvokeGUITask (proc . s t a r t T a s k . oclAsType
25 (wcore : : Task))) −> s i z e () = (t . oclAsType
26 (wcore : : P r o c e s s S e l e c t o r) . processes −> s i z e ()) e lse
27 t . oclIsTypeOf (wcore : : InvokeGUI) or
28 t . oclIsTypeOf (wcore : : CrudGui)
29 endif endif endif endif endif endif

4. Invoking a process, the list of arguments has to be consistent to the list of
parameters defined for that process w.r.t. number, ordering and types.

1 context InvokeProcess inv :
2 s e l f . arguments −> s i z e () = s e l f . subProcess . v a r i a b l e s −>
3 s e l e c t (v : wcore : : Var iab le|v . scope . oclAsType (wcore : : Scope) =
4 wcore : : Scope : : GLOBAL) −>s i z e () and
5 Sequence { 1 . . s e l f . arguments −> s i z e () } −>
6 f o r A l l (i : Integer | l e t var1 : wcore : : Var iab le =
7 s e l f . arguments−>at (i) , var2 : wcore : : Var iab le =
8 s e l f . subProcess . v a r i a b l e s −>s e l e c t (v : wcore : : Var iab le|
9 v . scope . oclAsType (wcore : : Scope) =wcore : : Scope : : GLOBAL) −>

10 a t (i) in var1 . oclAsType (wcore : : Var iab le) . eType =
11 var2 . oclAsType (wcore : : Var iab le) . eType)

5. Considering task InvokeGUI, number, ordering and types of input and output
data as well as output actions have to be consistent with the type of page in-
voked. E.g., a MapPage gets two Double values as output data, but a LoginPage
gets a Boolean value as output data representing the result of a login trial and
two strings as input to show the user name and password.

MapPage (Output)

1 context InvokeGUI inv :
2 s e l f . page . oclIsTypeOf (gcore : : MapPage) implies
3 s e l f . outputData −> s i z e () = 2 and s e l f . outputData −>
4 f o r A l l (var : Var iab le|var . eType=ecore : : EDouble)

A.3. Constraints for the GUI Model 243

LoginPage (Output)

1 context InvokeGUI inv :
2 s e l f . page . oclIsTypeOf (gcore : : LoginPage) implies
3 s e l f . outputData −> s i z e () = 1 and s e l f . outputData −>
4 f o r A l l (var : Var iab le|var . eType=ecore : : EBoolean)

LoginPage (Input)

1 context InvokeGUI inv :
2 s e l f . page . oclIsTypeOf (gcore : : LoginPage) implies
3 s e l f . input −> s i z e () = 2 and s e l f . input −>
4 f o r A l l (var : Var iab le|var . eType=ecore : : EStr ing)

ViewPage (Output)

1 context InvokeGUI inv :
2 s e l f . page . oclIsTypeOf (gcore : : ViewPage) implies
3 s e l f . outputData −> s i z e () = 1 and s e l f . outputData −>
4 f o r A l l (var : Var iab le|var . eType . oclIsKindOf (ecore : : EObject))

EditPage (Output/Input)

1 context InvokeGUI inv :
2 s e l f . page . oclIsTypeOf (gcore : : EditPage) implies
3 s e l f . outputData −> s i z e () = 1 and s e l f . input −>
4 s i z e () = 1 and s e l f . input −> f o r A l l (var : Var iab le|
5 var . eType= s e l f . outputData −> at (1) . eType)

SelectableListPage or ListPage (Output)

1 context InvokeGUI inv :
2 s e l f . page . oclIsTypeOf (gcore : : S e l e c t a b l e L i s t P a g e) or
3 s e l f . page . oclIsTypeOf (gcore : : Lis tPage) implies
4 s e l f . outputData −> s i z e () = 1 and s e l f . outputData −>
5 f o r A l l (var : Var iab le|var . upperBound=−1)

SelectablePage (Input)

1 context InvokeGUI inv :
2 s e l f . page . oclIsTypeOf (gcore : : S e l e c t a b l e L i s t P a g e) implies
3 s e l f . input −> s i z e () = 1 and s e l f . input −>
4 f o r A l l (var : Var iab le|var . eType= s e l f . outputData −>
5 a t (1) . eType and var . upperBound=1)

A.3 Constraints for the GUI Model

1. The attributes blue, red, green of the Class RGBColor must be in the interval
from 0 to 255.

1 context RGBColor inv :
2 0 <= s e l f . blue and s e l f . blue <= 255 and
3 0 <= s e l f . green and s e l f . green <= 255 and
4 0 <= s e l f . red and s e l f . red <= 255

245

Appendix B

App Models

This appendix provides complete app models and excerpts of app models. Their B.1
notation follows the graphical concrete syntax presented in Section 6.6. Instance
models are not shown. Neither are properties, which are only displayed in the
properties view of a selected graphical concrete syntax element.

B.1 Phone Book App Model

B.1.1 Data Model

As shown already within the example of Section 6.3.1 – Figure 6.4, the contact data B.2
is structured in the classes Person and Address. Moreover, Figure B.1 shows the
modeled EOperations which provide further custom functionality.

FIGURE B.1: Data model of the simple phone book application

The operations getCurrentPosition, getLongitude, and getLatitude of the container class B.3
PhoneBook return the current position of the mobile device, i.e., a geographical coor-
dinate (longitude/latitude). The operations getLocation, getLongitude, and getLatitude
of the class Address resolve the logical address, i.e., street and city, to a geographical
location (longitude/latitude). The operation getPersonsNearToMe returns Persons
whose address is near to the current position of the mobile application user, i.e., its
device. The operation toString is implicitly used when displaying Person objects
inside a listable page (cf. Section 7.3.2.1).

246 Appendix B. App Models

B.1.2 GUI Model

The modeled pages are shown in Figure B.2 referring all to the default style setting,B.4
which is shown at the left-hand side of Figure B.2. The GUI model contains a
CustomPage, named CustomViewPerson. An annotation (cf. Listing 7.2) with a
custom layout (cf. Figure 7.7b) is attached to this page.

FIGURE B.2: GUI model of the simple phone book application

B.1. Phone Book App Model 247

B.1.3 Process Model

The process model contains 13 processes overall. Two processes are auxiliary B.5
processes (Processes SelectAndShowPersonAddressOnMap – B.1.3.10 and PersonsWith-
Address – B.1.3.11) which cannot be invoked directly by the mobile application users.
However, the number of available processes depends on the configuration of the
ProcessSelector inside the process Main (cf. Figure B.3).

B.1.3.1 Process Main

The Main process is the first one to be executed. It contains all process that a B.6
mobile application user can reach from the main screen of a mobile application. The
main process may be reconfigured to provide role-specific variants of the mobile
application (cf. Figure 12.3).

FIGURE B.3: Process Main

B.1.3.2 Process ViewPerson

This process allows viewing an existing Person object. In this case, a customized B.7
view, named CustomPage, is invoked instead of a standard ViewPage (cf. Process
AllPersons – B.1.3.6). The first task creates an empty search pattern. The reading
task ReadAllPersons delivers every Person object since these match the empty search
pattern. The third task shows a list which contains the Person objects. A mobile user
may select a list element, i.e., a Person, to get a detailed view, which is provided by
the last task element of the process.

FIGURE B.4: Process ViewPerson

248 Appendix B. App Models

B.1.3.3 Process CreatePerson

This process creates a new Person object. The first appearing page (EditPage), namedB.8
EditPerson, allows the user to enter the personal data of a person including the
address. Subsequently, a non-editable page (ViewPage), named ViewPerson, displays
the input data.

FIGURE B.5: Process CreatePerson

B.1.3.4 Process EditPerson

This process allows editing an existing Person object. Before editing, the user hasB.9
to choose a person from a list (SelectableListPage). Subsequently, the edit page
(EditPage), named EditPerson, and a non-editable page (ViewPage), named ViewPage,
are shown.

FIGURE B.6: Process EditPerson

B.1.3.5 Process DeletePerson

This process allows deleting an existing Person object. Before deleting, the user hasB.10
to choose a person from a SelectableListPage, named SelectPerson.

FIGURE B.7: Process DeletePerson

B.1. Phone Book App Model 249

B.1.3.6 Process AllPersons

This process displays all existing persons in a selectable list (SelectableListPage). The B.11
user can select one Person object and see its details in a single view (ViewPage).

FIGURE B.8: Process AllPersons

B.1.3.7 Process CRUDPerson

This process replaces the before mentioned processes (CreatePerson – B.1.3.3, EditPer- B.12
son – B.1.3.4, DeletePerson – B.1.3.5, AllPersons – B.1.3.6) in a functionally equivalent
and standardized way. Individual or customized styles (e.g., Process ViewPerson –
B.1.3.2) are not provided. During preprocessing (cf. Section 7.3.2) the code generator
expands this abstract model element to a process which contains standard model
elements such as described before (e.g., Read, InvokeGUI task).

FIGURE B.9: Process CRUDPerson

B.1.3.8 Process SearchPerson

This process offers a search function. The first appearing page (EditPage), named B.13
EditPerson, gathers the search criteria from the user-provided search pattern. Subse-
quently to the search criteria page, a result list, named SelectPerson (SelectableList-
Page), appears and shows the Person objects that match the search pattern. The
mobile application user can select one Person object and see its details in a separate
view (ViewPage).

FIGURE B.10: Process SearchPerson

250 Appendix B. App Models

B.1.3.9 Process CallPerson

This process allows calling a person in the phone book. Before the call, the userB.14
has to choose a person from the list (SelectableListPage) of all persons. The task
CallPerson requires a permission to indicate that the invoked operation uses the call
service of the mobile phone.

FIGURE B.11: Process CallPerson

B.1.3.10 Process SelectAndShowPersonAddressOnMap

By this process, all Person objects from the phone book that have an address areB.15
displayed in a list (SelectableListPage). The list of persons is given by a parameter
variable. The mobile application user can select one Person object and see their
address, i.e., the geographical location, on a map. Similar to the process CallPerson,
the process SelectAndShowPersonAddressOnMap requires a permission to use the
map service of the current mobile platform.

FIGURE B.12: Process SelectAndShowPersonAddressOnMap

B.1. Phone Book App Model 251

B.1.3.11 Process PersonsWithAddress

This process creates two empty search patterns: i) an empty search pattern of the B.16
type Person and ii) and empty search pattern of the type Address. The third task
combines the search patterns, i.e., add the empty address search pattern to the
Person object. This is required because the following task should only read Person
objects with a non-empty address reference. The read task delivers all Person objects
that match the complex search pattern and thus persons who have an address. The
process makes the result accessible for other processes by defining the variable
PersonsWithAddress as a return variable.

FIGURE B.13: Process PersonsWithAddress

B.1.3.12 Process ShowPersonAddressOnMap

The process ShowPersonAddressOnMap combines the two before mentioned process. B.17
The output of the process PersonsWithAddress is forwarded as input of the process
SelectAndShowPersonAddressOnMap. Overall, the composed process provide the
reading of Person objects that have an address, the selection of a Person object, and
the view of the geographical location of the corresponding address on a map.

FIGURE B.14: Process ShowPersonAddressOnMap

B.1.3.13 Process NearToMe

By this process, all persons from the phone book with an address near to the current B.18
position of the mobile application user are displayed in a list (SelectableListPage).
The user can again select one Person object and see their address on a map.

FIGURE B.15: Process NearToMe

252 Appendix B. App Models

B.2 Conference App Model

B.2.1 Data Model

The basic elements of a conference, i.e., sessions, presented papers and of courseB.19
persons in their roles as authors or session chairs, are modeled straightforwardly
in the Ecore data model. The class Conference is the overall container. It contains
Sessions, Persons, Papers, Rooms and Venue. A Session is connected to the Room where
it takes place and to all the Papers to be presented in that Session. Moreover, Persons
are indicated as session chairs and authors. Note that there are several operations
getPlanFilenames, addRemoveToFavorites, initializeNotFavored, initializeFavored, toString,
compareTo, getLatitude, getLongtitide, and getLocation that are modeled as EOperations
and have an Ecore annotation with platform-specific code. All other operations
(e.g., getters and setters) are generated automatically.

FIGURE B.16: Data model of the conference application

B.2. Conference App Model 253

B.2.2 GUI Model

The GUI model contains only standard pages implementing a default layout. All B.20
views use a default style setting. The mobile application modelers use a separate
ViewPage and EditPage for each entity (Person and Paper). Although all pages refers
to the same style setting element, this redundant modeling allows the use of dif-
ferent style setting elements for each page. Besides, the code generator produces a
separate code fragment (e.g., an Android-Activity) for each of the modeled pages,
which might be customized manually. In turn, the SelectableListPage is used in dif-
ferent contexts (e.g., Processes RRoom – B.2.3.5 and Add Favorite – B.2.3.7), showing
different kinds of entities (e.g., Room and Session). This is an example for generic
use of pages with different invocation contexts.

FIGURE B.17: GUI model of the conference application

254 Appendix B. App Models

B.2.3 Process Model

The process model captures the behavior for all processes, and consists 17 pro-B.21
cesses. For conference administrators, CRUD processes with full permission shall
be available for every defined conference entity. For conference participants, read
access shall be realized for every defined conference entity. Furthermore, it shall be
possible to mark a session as favorite. The actual configuration of processes is done
in the provider models for conference administrators and participants (cf. Figure
12.4)

B.2.3.1 Process Main

The Main process is the first one to be executed. It contains all process that aB.22
providing user or mobile end user can reach from the main screen of a mobile
application. This configuration may be reconfigured by a provider model or directly
(e.g., using design time instantiation).

FIGURE B.18: Process Main

B.2.3.2 Process Favorites

Process Favorites, referenced by Main, contains the processes AddFavorite and Re-B.23
moveFavorite, which exemplifies a nested menu structure.

FIGURE B.19: Process Favorites

B.2. Conference App Model 255

B.2.3.3 Standard CRUD Processes

CRUD processes for every entity of our data model are modeled. Each CRUD B.24
process contains only one task that is assigned to a class of the data model. E.g.,
CRUDSession contains a task that combines all CRUD activities w.r.t. entity class
Session. Privileges are set to ALL here, enabling all CRUD operations.

(A) Process CRUDPerson (B) Process CRUDInstitute (C) Process CRUDRoom

(D) Process CRUDVenue (E) Process CRUDPaper (F) Process CRUDSession

FIGURE B.20: Standard CRUD processes

B.2.3.4 Standard Read Processes

Full CRUD processes shall be available for conference administrators only. There- B.25
fore, corresponding read processes are provided for conference participants. A read
process is very similar to a CRUD process, as described before. Of course, there are
neither edit nor delete options according to the option READ_ONLY.

(A) Process RPerson (B) Process RPaper (C) Process RSession

FIGURE B.21: Standard reading processes

256 Appendix B. App Models

B.2.3.5 Process RRoom

An instance of class Room may point to a plan which is a media dataset with aB.26
filename and path. This cannot be handled by the standard generation pattern and
must therefore be handled explicitly in a separate operation that is manually coded.
The custom process RRoom shows the allocated media files for the user-selected
Room object.

FIGURE B.22: Process RRoom

B.2.3.6 Process RVenue

An instance of class Venue holds address information. This information is to beB.27
displayed in Google Maps or with the Apple Map Service. This can also not be
handled by the standard generation pattern and must be modeled as custom process.

FIGURE B.23: Process RVenue

B.2. Conference App Model 257

B.2.3.7 Process AddFavorite

The process AddFavorite uses a search pattern to find all Sessions which are currently B.28
not select as favorite and display it on a SelectableLisPage. A mobile end user can
select Session to set it as a Favorite. This invokes the method addToFavorites on the
session object selected in ChooseSession. This method sets the attribute isFavorite
to true and invokes an appointment in the user’s calendar. Thus, the last task
requires the access rights for the user’s calendar.

FIGURE B.24: Process AddFavorite

B.2.3.8 Process RemoveFavorite

The process RemoveFavorite works in an analogous way to the process AddFavorite. B.29
Favored Sessions are display on a SelectableListPage and can be removed from the
favorites as wells as their corresponding appointment in the calendar.

FIGURE B.25: Process RemoveFavorite

258 Appendix B. App Models

B.2.3.9 Process SearchPaper

The process SearchPaper provides functionality to find a paper. Hence, first theB.30
mobile end user edits a search pattern on a EditPage, then all matching paper objects
are displayed on a SelectableListPage. Finally, the mobile end user can select one
Paper object of the search result list for a detailed view on a ViewPage.

FIGURE B.26: Process SearchPaper

B.2.3.10 Process SearchPerson

The process SearchPerson works analogously to the process SearchPaper.B.31

FIGURE B.27: Process SearchPerson

B.3. Word Trainer App Model 259

B.3 Word Trainer App Model

B.3.1 Data Model

The data model shown in Figure B.28 models a dictionary of words and related B.32
media files as well as additional grammatical and meta-information (e.g., part-of-
speech, gender, topics, categories, priority). The Word class is the central class. It
includes the word to be learned and an optional translation to the learner’s mother
language (given later by the learner). A word can be marked as favorite. It can have
additional media. The classes Picture, Audio and Video store the file path, including
the filename of the media. An optional imprint can be stored in the corresponding
classes. The classes Topic and Category map a word to a topic or a category. In
order to support test activities (especially multiple-choice tests), every word needs
a number of choices or answers. The class Answer holds the answers, and at least
two answers are required per design. The Gender class stores the gender of a word.
The PartofSpeech class stores the part of speech for a word. The Priority class is an
important meta-information. According to this value, a word occurs more or less in
a particular test activity (e.g., writing, listening or reading).

FIGURE B.28: Data model of word trainer application (excerpt)

260 Appendix B. App Models

B.3.2 GUI Model

The GUI model contains only standard pages. The page types TakePicturePage andB.33
RecordAudioPage provide access to the hardware facilities of a smartphone (e.g.,
built-in microphone and camera). The eLearningPage can be used in a generic way –
i.e., both for learning and testing learning content. Similar as in the GUI model for
the conference application (cf. Figure B.17), the GUI model for the word trainer app
provides separate pages for each of the entities (e.g., Word, Audio, and Answers).

FIGURE B.29: GUI model of word trainer application (excerpt)

B.3. Word Trainer App Model 261

B.3.3 Process Model

The process model consists of 97 processes overall. Most of them are auxiliary B.34
processes which cannot be used directly. The standard CRUD processes are desig-
nated for the teacher variant of the mobile application. The learner variant provides
processes for learning and testing learned content. Both variants share processes
like the customized process for adding new words.

B.3.3.1 Process Main and sub-processes

The Main process (Figure B.30) is the first one to be executed. It contains all process B.35
that a providing user or mobile end user can reach from the main screen of a mobile
application. This configuration maybe reconfigured by a provider model or directly
(e.g., using design time instantiation), as is shown in Figure 12.8.

FIGURE B.30: Process Main

The process Search branches to the generic process SearchWord (B.3.3.7) but specifies B.36
the parameters Topic and Category before invoking the generic process.

(A) Process Search

(B) Process SearchActivity (C) Process SearchAllWords

FIGURE B.31: Process Search referring to category-specific/general search processes

As an example, Figure B.31 shows how a generic process for a job-specific process B.37
look like. A job-specific process (e.g., Catering) branches to sub-processes for learn-
ing and testing. Moreover, the testing sub-process branches to different test modes.
The parameters Testtype, Topic and Category are used to instance the generic learning
and testing processes (cf. B.3.3.10).

262 Appendix B. App Models

(A) Process Jobs (B) Process Catering

(C) Process CateringTest

(D) Process CateringLearn (E) Process CateringWordPictureWrite

FIGURE B.32: Generic process structure Jobs (showing the Catering sub-processes)

B.3. Word Trainer App Model 263

B.3.3.2 Standard CRUD Processes

Full CRUD processes shall be available for the teacher variant of the word trainer B.38
application only.

(A) Process
CRUDWord

(B) Process
CRUDPicture

(C) Process
CRUDAudio

(D) Process
CRUDVideo

(E) Process CRUDTopic (F) Process CRUDAnswer (G) Process CRUDCategory

(H) Process CRUDPriority (I) Process CRUD-
PartOfSpeech

(J) Process CRUDGender

FIGURE B.33: Standard reading processes

B.3.3.3 Process CreatePicture

The process CreatePicture creates a Picture object, delivers the chosen picture file- B.39
name, and stores the taken picture at this location. The process requires different
permissions to access the built-in camera as well as the file system.

FIGURE B.34: Process CreatePicture

264 Appendix B. App Models

B.3.3.4 Process CreateAudio

The process CreateAudio creates an Audio object, delivers the chosen audio file-B.40
name, and stores the recorded audio at this location. The process requires different
permissions to access the built-in microphone as well as the file system.

FIGURE B.35: Process CreateAudio

B.3.3.5 Process CreateAnswer

The process CreateAnswer is used inside the process CreateWord – B.3.3.6. It createsB.41
a new answer, provides user input by an EditPage named EditAnswer and finally
adds the answer to the resulting AnswerList.

FIGURE B.36: Process CAnswer

B.3.3.6 Process CreateWord

The individual creation process CreateWord provides a more convenient version ofB.42
the standard CRUD process for the corresponding entity Word. The process creates
the mandatory Word object and add it to the user-specific vocabulary (Topic=OWN).
Subsequently, the user decides whether a picture/audio should be taken/recorded
for this word and whether answers should be added.

B.3.
W

ord
Trainer

A
pp

M
odel

265

FIGURE B.37: Process CWord

266 Appendix B. App Models

B.3.3.7 Process SearchWord

The process SearchWord supports learners in finding a word in the vocabulary. TheB.43
process creates an empty search pattern which subsequently can be modified by the
mobile users, provides a selection from the search results and shows the selected
word by calling the sub-process ViewWord – B.3.3.8.

FIGURE B.38: Process SearchWord

B.3.3.8 Process ViewWord

The process ViewWord gets a Word object as parameter. Due to different contextB.44
of usage, the process ViewWord decides whether the following word should be
displayed or the viewing mode should be quit. The first task of the process extracts
various attribute values. The InvokeGUI task, named ViewWord, displays the at-
tribute values. The mobile user may add the displayed word to his/her favorites.
Thus, the value of Favorite determines whether the word is set to a favorite or not.

FIGURE B.39: Process ViewWord

B.3. Word Trainer App Model 267

B.3.3.9 Process DeleteWord

The process DeleteWord reads all Word objects from the vocabulary and filter the B.45
resulting set according to the parameters Topic and Category. The mobile application
user selects a word from this filtered result list. Based on whether the word is from
the personal or the preset vocabulary, the word will be deleted or only removed
from the favorite list of the learner.

FIGURE B.40: Process DeleteWord

268 Appendix B. App Models

B.3.3.10 Processes LearnAndTest

At first, the generic learn and test process LearnAndTest filters the vocabulary ac-B.46
cording to the given parameters Topic and Category. When the mobile end user does
not exit the process (Save=true), the successor or precessor of the filtered word list
will be presented according to the selected presentation mode (i.e., Testtype).

FIGURE B.41: Process LearnAndTest

B.3. Word Trainer App Model 269

B.3.3.11 Process Favorites/MyWord

The process Favorites/MyWord provides sub-processes to manage the Favorites and B.47
the individual vocabulary (Figure B.42a) of the learners. The process CreateWord
offers the creation of new words. The process MyWordsLearn and MyWordsTest
are sub-processes, which call the generic learning and testing process using the
parameters for showing only content from the individual vocabulary. Similarly,
the process MyWordsDelete refers to a parameterized version of the generic process
Delete Word – B.3.3.9.

(A) Process FavoritesMyWords

(B) Process MyWordsDelete

FIGURE B.42: Process FavoritesMyWords and sub-processes

271

Appendix C

Tutorial

The developed tutorial was primarily used during different workshops where C.1
participants got an introduction in the designed model-driven development infras-
tructure. The workshop and the material are designed as practical training with
hands-on assignments. The tutorial may also be used without an instructor since it
is online available (Online Tutorial [73]).

The tutorial consists of twelve parts and a workshop will regularly take one day. C.2
The participants re-model the phone book application shown in Appendix B.1.
The instructor presents introductorily the use cases of the phone book application
followed by the installation of the model-driven development infrastructure and
the required software development kits, emulators, etc. The first part of the tutorial
will be completely presented by the instructor. The goal of this part is to show the
overall process of model-driven development with the designed model-driven de-
velopment infrastructure. The different sub-models and their purpose are explained
and subsequently, the generation and execution of the corresponding mobile appli-
cation are demonstrated. After that presentation, the participants process this part
for their own.

The second, third, and seventh part of the tutorial has similar content to practices C.3
the model-driven development process and the steps presented in the first part.

Within the fourth part, the runtime features of the generated mobile application are C.4
presented. The participants create a new process AllPersons but will not register this
process at design time. After the deployment of the generated mobile application,
they will use the runtime process instance model to add the process AllPersons.

Part five and nine of the tutorial are similar and present the runtime adaptation of C.5
the data and the graphical user interface.

Part six of the tutorial presents the usage of the abstract CRUD modeling element. C.6
The detailed modeled processes from the prior parts could be substituted by the
abstract version of these processes.

Part eight and ten show how custom functionality could be added to the app model C.7
and thus to the generated mobile applications. Moreover, part ten shows how
sub-processes could be called from a process.

Finally, part twelve demonstrates how the codebase of a generated mobile appli- C.8
cation could be customized. However, this way of customization is only suitable
when the model-driven development approach is used only to generate initially a
software prototype.

Besides the slides of the tutorial, the instructors provide prepared sets of app models C.9
after each part as a kind of sample solution. Thus large groups could be taught
better, and participants with fewer skills could keep pace with the group. The
sample solutions are also useful for self-study of the tutorial without an instructor.

Table C.1 shows the conducted workshops, the taught material, and the number of C.10
participants.

https://srv55.svn-repos.de/dev1018/pimar/documentation/html/index.html?Tutorial.html

272 Appendix C. Tutorial

TABLE C.1: List of Workshops

Date Institution Material Participants

14.02.2014 Advenco Consulting GmbH
(Gießen, Germany) Part 1-4 5

06/08.03.2014
Høgskolen i Bergen
Bergen University College
(Bergen, Norway)

Part 1–7 15

25.03.2014 Advenco Consulting GmbH
(Gießen, Germany) Part 1-12 5

19.05.2014 Berufsakademie Nordhessen gGmbh
(Bad Wildungen, Germany) Part 1-12 19

06.06.2014 Technische Hochschule Mittelhessen
(Friedberg, Germany) Part 1-12 7

13.06.2014 Advenco Consulting GmbH
(Gießen, Germany) Individual 5

29.10.2014 Philipps-Universität Marburg
(Marburg, Germany) Part 1-12 15

15.12.2014
University of Duisburg-Essen
paluno - The Ruhr Institute for Soft-
ware Technology (Essen, Germany)

Part 1-6 5

03.03.2015
Høgskolen i Bergen
Bergen University College
(Bergen, Norway)

Part 1–12 10

16.06.2015 Philipps-Universität Marburg
(Marburg, Germany) Part 1-12 4

A
ppendix

C
.

Tutorial
273

1 PIMAR WORKSHOP
16.06.2015

Philipps-Universität Marburg (Marburg)

Steffen Vaupel (Philipps-Universität Marburg)

1 This work was partially funded by LOEWE HA project no. 355/12-45 (State
Offensive for the Development of Scientific and Economic Excellence).

Agenda

• The Phone Book App (Introduction)

• Installation

• The Phone Book App

– Modeling (Part 1)

• Data modeling

• GUI modeling

• Process modeling („Create Person“)

• Code generation, build and execute the app

16.06.2015 PIMAR Workshop 2

Agenda

– Modeling (Part 2)
• GUI modeling

• Process modeling („Edit Person“)

– Modeling (Part 3)
• Process modeling („Delete Person“)

– Runtime configuration (Part 4)
• Process modeling („All Persons“)

• Process Instance Model

– Runtime configuration (Part 5)
• Object modeling

16.06.2015 PIMAR Workshop 3

Agenda

– Modeling (Part 6)

• CRUD modeling („Manage Persons“)

– Modeling (Part 7)

• Process modeling („Search Person“)

– Add customized functionality (Part 8)

• Data modeling

• Process modeling („Call Person“)

– Runtime configuration (Part 9)

• Style model

16.06.2015 PIMAR Workshop 4

Agenda

– Add customized functionality (Part 10)

• Data modeling

• Process modeling („Persons Location“)

– Add customized functionality (Part 11)

• Data modeling

• Process modeling („Near To Me“)

– Customizing the generated Code (Part 12)

16.06.2015 PIMAR Workshop 5

1

1 Hardware device required
2 GPS receiver required

1,2

Phone Book App (Introduction)

16.06.2015 PIMAR Workshop 6

Create Person
This use case creates a new person. The first
appearing form (EditPage) allows the user to enter the
personal data of a person including the address.
Subsequently, a non-editable form (ViewPage)
displays the input data .

Edit Person
This use case allows to edit an existing Person object.
Before editing, the user has to choose a person from a
list (SelectableListPage). Subsequently, the edit form
(EditPage) and a non-editable form (ViewPage) are
shown.

Delete Person
This use case allows to delete an existing Person
object. Before deleting, the user has to choose a
person from a list (SelectableListPage).

274
A

ppendix
C

.
Tutorial

Phone Book App (Introduction)

16.06.2015 PIMAR Workshop 7

All Persons
By this use case all existing persons are displayed in a
list (SelectableListPage). The user can select one
object and see its details in a single view (ViewPage).

Call Person
This use case allows to call an existing person.
Previously to the call, the user has to choose a person
from the list (SelectableListPage) of all persons.

Search Person
This use case offers a search function. The first
appearing form (EditPage) gathers the search criteria.
Subsequently to the search form, a result list appears
(SelectableListPage). The user can select one object
and see its details in a separate view (ViewPage).

Phone Book App (Introduction)

16.06.2015 PIMAR Workshop 8

Manage Persons
This use case combines the aforementioned use cases
(Create Person, Edit Person, Delete Person, All
Persons).

Near To Me
By this use case, all existing persons with a address
near to the current position of the user are displayed
in a list (SelectableListPage). The user can select one
person and see their address on a map.

Persons Location
By this use case, all existing persons having an address
are displayed in a list (SelectableListPage). The user
can select one person and see their address on a map.

Phone Book App (Create Person)

16.06.2015 PIMAR Workshop 9

Phone Book App (Edit Person)

16.06.2015 PIMAR Workshop 10

Phone Book App (Delete Person)

16.06.2015 PIMAR Workshop 11

Phone Book App (All Persons)

16.06.2015 PIMAR Workshop 12

A
ppendix

C
.

Tutorial
275

Phone Book App (Manage Persons)

16.06.2015 13 PIMAR Workshop

Phone Book App (Search Person)

16.06.2015 PIMAR Workshop 14

Phone Book App (Call Person)

16.06.2015 PIMAR Workshop 15

Phone Book App (Persons Location)

16.06.2015 PIMAR Workshop 16

Phone Book App (Near To Me)

16.06.2015 PIMAR Workshop 17

Installation (Windows)

Please use the prepared USB sticks (maybe in
groups of two).

You can work on the prepared USB sticks, if
you don‘t want to copy the full installation to
your hard disk.

Please execute <mnt>:\eclipse-modeling-
kepler-SR2-win32-x86_64\eclipse\eclipse.exe
and choose <mnt>:\Workspace. Check
(Eclipse >Window>Preferences: Android) if
the SDK location conforms with your mount
letter of the USB stick.

Pre-requisites: JDK 1.7 (approx. 2.5 GB hard
disk space (Full installation) / approx. 250 MB
hard disk space (only AVD)).

16.06.2015 PIMAR Workshop 18

276
A

ppendix
C

.
Tutorial

Installation (others)

16.06.2015 PIMAR Workshop 19

You need

• the GMF Runtime (1.7.0), GMF Notation
(1.7.0) , GMF Tooling (GMF SDK) (3.1.0)
from the Kepler Update-Site

• and the „Developer Tools“ from the ADT
Update-Site

• and Xtext 2.5.1 and Xtend 2.5.1 from the Xtext
Update-Site.

Please install also

• API Level 15 (Android 4.0.3)

• API Level 8 (Android 2.2)

with the Android SDK Manager.

16.06.2015 PIMAR Workshop 20

Modeling (Part 1)

Phone Book App (Create Person)

16.06.2015 PIMAR Workshop 21

Modeling (Part 1)

16.06.2015 PIMAR Workshop 22

Please create a new EMF Project () with name
"Workshop". By the wizard "Multi-page Editor Files"
() you can create a PIMAR Modeling Project in
the container "Workshop/model/". Please name it "Workshop“
as well. The project structure should look like the one below:

The Multi-Editor can be opened by the entry „Open
Pimar Modelling Files“ being available in the context
menu of the Container (here "model").

Data modeling (Part 1)

16.06.2015 PIMAR Workshop 23

Select the first tab „*.ecore_diagram“ of the Pimar Modeling
Editor to create the data model.

Model the following data structure of the Phone Book App:

GUI modeling (Part 1)

16.06.2015 PIMAR Workshop 24

Select the third tab „*.gcore_diagram“ of the Pimar Modeling
Editor to create the GUI model.

Create a ProcessSelectorPage, an EditPage and a ViewPage.
Additionally to the existing StyleSettings add a menu.

 The EditPage is used for
gathering the data (Person)
and the ViewPage is used
to display the entered
object afterwards.

A
ppendix

C
.

Tutorial
277

GUI modeling (Part 1)

16.06.2015 PIMAR Workshop 25

Set the page properties as shown below (empty fields are
unused):

Process modeling (Part 1)

16.06.2015 PIMAR Workshop 26

Select the second tab „*.wcore_diagram“of the Pimar Modeling
Editor to create the Process model.

The process „Create Person“ (CreatePerson) consists of the
following tasks: CreatePerson (Create), EnterNewPerson
(InvokeGUI) and ViewNewPerson (InvokeGUI)

1

1 Were refer
usually to the
process label e.g.
„Create Person“
instead of the
technical name
„CreatePerson“

Process modeling (Part 1)

16.06.2015 PIMAR Workshop 27

Where shall the new object be attached?

Process modeling (Part 1)

16.06.2015 PIMAR Workshop 28

Register the process „Create Person“ (CreatePerson) in a
ProcessSelector. The ProcessSelector itself has to be in a Process
named „Main“ .

Process modeling (Part 1)

16.06.2015 PIMAR Workshop 29

Site map from the user‘s point of view:

Create
Person

Code generation

16.06.2015 PIMAR Workshop 30

• Activate the Generator (Builder) by the context menu entry:
Configure > Add Android Generator

• The first „FULL BUILD“ creates the empty Android projects
only.

• Please change and save one of the *.ecore, *.wcore or *.gcore
files to trigger an „AUTO BUILD“ for code generation.

278
A

ppendix
C

.
Tutorial

Code generation

16.06.2015 PIMAR Workshop 31

• The code generation is successful
if the source folders of the
projects *.Lib and *.Android are
filled with packages and Java
classes.

• You can also deactivate the
generator.

Android Projekt

Android Library
Projekt (EMF)

Build

16.06.2015 PIMAR Workshop 32

• The generated code is compiled automatically with all
configured Android SDKs. The build is successfull if every
project has the usual build artifacts in the folders bin and gen.

Android Projekt Android Library Projekt (EMF) Android Library Projekt
(Google Play Services)

Execute the app

16.06.2015 PIMAR Workshop 33

• Please define a new virtual device
by the Android Virtual Device
Manager.

• Choose „Google APIs (Google Inc.)
– API Level 15“ as target.

• Configure a SD card with approx.
200MB space.

Execute the app

16.06.2015 PIMAR Workshop 34

• Run the Workshop.Android project as Android Application on
the virtual device.

Execute the app

16.06.2015 PIMAR Workshop 35

• The app starts without data. The initial object model
(My.ecorei) is empty.

• The app starts without special styles. The initial style model
(My.gcorei) is empty.

• The app starts with an initial process instance model
(My.wcorei). Only the processes registered in the
ProcessSelector are available per default.

<processes ref="/mnt/sdcard/
workshop.android/Workshop.wcore#//processCon
tainerI/CreatePerson"/>

Execute the app

16.06.2015 PIMAR Workshop 36

• Important: All models and instance models (shown below)
must be deleted manually after a new generation and
installation of the app.

A
ppendix

C
.

Tutorial
279

16.06.2015 PIMAR Workshop 37

Modeling (Part 2)

Phone Book App (Edit Person)

16.06.2015 PIMAR Workshop 38

GUI modeling (Part 2)

16.06.2015 PIMAR Workshop 39

Within the second part, we can adopt the unchanged data
model. Before editing a person (EditPage), the user has to
choose a person from a list (SelectableListPage). So we extend
the GUI model (Workshop.gcore) with a SelectableListPage being
named "SelectPerson".

Additionally, set the corresponding
attributes as shown below:

Process modeling (Part 2)

16.06.2015 PIMAR Workshop 40

The process „Edit Person“ (EditPerson) consists of the following
tasks: CreatePersonSearchPattern (Create), ReadAllPersons
(Read), ChoosePerson (InvokeGUI), EditPerson (InvokeGUI) and
ViewEditedPerson (InvokeGUI)

Process modeling (Part 2)

16.06.2015 PIMAR Workshop 41

Again, we have to register the process „Edit Person“ (EditPerson)
at the ProcessSelector.

Process modeling (Part 2)

16.06.2015 PIMAR Workshop 42

Site map from the user‘s point of view (multiply used pages are
shown several times with different contexts):

Create
Person

Edit
Person

280
A

ppendix
C

.
Tutorial

16.06.2015 PIMAR Workshop 43

Modeling (Part 3)

Phone Book App (Delete Person)

16.06.2015 PIMAR Workshop 44

Process modeling (Part 3)

16.06.2015 PIMAR Workshop 45

Within the third part we can adopt the unchanged data model
and GUI model.

This use case allows to delete an existing Person object. Before
deleting, the user has to choose a person from a list
(SelectableListPage). The user can select one object and will be
forwarded directly, currently without a confirm dialog, to the
main menu (ProcessSelectorPage). The selected list item was
removed between these dialogs.

Process modeling (Part 3)

16.06.2015 PIMAR Workshop 46

The process „Delete Person“ (DeletePerson) consists of the
following tasks: CreatePersonSearchPattern (Create),
ReadAllPersons (Read), ChoosePerson (InvokeGUI) and
DeletePerson (Delete)

Process modeling (Part 3)

16.06.2015 PIMAR Workshop 47

Again we have to register the process „Delete Person“
(DeletePerson) at the ProcessSelector.

Process modeling (Part 3)

16.06.2015 PIMAR Workshop 48

Site map from the user‘s point of view (multiply used pages are
shown several times with different contexts):

Create
Person

Edit
Person

Delete
Person

A
ppendix

C
.

Tutorial
281

16.06.2015 PIMAR Workshop 49

Runtime configuration (Part 4)

Phone Book App (All Persons)

16.06.2015 PIMAR Workshop 50

Process modeling (Part 4)

16.06.2015 PIMAR Workshop 51

Within this part we can adopt the unchanged data model and
GUI model.

Process „All Persons“ (AllPersons) consists of the following tasks:
CreatePersonSearchPattern (Create), ReadAllPersons (Read),
ChoosePerson (InvokeGUI) and ViewSelectedPerson (InvokeGUI).

Exceptionally we do not register
the process in the ProcessSelector.
This process is not visible per

default.

Runtime configuration (Part 4)

16.06.2015 PIMAR Workshop 52

• Please install and start the app.

• Export the default process instance model (My.wcorei) by
using the export function in the . Inspect the
downloaded file. It should look like this:

<?xml …

<startTask xsi:type="wcore:ProcessSelector" name="MainProcesses"> …

<processes

ref="/mnt/sdcard/workshop.android/Workshop.wcore#//processContainerI/CreatePerson">

<processes

ref="/mnt/sdcard/workshop.android/Workshop.wcore#//processContainerI/EditPerson">

</startTask>

</instanceProcesses>

</wcoreI:processContainerI>

Runtime configuration (Part 4)

16.06.2015 PIMAR Workshop 53

• Extend the process instance model carefully by hand (
<processes hef="/mnt/sdcard/

workshop.android/Workshop.wcore#//

processContainerI/AllPersons">) or use the

prepared object model My.wcorei of Part 4.

• Import the changed process instance model (My.wcorei) by
using the import function in the .

• Restart the app and check the available processes.

• Alternatively you can drop the process instance model in the
folder “assets” of the project Workshop.Android and reinstall
the app.

Process modeling (Part 4)

16.06.2015 PIMAR Workshop 54

Site map from the user‘s point of view (multiply used pages are
shown several times with different contexts):

Create
Person

Edit
Person

Delete
Person

All
Persons

282
A

ppendix
C

.
Tutorial

16.06.2015 PIMAR Workshop 55

Runtime configuration (Part 5)

Runtime configuration (Part 5)

16.06.2015 PIMAR Workshop 56

• Please create at least one person in your app.

• Export the changed object model (My.ecorei) by using the
export function in the . Inspect the
downloaded file. It should looks like this:

<?xml version="1.0" encoding="UTF-8"?>

<ecoreI:PhoneBook xmi:version="2.0" xmlns:xmi="http://www.omg.org/XMI"

xmlns:ecoreI="http://www.eclipse.org/emf/2002/EcoreI">

…

 <allPersons Surname="Conner" Forename="Michael" MobileNumber="+1 129 453 731"

OfficeNumber="+1 731 731 129">

 <address City="Chicago" ZIP="60601" Street="Woodrow Road"

Number="11"/></allPersons>

…

</ecoreI:PhoneBook>

Runtime configuration (Part 5)

16.06.2015 PIMAR Workshop 57

• Extend the object model carefully by hand or use the
prepared object model My.ecorei of Part 5.

• Import the changed object model (My.ecorei) by using the
import function in the .

• Restart the app and check the list of all persons.

• Alternatively you can drop the object model file into the
folder “assets” of the project Workshop.Android and reinstall
the app.

16.06.2015 PIMAR Workshop 58

Modeling (Part 6)

Phone Book App (Manage Persons)

16.06.2015 59 PIMAR Workshop

Process modeling (Part 6)

16.06.2015 PIMAR Workshop 60

Within this part we can adopt the unchanged data model and
GUI model (although we don’t need the pages at first).

The use case combines the aforementioned use cases (Create
Person, Edit Person, Delete Person, All Persons).

The Process „Manage Persons“ (CRUDPerson) consists of the
CRUDPerson (CrudGui) task only.

A
ppendix

C
.

Tutorial
283

Process modeling (Part 6)

16.06.2015 PIMAR Workshop 61

Now we have to unregister all customized CRUD processes
namely „Create Person“, „Edit Person“, „Delete Persons“ but not
„All Persons“ (because it was runtime configured). Instead we
have to register the „Manage Persons“ process.

Process modeling (Part 6)

16.06.2015 PIMAR Workshop 62

Site map from the user‘s point of view (multiply used pages are
shown several times with different contexts):

Create
Person

/
Edit

Person

Delete
Person

View
Person

16.06.2015 PIMAR Workshop 63

Modeling (Part 7)

Phone Book App (Search Person)

16.06.2015 PIMAR Workshop 64

Process modeling (Part 7)

16.06.2015 PIMAR Workshop 65

Within this part we can adopt the unchanged data model and
GUI model.

The first appearing form (EditPage) gathers the search criteria.
Subsequently to the search form, a result list appears
(SelectableListPage). The user can select one object and see the
its details in a separate view (ViewPage).

Process modeling (Part 7)

16.06.2015 PIMAR Workshop 66

The process „Search Person“ consists of the following tasks:
CreatePersonSearchPattern (Create), SearchCriteriaPerson
(InvokeGUI), ReadAllPersons (Read), ChoosePersonFromResultlist
(InvokeGUI) and ViewSearchedPerson (InvokeGUI)

284
A

ppendix
C

.
Tutorial

Process modeling (Part 7)

16.06.2015 PIMAR Workshop 67

Again we have to register the process „Search Person“
(SearchPerson) at the ProcessSelector.

Process modeling (Part 7)

16.06.2015 PIMAR Workshop 68

Site map from the user‘s point of view (multiply used pages are
shown several times with different contexts):

Create
Person

/
Edit

Person

Delete
Person

Search
Person

View
Person

16.06.2015 PIMAR Workshop 69

Add customized functionality (Part 8)

Phone Book App (Call Person)

16.06.2015 PIMAR Workshop 70

Data modeling (Part 8)

16.06.2015 PIMAR Workshop 71

We implement customized functionality as operations of classes
of the data model (which is basically a common ecore model).

String uri = "tel:" + this.getMobileNumber();

android.content.Intent intent = new

android.content.Intent(android.content.Intent

.ACTION_CALL);

intent.setData(android.net.Uri.parse(uri));

intent.addFlags(android.content.Intent.

FLAG_ACTIVITY_NEW_TASK);

context.startActivity(intent);

* Source: http://www.eclipse.org/emf/2002/GenModel

*

Process modeling (Part 8)

16.06.2015 PIMAR Workshop 72

Process „Call Person“ (CallPerson) consists of the following tasks:
CreatePersonSearchPattern (Create), ReadAllPersons (Read),
ChoosePerson (InvokeGUI) and CallPerson (InvokeOperation)

A
ppendix

C
.

Tutorial
285

Process modeling (Part 8)

16.06.2015 PIMAR Workshop 73

Again, we have to register the process „Call Person“ at the
ProcessSelector.

Process modeling (Part 8)

16.06.2015 PIMAR Workshop 74

Site map from the user‘s point of view (multiply used pages are
shown several times with different contexts) whithout CRUD
processes:

Search
Person

Call
Person

16.06.2015 PIMAR Workshop 75

Runtime configuration (Part 9)

Phone Book App (Search Person)

16.06.2015 PIMAR Workshop 76

Runtime configuration (Part 9)

16.06.2015 PIMAR Workshop 77

• Please install and start the app.

• Export the default style model (My.gcorei) by using the export
function in the . Inspect the downloaded file.
It should look like this:

<?xml …

<rgbColors name="FRONTCOLOR"/>

<rgbColors name="BACKCOLOR" blue="255" red="255" green="255"/>

<menuStyle/> <selectionStyle

…

</gcoreI:pageContainerI>

Runtime configuration (Part 9)

16.06.2015 PIMAR Workshop 78

• Extend the style model carefully by hand (
<rgbColors name=„BLACK" blue="255" red="0"

green="0"/>) or use the prepared style model My.gcorei

of Part 9.

• Import the changed style model (My.gcorei) by using the
import function in the .

• Restart the app and check the colors of an EditPage.

• Alternatively you can drop the process instance model in the
folder “assets” of the project Workshop.Android and reinstall
the app.

286
A

ppendix
C

.
Tutorial

16.06.2015 PIMAR Workshop 79

Add customized functionality (Part 10)

Phone Book App (Persons Location)

16.06.2015 PIMAR Workshop 80

Data modeling (Part 10)

16.06.2015 PIMAR Workshop 81

We implement customized functionality as operations of classes
of the data model (which is basically a common ecore model).

– Person getPersonWithAddress(Address address)

– Address getAddress0()

– EDouble getLatitude(); EDouble get Longitude();

– EJavaObject getLocation()

GUI modeling (Part 10)

16.06.2015 PIMAR Workshop 82

We extend the GUI model (Workshop.gcore) with a MapPage
being named “ShowAddress".

Additionally, set the corresponding
attributes as shown below:

Process modeling (Part 10)

16.06.2015 PIMAR Workshop 83

public Person getPersonWithAddress(final Context context,

 final Address address) {

 this.setAddress(address);

 return this;

}

public Address getAddress0(final Context context){

 return this.getAddress();

}

Process modeling (Part 10)

16.06.2015 PIMAR Workshop 84

public Object getLocation(final Context context) {

 android.location.Geocoder coder = new

 android.location.Geocoder(context);

 java.util.List<android.location.Address> address = null;

 try {

 address = coder.getFromLocationName(this.getStreet() + " "

 + this.getNumber() + " "

 + this.getCity() + " “

 + this.getZIP(), 1);

 } catch (java.io.IOException e) {

 e.printStackTrace();

 }

 if (address.size()==0) {

 return null;

 } else {

 return (Object) address.get(0);

 }

}

A
ppendix

C
.

Tutorial
287

Process modeling (Part 10)

16.06.2015 PIMAR Workshop 85

public double getLatitude(final Context context){

 android.location.Address location = null;

 location = ((android.location.Address)

 this.getLocation(context));

 if (location == null) {

 return 0;

 } else {

 return location.getLatitude();

 }

}

public double getLongitude(final Context context){

 …

 return location.getLongitude();

 }

}

Process modeling (Part 10)

16.06.2015 PIMAR Workshop 86

The auxiliary process „Person With Address“ consists of the
following tasks: CreatePersonSearchPattern (Create),
CreateAddressSearchPattern (Create),
AddAddressToPersonSearchPattern (InvokeOperation) and
ReadPersonWithAdddress (Read)

Process modeling (Part 10)

16.06.2015 PIMAR Workshop 87

The auxiliary process „SelectAndShowPersonAddressOnMap“
consists of the following tasks: SelectLocatablePerson
(InvokeGUI), ExtractAddress (InvokeOperation), ExtractLongitude
(InvokeOperation), ExtractLatitude (InvokeOperation) and
ShowAddressOnMap (InvokeGUI)

Process modeling (Part 10)

16.06.2015 PIMAR Workshop 88

Process „Persons Location “ (ShowPersonAddressOnMap)
consists of the following tasks: GetPersonsWithAddress
(InvokeProcess) and SelectAndShowPersonAddressOnMap
(InvokeProcess)

Process modeling (Part 10)

16.06.2015 PIMAR Workshop 89

Again, we have to register the process „Persons Location“
(ShowPersonAddressOnMap) at the ProcessSelector.

Process modeling (Part 10)

16.06.2015 PIMAR Workshop 90

Site map from the user‘s point of view (multiply used pages are
shown several times with different contexts) whithout CRUD
processes:

Search
Person

Call
Person

Persons
Location

288
A

ppendix
C

.
Tutorial

16.06.2015 PIMAR Workshop 91

Add customized functionality (Part 11)

Phone Book App (Near To Me)

16.06.2015 PIMAR Workshop 92

Data modeling (Part 11)

16.06.2015 PIMAR Workshop 93

We implement customized functionality as operations of classes
of the data model (which is basically a common ecore model).

– EList<Person> getPersonsNearToMe(EJavaObject allPersons)

– EDouble get Longitude(); EDouble getLatitude()

– EJavaObject getCurrentPosition()

Process modeling (Part 11)

16.06.2015 PIMAR Workshop 94

public Object getCurrentPosition(final Context context){

 class MyLocationListener implements

 android.location.LocationListener {

 public double latitude;

 public double longitude;

 public void onLocationChanged(

 android.location.Location loc){

 loc.getLatitude();

 loc.getLongitude();

 latitude=loc.getLatitude();

 longitude=loc.getLongitude();

 } …

 }

 android.location.LocationManager locationManager =

 (android.location.LocationManager)

 context.getSystemService(Context.LOCATION_SERVICE);

Process modeling (Part 11)

16.06.2015 PIMAR Workshop 95

 android.location.LocationListener lmh = new

 MyLocationListener();

 String mlocProvider;

 android.location.Criteria hdCrit = new

 android.location.Criteria();

 hdCrit.setAccuracy(

 android.location.Criteria.ACCURACY_COARSE);

 mlocProvider = locationManager.getBestProvider(hdCrit,true);

 locationManager.requestLocationUpdates(

 android.location.LocationManager.GPS_PROVIDER,

 3000, 1000, lmh);

 android.location.Location currentLocation =

 locationManager.getLastKnownLocation(mlocProvider);

 locationManager.removeUpdates(lmh);

 return currentLocation;

}

Process modeling (Part 11)

16.06.2015 PIMAR Workshop 96

public double getLongitude(final Context context){

 android.location.Location currentLocation =

 (android.location.Location)

 this.getCurrentPosition(context);

 return currentLocation.getLongitude();

}

public double getLatitude (final Context context){

 …

 return currentLocation.getLatitude();

}

A
ppendix

C
.

Tutorial
289

Process modeling (Part 11)

16.06.2015 PIMAR Workshop 97

public EList<Person> getPersonsNearToMe(final Context context,

 final Object allPersons){

 EList<Person> personList = new

 org.eclipse.emf.common.util.BasicEList<Person>();

 java.util.Iterator it = ((java.util.List) allPersons).iterator();

 double diff = 90;

 double longitude = this.getLongitude(context);

 double latitude = this.getLatitude(context);

 while (it.hasNext()) {

 Person person = (Person) it.next();

 if (person.getAddress()!=null &&

 person.getAddress().getLongitude(context) >= longitude-diff &&

 person.getAddress().getLongitude(context) <= longitude+diff &&

 person.getAddress().getLatitude(context) >= latitude-diff &&

 person.getAddress().getLatitude(context) <= latitude+diff){

 personList.add(person);

 }

 }

 return personList;

}

Process modeling (Part 11)

16.06.2015 PIMAR Workshop 98

Process „Near To Me“
(NearToMe) consists
of the following tasks:
GetPersonWithAddress
(InvokeProcess),
CreatePhoneBookDummy
 (Create),
GetNearestPersons
 (InvokeOperation) and SelectAndShowPersonsAddressOnMap
(InvokeProcess)

Process modeling (Part 11)

16.06.2015 PIMAR Workshop 99

Again, we have to register the process „Near To Me“ (NearToMe)
at the ProcessSelector.

Process modeling (Part 11)

16.06.2015 PIMAR Workshop 100

Site map from the user‘s point of view (multiply used pages are
shown several times with different contexts) whithout CRUD
processes:

Search
Person

Call
Person

Persons
Location

Near
To Me

16.06.2015 PIMAR Workshop 101

Customizing the generated Code
(Part 12)

Customizing the generated Code

16.06.2015 PIMAR Workshop 102

Add custom App-Icon:
 Put icon.png into Workshop.Android\res\drawable\
 and change the following line in the
AndroidManifest.xml:

<application android:allowBackup="true"

android:icon="@drawable/<icon>"

android:label="@string/app_name"

android:theme="@style/AppTheme">

290
A

ppendix
C

.
Tutorial

Customizing the generated Code

16.06.2015 PIMAR Workshop 103

Add custom Process-Icons:
 Put all icons into Workshop.Android\res\drawable\
 and change the class ProcessAdapter.java as follows:

if (proc.getName().equals("EditPerson")){

 iv_icon.setImageResource(R.drawable.icon_pencil_square_o);

}

…

if (proc.getName().equals("DeletePerson")){

 iv_icon.setImageResource(R.drawable.icon_times_circle);

}

291

Appendix D

Miscellaneous

D.1 The Research Project PIMAR

This research project PIMAR (Platform Independent Mobile Augmented Reality)1 D.1
is part of the “Hessen ModellProjekte” program, funded by the LOEWE - State
Offensive for the Development of Scientific and Economic Excellence, funding line
3: promoting SME (Small and Medium-sized Enterprises) collaborative projects.

Mobile devices influence our life daily, affecting both the work and the leisure D.2
sector. The use of these systems goes far beyond applications with classical human-
computer interaction (keyboard or mouse input). Applications with automatic
localization of the user or image and sound recognition open up new possibilities –
the so-called augmented reality.

The goals of the project are as follows: D.3

• Create a model-driven development infrastructure for cross-platform devel-
opment of applications for mobile devices while avoiding multiple develop-
ments as far as possible.

• Realization of image recognition processes that operate even without a per-
manent internet connection. Implementation of these processes based on the
model-driven development infrastructure created.

• Realization of a mobile system whereby maintenance and assembly activities
can be made safer and users can be better protected. Therefore, it is essen-
tial to identify machinery and equipment accurately and provide handling
information at the right time and at the right place.

• Development of algorithms for automatic detection and selection of AR tech-
nologies to be used (e.g., computer vision, compass). These should be suitable
for both indoor and outdoor use.

The consortium comprises the Department MND (Mathematics, Natural science, D.4
Data science) of the Technischen Hochschule Mittelhessen (THM), advenco Consulting
GmbH in Giessen, and the Department of Computer Science of the Philipps-University
in Marburg. The THM has many years of experience in software development,
computer graphics, and image processing, while advenco provides software so-
lutions for manufacturing companies that use mobile technologies productively.
Philipps-University has proven expertise in the field of model-driven software
development.

1 HA - Project no.: 355/12-45

292 Appendix D. Miscellaneous

D.2 The Mobile Application key2guide

The mobile application key2guide, developed by the advenco Consulting GmbH, is aD.5
mobile multimedia guide for a wide range of applications. Cities and municipalities,
exhibition and conference organizers, museums and tourist facilities, besides as
many other user groups, can use this application to create their own multimedia
guides as a mobile applications for smartphones and tablets.

The novelty of this mobile application lies in the self-service administration by itsD.6
customers. The mentioned institutions and organizations can use a user-friendly
web-based content management system (i.e., back end) to maintain the content of
the mobile application (i.e., front-end). The content management system provides
the configuration of general application settings. The look (e.g., colors, menu styles)
of mobile applications can be adapted to the customer’s corporate design. Mobile
application administrators may create new data objects (e.g., categories, collections,
and objects), configure predefined functions (e.g., filtering, searching, and sorting),
upload different kinds of media files (e.g., audio, video, and animations), compose
tours that refer to different kinds of objects and create calendars, surveys, and
lotteries.

The mobile application was realized for Android and iOS, while the content man-D.7
agement system may be used for both application variants. Thus, two native
implementations of the mobile application are available. The nativeness of the archi-
tecture enables standalone operation, while the mobile application is disconnected
to the server-based content management system. Initially, the mobile application
provides no data. Usually at the first startup, a mobile end user downloads a
prepared project file from the content management system which contains all data
records (stored in XML documents) and related files composed by the providers.
Henceforth, the mobile application requires only an occasional network connection
to update the replicated project or to upload data entered by the mobile end user
(e.g., from a survey or lottery).

(A) key2guide (iOS) (B) key2guide (Android)

(C) key2guide
Content Management

System (CMS)

FIGURE D.1: key2guide front-end variants and shared back end (CMS)

Figure D.1 shows the two front-end variants of the mobile application2 and theD.8
shared content management system. The content management system can not only
be used by different front ends of the same customer, but it also provides multiple
projects for different customers.

2 The releases of key2guide are shipped customized for the respective customers, i.e., built-in creden-
tials for the content management system, market place description.

D.3. The Mobile Application key2operate 293

D.3 The Mobile Application key2operate

The mobile application key2operate, developed by advenco Consulting GmbH, focuses D.9
on data acquisition during production and maintenance processes. Machines and
production plants are often not fully connected to an automatic monitoring or
production system due to technological or financial reasons. Hence, workers must
collect the relevant information manually and fill out paper-based forms. key2operate
constitutes an electronic version of these paper-based forms. The entered data are
validated immediately and sent to a production management system. It can be
connected to various production management systems. The mobile application
works bi-directionally. Data can be acquired and sent to the production management
system, or it can be retrieved by the mobile app from the production management
system.

Due to the individuality of production processes, key2operate provides flexible data D.10
modeling as well as process modeling. Customers may create individual processes
and corresponding graphical user interfaces (cf. Figure D.2). The mobile application
works as an interpreter for such process descriptions. Listing D.1 gives a process
description written in a domain-specific XML format. The general structure is
as follows: Workflows contain Processes. In turn, Processes contains one or more
Forms. These Forms contain Widgets. The behavior can be modeled by different
scripts, allowing calculation and dynamic linking to other Forms. The layout of the
graphical user interface is set by obligatory widget attributes (not shown).

LISTING D.1: Process description used in key2operate

1 <Workflows . . . >
2 < S t r i n g s >< S t r en=" Request " key=" 3032 " . . . / > . . . </ S t r i n g s >
3 . . .
4 <Process name=" Begin " s t a r t P r o c e s s =" t rue " . . . >
5 <Form name=" OrderList " startForm=" true " . . . >
6 <Widget name=" OrderListO " a c t i o n S c r i p t =" . . . i f statusQuery
7 isEmpty isTrueThen @successor i s " OrderStepList "
8 e l s e . . . " " e d i t a b l e =" t rue " . . . /> . . .
9 </Form > . . .

10 </Process >
11 </Workflows>

The mobile application was initially written for Java Micro Edition (J2ME) [51] [52], D.11
but soon there will be support for other platforms, e.g., Android (JSE) and iOS. The
mobile app can work offline due to its nativeness and corresponding architectural
features. It should be noted that offline capability is an essential requirement
because, in many industrial settings, Wi-Fi coverage cannot be provided.

(A) Login screen (B) Downtime report screen

FIGURE D.2: Graphical user interface of key2operate

295

Bibliography

[01] Altova Mobile Together. https://www.altova.com/mobiletog
ether. (last downloaded 2018-07-13).

[02] Amazon Europe Core S.à.r.l. http://www.amazon.de. (last down-
loaded 2018-07-13).

[03] Apache Cordova. https://cordova.apache.org/. (last down-
loaded 2018-07-13).

[04] Appian. Appian Mobile. http://www.appian.com/cp/mobile-
app-development. (last downloaded 2018-07-13).

[05] Applause. https://github.com/applause/applause. (last
downloaded 2018-07-13).

[06] Apple Inc. Apple Developer Connection. https://developer.apple.
com/devcenter/ios/. (last downloaded 2018-07-13).

[07] Apple Inc. Apple Pay. http://www.apple.com/apple-pay. (last
downloaded 2018-07-13).

[08] arconsis IT-Solutions GmbH. ModAgile. http://www.modagile-
mobile.de. (last downloaded 2016-04-26).

[09] Kent Beck, Mike Beedle, Arie Van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, Ron Jeffries, et al. Manifesto for agile software development. http:
//users.jyu.fi/~mieijala/kandimateriaali/Agile-Man
ifesto.pdf. (last downloaded 2018-07-13).

[10] BookFit. http://www.bookfitapp.co.uk/. (last downloaded
2018-07-13).

[11] Google Inc. Android Dashboards. https://developer.android.
com/about/dashboards/index.html. (last downloaded 2018-07-
13).

[12] Google Inc. Google Play Services. http://developer.android.
com/google/play-services. (last downloaded 2018-07-13).

[13] Google Inc. In-App Billing. http://developer.android.com/
google/play/billing/index.html. (last downloaded 2018-07-
13).

[14] Google Payment Corp. (GPC). Google Wallet. https://www.google.
com/wallet/. (last downloaded 2018-07-13).

[15] GymJam. http://www.thegymjam.com/. (last downloaded 2018-
07-13).

[16] GymSync. http://www.gymsync.co.uk/. (last downloaded 2018-
07-13).

[17] Hwaci - Applied Software Research. Sqlite. https://www.sqlite.
org/. (last downloaded 2018-07-13).

[18] International Business Machines Corp. IBM DB2 Everyplace Installation
and User’s Guide. ftp://ftp.software.ibm.com/software/
data/db2/everyplace/doc/enu/iug.pdf. (last downloaded
2018-07-13).

[19] International Business Machines Corp. IBM Rational Rhapsody. www.
ibm.com/software/awdtools/rhapsody/. (last downloaded
2018-07-13).

[20] Jean-Jacques Dubray. Canappi MDSL. https://github.com/cana
ppi. (last downloaded 2018-07-13).

https://www.altova.com/mobiletogether
https://www.altova.com/mobiletogether
http://www.amazon.de
https://cordova.apache.org/
http://www.appian.com/cp/mobile-app-development
http://www.appian.com/cp/mobile-app-development
https://github.com/applause/applause
https://developer.apple.com/devcenter/ios/
https://developer.apple.com/devcenter/ios/
http://www.apple.com/apple-pay
http://www.modagile-mobile.de
http://www.modagile-mobile.de
http://users.jyu.fi/~mieijala/kandimateriaali/Agile-Manifesto.pdf
http://users.jyu.fi/~mieijala/kandimateriaali/Agile-Manifesto.pdf
http://users.jyu.fi/~mieijala/kandimateriaali/Agile-Manifesto.pdf
http://www.bookfitapp.co.uk/
https://developer.android.com/about/dashboards/index.html
https://developer.android.com/about/dashboards/index.html
http://developer.android.com/google/play-services
http://developer.android.com/google/play-services
http://developer.android.com/google/play/billing/index.html
http://developer.android.com/google/play/billing/index.html
https://www.google.com/wallet/
https://www.google.com/wallet/
http://www.thegymjam.com/
http://www.gymsync.co.uk/
https://www.sqlite.org/
https://www.sqlite.org/
ftp://ftp.software.ibm.com/software/data/db2/everyplace/doc/enu/iug.pdf
ftp://ftp.software.ibm.com/software/data/db2/everyplace/doc/enu/iug.pdf
www.ibm.com/software/awdtools/rhapsody/
www.ibm.com/software/awdtools/rhapsody/
https://github.com/canappi
https://github.com/canappi

296 BIBLIOGRAPHY

[21] Johan den Haan. 15 Reasons Why You Should Start Using Model Driven
Development. http://www.theenterprisearchitect.eu/blog
/2009/11/25/. (last downloaded 2018-07-13).

[22] Koukaam. Koukaam NETIO. http://www.koukaam.se/. (last down-
loaded 2018-07-13).

[23] Massachusetts Institute of Technology. App Inventor.
http://appinventor.mit.edu. (last downloaded 2018-07-13).

[24] Matthias Bohlen. AndroMDA Version 3.3. www.andromda.org. (last
downloaded 2018-07-13).

[25] Mendix. Mendix App Platform. https://www.mendix.com/. (last
downloaded 2018-07-13).

[26] Metaio Inc. Metaio SDK. http://www.metaio.com/sdk. (last
downloaded 2015-05-28).

[27] Michael DeGusta. Are Smart Phones Spreading Faster than Any Technology
in Human History? https://www.technologyreview.com/s/
427787/are-smart-phones-spreading-faster-than-any-
technology-in-human-history/. (last downloaded 2018-07-13).

[28] Microsoft Corp. Microsoft – Beginner’s Guide to SQL Server Compact.
https://msdn.microsoft.com/en-us/data/ff687144. (last
downloaded 2018-07-13).

[29] Mobile World Live. Visa deal eases PayPal’s way into offline payment.
http://www.mobileworldlive.com/money/news-money/
visa-deal-eases-paypals-way-into-offline-payments/.
(last downloaded 2018-07-13).

[30] Morfeo Competence Center. Morfeo MyMobileWeb. https://web.
archive.org/web/20130515132358/http://mymobileweb.
morfeo-project.org:80/. (last downloaded 2018-07-13).

[31] Object Management Group (OMG) / Business Process Management
Initiative (BPMI). Business Process Model And Notation (BPMN) Version
2.0. http://www.omg.org/spec/BPMN/2.0. (last downloaded
2018-07-13).

[32] Object Management Group (OMG). Human-Usable Textual Notation
Version 1.0. http://www.omg.org/cgi-bin/doc?formal/2004-
08-01. (last downloaded 2018-07-13).

[33] Object Management Group (OMG). The Model-Driven Architecture,
Guide Version 1.0.1. www.omg.org/cgi-bin/doc?omg/03-06-
01.pdf. (last downloaded 2018-07-13).

[34] Object Management Group (OMG). MOF Core specification Ver. 2.4.1. h
ttp://www.omg.org/spec/MOF/2.4.1/PDF/. (last downloaded
2018-07-13).

[35] Object Management Group (OMG). Object Constraint Language (OCL)
Version 2.4. http://www.omg.org/spec/OCL/2.4. (last down-
loaded 2018-07-13).

[36] Object Management Group (OMG). OMG Unified Modeling Language
Infrastructure Specification - Version 2.4.1. http://www.omg.org/
spec/UML/2.4.1/Infrastructure/PDF. (last downloaded 2018-
07-13).

[37] Object Management Group (OMG). OMG Unified Modeling Language
Superstructure Specification - Version 2.4.1. http://www.omg.org/
spec/UML/2.4.1/Superstructure/PDF. (last downloaded 2018-
07-13).

[38] Oracle Corp. Oracle R⃝ Database Lite Getting Started Guide. https://
docs.oracle.com/cd/E12095_01/doc.10303/e12080.pdf.
(last downloaded 2018-07-13).

[39] Organization for the Advancement of Structured Information Stan-
dards (OASIS). Web Services Business Process Execution Language (WS-
BPEL) Version 2.0. http://docs.oasis-open.org/wsbpel/2.
0/OS/wsbpel-v2.0-OS.html. (last downloaded 2018-07-13).

http://www.theenterprisearchitect.eu/blog/2009/11/25/
http://www.theenterprisearchitect.eu/blog/2009/11/25/
http://www.koukaam.se/
http://appinventor.mit.edu
www.andromda.org
https://www.mendix.com/
http://www.metaio.com/sdk
https://www.technologyreview.com/s/427787/are-smart-phones-spreading-faster-than-any-technology-in-human-history/
https://www.technologyreview.com/s/427787/are-smart-phones-spreading-faster-than-any-technology-in-human-history/
https://www.technologyreview.com/s/427787/are-smart-phones-spreading-faster-than-any-technology-in-human-history/
https://msdn.microsoft.com/en-us/data/ff687144
http://www.mobileworldlive.com/money/news-money/visa-deal-eases-paypals-way-into-offline-payments/
http://www.mobileworldlive.com/money/news-money/visa-deal-eases-paypals-way-into-offline-payments/
https://web.archive.org/web/20130515132358/http://mymobileweb.morfeo-project.org:80/
https://web.archive.org/web/20130515132358/http://mymobileweb.morfeo-project.org:80/
https://web.archive.org/web/20130515132358/http://mymobileweb.morfeo-project.org:80/
http://www.omg.org/spec/BPMN/2.0
http://www.omg.org/cgi-bin/doc?formal/2004-08-01
http://www.omg.org/cgi-bin/doc?formal/2004-08-01
www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
http://www.omg.org/spec/MOF/2.4.1/PDF/
http://www.omg.org/spec/MOF/2.4.1/PDF/
http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF
http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
https://docs.oracle.com/cd/E12095_01/doc.10303/e12080.pdf
https://docs.oracle.com/cd/E12095_01/doc.10303/e12080.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html

BIBLIOGRAPHY 297

[40] Otto (GmbH & Co KG). https://www.otto.de. (last downloaded
2018-07-13).

[41] Paul Boocock. Jamda - Java Model Driven Architecture.
jamda.sourceforge.net/. (last downloaded 2018-07-13).

[42] PayPal. https://www.paypal.com. (last downloaded 2018-07-13).
[43] Philipps-Universität Marburg – Fachbereich 09 DaF-Abteilung. Wörter

für den Beruf. https://play.google.com/store/apps/detail
s?id=pkg.alphamar2app. (last downloaded 2018-07-13).

[44] Philipps-Universität Marburg – Fachbereich 12 Softwaretechnik /Tech-
nische Hochschule Mittelhessen – Fachbereich 08 (MND) KITE. MoD-
ELS2014: Conference Guide. https://play.google.com/store/
apps/details?id=modelsconference.android. (last down-
loaded 2018-07-13).

[45] Philipps-Universität Marburg – Fachbereich 12 Softwaretechnik /Tech-
nische Hochschule Mittelhessen – Fachbereich 08 (MND) KITE. Phone-
Book. https://www.uni-marburg.de/fb12/arbeitsgruppen/
swt/research/software/pimar1?language_sync=1#phone-
book. (last downloaded 2018-07-13).

[46] Philipps-Universität Marburg – Fachbereich 12 Softwaretechnik. Case
examples. http://www.uni-marburg.de/fb12/arbeitsgrup
pen/swt/research/esec17/caseexamples. (last downloaded
2018-07-13).

[47] SAP Mobile Platform 3.0. https://www.sap.com/trends/mobil
e-technology.html. (last downloaded 2018-07-13).

[48] StatCounter - Free Invisible Web Tracker, Hit Counter and Web Stats.
Desktop, mobile, and tablet comparison. http://gs.statcounter.
com/#desktop+mobile+tablet-comparison-ww-monthly-
201610-201610-bar. (last downloaded 2018-07-13).

[49] Statista GmbH. The Average Smartphone User Has Installed 26 Apps.
https://www.statista.com/chart/1435/top-10-countri
es-by-app-usage/. (last downloaded 2018-07-13).

[50] Statista GmbH and EHI Retail Institute GmbH. Study ’Der deutsche
E-Commerce-Markt 2014’. http://www.ibusiness.de/shop/db/
ib_shop.055782bma.html. (last downloaded 2018-07-13).

[51] Sun Microsystems, Inc. JSR 30: J2ME R⃝Connected, Limited Device Con-
figuration. https://jcp.org/en/jsr/detail?id=30. (last
downloaded 2018-07-13).

[52] Sun Microsystems, Inc. JSR 37: Mobile Information Device Profile for the
J2ME R⃝Platform. https://jcp.org/en/jsr/detail?id=37.
(last downloaded 2018-07-13).

[53] Sun Microsystems, Inc. Java Persistence 2.1 Specification. https://jcp.
org/en/jsr/detail?id=338. (last downloaded 2018-07-13).

[54] Sybase Inc. / iAnywhere Solutions, Inc. Adaptive Server R⃝ Anywhere
9.0.2 – Adaptive Server Anywhere SQL User’s Guide. http://info
center.sybase.com/archive/topic/com.sybase.help.
adaptive_server_anywhere_9.0.2/pdf/asa902/dbugen9.
pdf. (last downloaded 2018-07-13).

[55] Sybase Inc. / iAnywhere Solutions, Inc. Adaptive Server R⃝ Anywhere
9.0.2 – SQL Remote TM User’s Guide. http://infocenter.sybase.
com/archive/topic/com.sybase.help.adaptive_server_
anywhere_9.0.2/pdf/asa902/dbsren9.pdf. (last downloaded
2018-07-13).

[56] Sybase Inc. / iAnywhere Solutions, Inc. Adaptive Server R⃝ Anywhere
9.0.2 – Introducing SQL Anywhere R⃝ Studio. http://infocenter.
sybase.com/archive/topic/com.sybase.help.adaptive_
server_anywhere_9.0.2/pdf/asa902/dbfgen9.pdf. (last
downloaded 2018-07-13).

https://www.otto.de
jamda.sourceforge.net/
https://www.paypal.com
https://play.google.com/store/apps/details?id=pkg.alphamar2app
https://play.google.com/store/apps/details?id=pkg.alphamar2app
https://play.google.com/store/apps/details?id=modelsconference.android
https://play.google.com/store/apps/details?id=modelsconference.android
https://www.uni-marburg.de/fb12/arbeitsgruppen/swt/research/software/pimar1?language_sync=1#phone-book
https://www.uni-marburg.de/fb12/arbeitsgruppen/swt/research/software/pimar1?language_sync=1#phone-book
https://www.uni-marburg.de/fb12/arbeitsgruppen/swt/research/software/pimar1?language_sync=1#phone-book
http://www.uni-marburg.de/fb12/arbeitsgruppen/swt/research/esec17/caseexamples
http://www.uni-marburg.de/fb12/arbeitsgruppen/swt/research/esec17/caseexamples
https://www.sap.com/trends/mobile-technology.html
https://www.sap.com/trends/mobile-technology.html
http://gs.statcounter.com/#desktop+mobile+tablet-comparison-ww-monthly-201610-201610-bar
http://gs.statcounter.com/#desktop+mobile+tablet-comparison-ww-monthly-201610-201610-bar
http://gs.statcounter.com/#desktop+mobile+tablet-comparison-ww-monthly-201610-201610-bar
https://www.statista.com/chart/1435/top-10-countries-by-app-usage/
https://www.statista.com/chart/1435/top-10-countries-by-app-usage/
http://www.ibusiness.de/shop/db/ib_shop.055782bma.html
http://www.ibusiness.de/shop/db/ib_shop.055782bma.html
https://jcp.org/en/jsr/detail?id=30
https://jcp.org/en/jsr/detail?id=37
https://jcp.org/en/jsr/detail?id=338
https://jcp.org/en/jsr/detail?id=338
http://infocenter.sybase.com/archive/topic/com.sybase.help.adaptive_server_anywhere_9.0.2/pdf/asa902/dbugen9.pdf
http://infocenter.sybase.com/archive/topic/com.sybase.help.adaptive_server_anywhere_9.0.2/pdf/asa902/dbugen9.pdf
http://infocenter.sybase.com/archive/topic/com.sybase.help.adaptive_server_anywhere_9.0.2/pdf/asa902/dbugen9.pdf
http://infocenter.sybase.com/archive/topic/com.sybase.help.adaptive_server_anywhere_9.0.2/pdf/asa902/dbugen9.pdf
http://infocenter.sybase.com/archive/topic/com.sybase.help.adaptive_server_anywhere_9.0.2/pdf/asa902/dbsren9.pdf
http://infocenter.sybase.com/archive/topic/com.sybase.help.adaptive_server_anywhere_9.0.2/pdf/asa902/dbsren9.pdf
http://infocenter.sybase.com/archive/topic/com.sybase.help.adaptive_server_anywhere_9.0.2/pdf/asa902/dbsren9.pdf
http://infocenter.sybase.com/archive/topic/com.sybase.help.adaptive_server_anywhere_9.0.2/pdf/asa902/dbfgen9.pdf
http://infocenter.sybase.com/archive/topic/com.sybase.help.adaptive_server_anywhere_9.0.2/pdf/asa902/dbfgen9.pdf
http://infocenter.sybase.com/archive/topic/com.sybase.help.adaptive_server_anywhere_9.0.2/pdf/asa902/dbfgen9.pdf

298 BIBLIOGRAPHY

[57] Technische Hochschule Mittelhessen – Fachbereich 08 (MND) KITE /
Philipps-Universität Marburg – Fachbereich 12 Softwaretechnik. PI-
MAR Mathematikum. https://play.google.com/store/apps/
details?id=mathematikum.android. (last downloaded 2018-07-
13).

[58] The Eclipse Foundation. Eclipse ATL Transformation Language. http:
//www.eclipse.org/atl. (last downloaded 2018-07-13).

[59] The Eclipse Foundation. The connected data objects model repsitory project
(CDO). http://www.eclipse.org/cdo. (last downloaded 2018-
07-13).

[60] The Eclipse Foundation. Eclipse Edapt. http://www.eclipse.org/
edapt. (last downloaded 2018-07-13).

[61] The Eclipse Foundation. Eclipse EGL Development Tools (EDT). http:
//www.eclipse.org/edt. (last downloaded 2018-07-13).

[62] The Eclipse Foundation. Eclipse EMF Compare. http://www.eclips
e.org/emf/compare. (last downloaded 2018-07-13).

[63] The Eclipse Foundation. Eclipse EMF Refactor. http://www.eclips
e.org/emf-refactor. (last downloaded 2018-07-13).

[64] The Eclipse Foundation. The EMFStore project. http://www.eclips
e.org/emfstore. (last downloaded 2018-07-13).

[65] The Eclipse Foundation. Graphical Modeling Framework. http://www.
eclipse.org/gmf. (last downloaded 2018-07-13).

[66] The Eclipse Foundation. Eclipse Henshin. http://www.eclipse.
org/henshin. (last downloaded 2018-07-13).

[67] The Eclipse Foundation. Java Emitter Templates (JET). http://www.e
clipse.org/articles/Article-JET/jet_tutorial1.html.
(last downloaded 2018-07-13).

[68] The Eclipse Foundation. Jubula Functional Testing Tool. http://www.
eclipse.org/jubula/. (last downloaded 2018-07-13).

[69] The Eclipse Foundation. RCP Testing Tool (RCPTT). http://www.
eclipse.org/rcptt/. (last downloaded 2018-07-13).

[70] The Eclipse Foundation. Eclipse Sirius. http://www.eclipse.org/
sirius. (last downloaded 2018-07-13).

[71] The Eclipse Foundation. Eclipse Teneo. https://wiki.eclipse.
org/Teneo. (last downloaded 2018-07-13).

[72] The Eclipse Foundation. Eclipse Xtext. http://www.eclipse.org/
Xtext. (last downloaded 2018-07-13).

[73] Tutorial “PIMAR Workshop”. https://srv55.svn-repos.de/
dev1018/pimar/documentation/html/index.html?Tutori
al.html. (last downloaded 2018-07-13).

[74] University of Illinois. The Gaia Project. http://gaia.cs.uiuc.
edu/. (last downloaded 2018-07-13).

[75] W3C World Wide Web Consortium. State Chart XML (SCXML): State
Machine Notation for Control Abstraction. https://www.w3.org/TR/
2015/REC-scxml-20150901/. (last downloaded 2018-07-13).

[76] W3C World Wide Web Consortium. Web Content Accessibility Guidelines
2.0. http://www.w3.org/TR/2008/REC-WCAG20-20081211/.
(last downloaded 2018-07-13).

[77] WebRatio. WebRatio Mobile Platform. http://www.webratio.com/
site/content/en/mobile- app- development. (last down-
loaded 2018-07-13).

[78] Zalando SE. https://www.zalando.de. (last downloaded 2018-07-
13).

[Abo+14] Saeid Abolfazli, Zohreh Sanaei, Abdullah Gani, Feng Xia, and Laurence
T. Yang. “Rich Mobile Applications: Genesis, taxonomy, and open
issues”. In: Journal Network and Computer Applications 40 (2014), pp. 345–
362.

https://play.google.com/store/apps/details?id=mathematikum.android
https://play.google.com/store/apps/details?id=mathematikum.android
http://www.eclipse.org/atl
http://www.eclipse.org/atl
http://www.eclipse.org/cdo
http://www.eclipse.org/edapt
http://www.eclipse.org/edapt
http://www.eclipse.org/edt
http://www.eclipse.org/edt
http://www.eclipse.org/emf/compare
http://www.eclipse.org/emf/compare
http://www.eclipse.org/emf-refactor
http://www.eclipse.org/emf-refactor
http://www.eclipse.org/emfstore
http://www.eclipse.org/emfstore
http://www.eclipse.org/gmf
http://www.eclipse.org/gmf
http://www.eclipse.org/henshin
http://www.eclipse.org/henshin
http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html
http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html
http://www.eclipse.org/jubula/
http://www.eclipse.org/jubula/
http://www.eclipse.org/rcptt/
http://www.eclipse.org/rcptt/
http://www.eclipse.org/sirius
http://www.eclipse.org/sirius
https://wiki.eclipse.org/Teneo
https://wiki.eclipse.org/Teneo
http://www.eclipse.org/Xtext
http://www.eclipse.org/Xtext
https://srv55.svn-repos.de/dev1018/pimar/documentation/html/index.html?Tutorial.html
https://srv55.svn-repos.de/dev1018/pimar/documentation/html/index.html?Tutorial.html
https://srv55.svn-repos.de/dev1018/pimar/documentation/html/index.html?Tutorial.html
http://gaia.cs.uiuc.edu/
http://gaia.cs.uiuc.edu/
https://www.w3.org/TR/2015/REC-scxml-20150901/
https://www.w3.org/TR/2015/REC-scxml-20150901/
http://www.w3.org/TR/2008/REC-WCAG20-20081211/
http://www.webratio.com/site/content/en/mobile-app-development
http://www.webratio.com/site/content/en/mobile-app-development
https://www.zalando.de

BIBLIOGRAPHY 299

[Abo+99] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. “Towards a Better Understanding of Context
and Context-Awareness”. In: Handheld and Ubiquitous Computing, First
International Symposium, HUC’99, Karlsruhe, Germany, September 27-29,
1999, Proceedings. Ed. by Hans-Werner Gellersen. Vol. 1707. Lecture
Notes in Computer Science. Springer, 1999, pp. 304–307.

[Abr+04] Pekka Abrahamsson, Antti Hanhineva, Hanna Hulkko, Tuomas Ihme,
Juho Jäälinoja, Mikko Korkala, Juha Koskela, Pekka Kyllönen, and
Outi Salo. “Mobile-D: an agile approach for mobile application devel-
opment”. In: Companion to the 19th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2004, October 24-28, 2004, Vancouver, BC, Canada. Ed. by John
M. Vlissides and Douglas C. Schmidt. ACM, 2004, pp. 174–175.

[Abr05] Pekka Abrahamsson. “Keynote: Mobile software development–the
business opportunity of today”. In: Proceedings of the International Con-
ference on Software Development, Reykjavik, Iceland. Ed. by Benediktssson
O., Abrahamsson P., Dalcer D., Hvannberg E. T., O’Connor R., and
Thorbergsson H. University of Iceland Press, 2005, pp. 20–23.

[AC06] Michal Antkiewicz and Krzysztof Czarnecki. “Framework-Specific
Modeling Languages with Round-Trip Engineering”. In: Model Driven
Engineering Languages and Systems, 9th International Conference, MoD-
ELS 2006, Genova, Italy, October 1-6, 2006, Proceedings. Ed. by Oscar
Nierstrasz, Jon Whittle, David Harel, and Gianna Reggio. Vol. 4199.
Lecture Notes in Computer Science. Springer, 2006, pp. 692–706.

[Ady+00] Atul Adya, Barbara Liskov, and Patrick E. O’Neil. “Generalized Isola-
tion Level Definitions”. In: Proceedings of the 16th International Confer-
ence on Data Engineering, San Diego, California, USA, February 28 - March
3, 2000. Ed. by David B. Lomet and Gerhard Weikum. IEEE Computer
Society, 2000, pp. 67–78.

[AI10] S.A. Ahson and M. Ilyas. Mobile Web 2.0: Developing and Delivering
Services to Mobile Devices. Boca Raton (FL), New York City (NY) USA,
London UK: CRC Press, 2010.

[Ail+02] Heikki Ailisto, Petteri Alahuhta, Ville Haataja, Vesa Kyllönen, and
Mikko Lindholm. “Structuring context aware applications: Five-layer
model and example case”. In: UbiComp 2002: Ubiquitous Computing: 4th
International Conference, Göteborg, Sweden, September 29-October 1, 2002.
Proceedings. Ed. by Gaetano Borriello and Lars E Holmquist. Springer
Science & Business Media, 2002, pp. 1–5.

[AK03] Colin Atkinson and Thomas Kuhne. “Model-driven development: a
metamodeling foundation”. In: IEEE software 20.5 (2003), pp. 36–41.

[Ale12] P. Alencar. Handbook of Research on Mobile Software Engineering: Design,
Implementation, and Emergent Applications: Design, Implementation, and
Emergent Applications. Hershey (PA) USA: IGI Global, 2012.

[Ali97] Daniel G. Aliaga. “Virtual Objects in the Real World”. In: Communica-
tions of the ACM 40.3 (1997), pp. 49–54.

[All+10] S. Allen, V. Graupera, and L. Lundrigan. Pro Smartphone Cross-Platform
Development: iPhone, Blackberry, Windows Mobile and Android Develop-
ment and Distribution. New York City (NY) USA: Apress, 2010.

[Alm+06] João Paulo A. Almeida, Maria-Eugenia Iacob, Henk Jonkers, and Dick
A. C. Quartel. “Model-Driven Development of Context-Aware Ser-
vices”. In: Distributed Applications and Interoperable Systems, 6th IFIP WG
6.1 International Conference, DAIS 2006, Bologna, Italy, June 14-16, 2006,
Proceedings. Ed. by Frank Eliassen and Alberto Montresor. Vol. 4025.
Lecture Notes in Computer Science. Springer, 2006, pp. 213–227.

[Amb12] Scott Ambler. Agile Database Techniques: Effective Strategies for the Agile
Software Developer. New York City (NY) USA: Wiley, 2012.

[Are+10] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause,
and Gabriele Taentzer. “Henshin: Advanced Concepts and Tools for

300 BIBLIOGRAPHY

In-Place EMF Model Transformations”. In: Model Driven Engineering
Languages and Systems - 13th International Conference, MODELS 2010,
Oslo, Norway, October 3-8, 2010, Proceedings, Part I. Ed. by Dorina C.
Petriu, Nicolas Rouquette, and Øystein Haugen. Vol. 6394. Lecture
Notes in Computer Science. Springer, 2010, pp. 121–135.

[AT13] Thorsten Arendt and Gabriele Taentzer. “A tool environment for qual-
ity assurance based on the Eclipse Modeling Framework”. In: Auto-
mated Software Engineering 20.2 (2013), pp. 141–184.

[Aye+07a] Dhouha Ayed, Didier Delanote, and Yolande Berbers. MDD Approach
and Evaluation of Development of Context-Aware Applications. Tech. rep.
Katholieke Universiteit Leuven Belgium – CW495 Dept. of Computer
Science, 2007.

[Aye+07b] Dhouha Ayed, Didier Delanote, and Yolande Berbers. “MDD Approach
for the Development of Context-Aware Applications”. In: Modeling and
Using Context, 6th International and Interdisciplinary Conference, CON-
TEXT 2007, Roskilde, Denmark, August 20-24, 2007, Proceedings. Ed. by
Boicho N. Kokinov, Daniel C. Richardson, Thomas Roth-Berghofer, and
Laure Vieu. Vol. 4635. Lecture Notes in Computer Science. Springer,
2007, pp. 15–28.

[B’f04] Reza B’far. Mobile computing principles: designing and developing mobile
applications with UML and XML. Cambridge UK: Cambridge University
Press, 2004.

[Bac+12] Philip Bacon, Reinhard Budde, Karlheinz Kautz, Karin Kuhlenkamp,
and Heinz Züllighoven. Prototyping: An Approach to Evolutionary System
Development. Berlin, Heidelberg GER: Springer, 2012.

[Bae11] Nick Baetens. Comparing graphical DSL editors: AToM3, GMF, MetaEdit.
Tech. rep. University of Antwerp, 2011.

[Bal+04] Simonetta Balsamo, Antinisca Di Marco, Paola Inverardi, and Marta
Simeoni. “Model-Based Performance Prediction in Software Devel-
opment: A Survey”. In: IEEE Transactions on Software Engineering 30.5
(2004), pp. 295–310.

[Bal+07] Matthias Baldauf, Schahram Dustdar, and Florian Rosenberg. “A sur-
vey on context-aware systems”. In: International Journal of Ad Hoc and
Ubiquitous Computing 2.4 (2007), pp. 263–277.

[Bar+99] R. Bardohl, M. Minas, G. Taentzer, and A. Schürr. “Application of
Graph Transformation to Visual Languages”. In: Handbook of Graph
Grammars and Computing by Graph Transformation. Ed. by H. Ehrig, G.
Engels, H.-J. Kreowski, and G. Rozenberg. World Scientific Publishing
Co., Inc., 1999, pp. 105–180.

[Bat05] Don S. Batory. “Feature Models, Grammars, and Propositional For-
mulas”. In: Software Product Lines, 9th International Conference, SPLC
2005, Rennes, France, September 26-29, 2005, Proceedings. Ed. by J. Henk
Obbink and Klaus Pohl. Vol. 3714. Lecture Notes in Computer Science.
Springer, 2005, pp. 7–20.

[Bau+06] Benoit Baudry, Trung Dinh-Trong, Jean-Marie Mottu, Devon Sim-
monds, Robert France, Sudipto Ghosh, Franck Fleurey, and Yves Le
Traon. “Model transformation testing challenges”. In: Proceedings of the
ECMDA Workshop on Integration of Model Driven Development and Model
Driven Testing, Bilbao, Spain. Ed. by Tom Ritter Hajo Eichler. Fraunhofer
IRB Verlag, 2006.

[BC04] Gregory Biegel and Vinny Cahill. “A Framework for Developing Mo-
bile, Context-aware Applications”. In: Proceedings of the Second IEEE
International Conference on Pervasive Computing and Communications (Per-
Com 2004), 14-17 March 2004, Orlando, FL, USA. IEEE Computer Society,
2004, pp. 361–365.

BIBLIOGRAPHY 301

[Beh10] Heiko Behrens. “MDSD for the iPhone: developing a domain-specific
language and IDE tooling to produce real world applications for mo-
bile devices”. In: Companion to the 25th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming, Systems, Languages, and Applica-
tions, SPLASH/OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada,
USA. Ed. by William R. Cook, Siobhán Clarke, and Martin C. Rinard.
ACM, 2010, pp. 123–128.

[Ben+11] Amel Bennaceur, Robert B. France, Giordano Tamburrelli, Thomas
Vogel, Pieter J. Mosterman, Walter Cazzola, Fábio M. Costa, Alfonso
Pierantonio, Matthias Tichy, Mehmet Aksit, Pär Emmanuelson, Gang
Huang, Nikolaos Georgantas, and David Redlich. “Mechanisms for
Leveraging Models at Runtime in Self-adaptive Software”. In: Mod-
els@run.time - Foundations, Applications, and Roadmaps [Dagstuhl Seminar
11481, November 27 - December 2, 2011]. Ed. by Nelly Bencomo, Robert B.
France, Betty H. C. Cheng, and Uwe Aßmann. Vol. 8378. Lecture Notes
in Computer Science. Springer, 2011, pp. 19–46.

[Ber+04] Guy Bernard, Jalel Ben-Othman, Luc Bouganim, Gérôme Canals, So-
phie Chabridon, Bruno Defude, Jean Ferrié, Stéphane Gançarski, Rachid
Guerraoui, Pascal Molli, Philippe Pucheral, Claudia Roncancio, Pa-
tricia Serrano-Alvarado, and Patrick Valduriez. “Mobile Databases: a
Selection of Open Issues and Research Directions”. In: ACM SIGMOD
Record 33.2 (2004), pp. 78–83.

[Ber+87] Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman. Con-
currency Control and Recovery in Database Systems. Boston (MA) USA:
Addison-Wesley, 1987.

[Ber+95] Hal Berenson, Philip A. Bernstein, Jim Gray, Jim Melton, Elizabeth J.
O’Neil, and Patrick E. O’Neil. “A Critique of ANSI SQL Isolation Lev-
els”. In: Proceedings of the 1995 ACM SIGMOD International Conference
on Management of Data, San Jose, California, May 22-25, 1995. Ed. by
Michael J. Carey and Donovan A. Schneider. ACM Press, 1995, pp. 1–
10.

[Bet+10] Claudio Bettini, Oliver Brdiczka, Karen Henricksen, Jadwiga Indul-
ska, Daniela Nicklas, Anand Ranganathan, and Daniele Riboni. “A
survey of context modelling and reasoning techniques”. In: Pervasive
and Mobile Computing 6.2 (2010), pp. 161–180.

[Bet13] Lorenzo Bettini. Implementing Domain-Specific Languages with Xtext and
Xtend. Birmingham UK: Packt Publishing Ltd., 2013.

[BH16] Achim D. Brucker and Michael Herzberg. “On the Static Analysis
of Hybrid Mobile Apps - A Report on the State of Apache Cordova
Nation”. In: Engineering Secure Software and Systems - 8th International
Symposium, ESSoS 2016, London, UK, April 6-8, 2016. Proceedings. Ed.
by Juan Caballero, Eric Bodden, and Elias Athanasopoulos. Vol. 9639.
Lecture Notes in Computer Science. Springer, 2016, pp. 72–88.

[Bis11] R. H. Bishop. Learning with LabVIEW. London UK: Pearson Education,
2011.

[Boe79] Barry W. Boehm. “Guidelines for Verifying and Validating Software Re-
quirements and Design Specifications”. In: Proceedings of the European
Conference on Applied Information Technology of the International Feder-
ation for Information Processing, London, 25-28 September, 1979. Ed. by
P. A. Samet. North Holland, 1979, pp. 711–719.

[Boe84] Barry W. Boehm. “Verifying and Validating Software Requirements
and Design Specifications”. In: IEEE Software 1.1 (1984), pp. 75–88.

[Boo+05] Matthias Book, Volker Gruhn, Malte Hülder, and Clemens Schäfer. “A
Methodology for Deriving the Architectural Implications of Different
Degrees of Mobility in Information Systems”. In: New Trends in Software
Methodologies, Tools and Techniques - Proceedings of the Fifth SoMeT 2005,
September 28-30, 2005, Tokyo, Japan. Ed. by Hamido Fujita and Mohamed

302 BIBLIOGRAPHY

Mejri. Vol. 129. Frontiers in Artificial Intelligence and Applications.
IOS Press, 2005, pp. 281–292.

[Boo03] Paul Boocock. “A Framework for Rapid Development of Model Com-
pilers”. In: MDA Implementers’ Workshop Succeeding with Model Driven
Systems, May 12-15, 2003, Orlando, FL, USA. Ed. by Object Management
Group. Object Management Group, 2003.

[Bor+15] Kristopher Born, Thorsten Arendt, Florian Heß, and Gabriele Taentzer.
“Analyzing Conflicts and Dependencies of Rule-Based Transforma-
tions in Henshin”. In: Fundamental Approaches to Software Engineering
- 18th International Conference, FASE 2015, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2015, London,
UK, April 11-18, 2015. Proceedings. Ed. by Alexander Egyed and Ina
Schaefer. Vol. 9033. Lecture Notes in Computer Science. Springer, 2015,
pp. 165–168.

[BP88] Barry W. Boehm and Philip N. Papaccio. “Understanding and Con-
trolling Software Costs”. In: IEEE Transactions on Software Engineering
14.10 (1988), pp. 1462–1477.

[Bre+14] Timothy Bresnahan, Joe Orsini, and Pai-Ling Yin. “Platform Choice by
Mobile App Developers”. In: NBER Working Paper (2014).

[Bro+06] Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry, and Yves Le
Traon. “Metamodel-based Test Generation for Model Transformations:
an Algorithm and a Tool”. In: 17th International Symposium on Software
Reliability Engineering (ISSRE 2006), 7-10 November 2006, Raleigh, North
Carolina, USA. IEEE Computer Society, 2006, pp. 85–94.

[BS13] Hamid Bagheri and Kevin J. Sullivan. “Bottom-up model-driven devel-
opment”. In: 35th International Conference on Software Engineering, ICSE
’13, San Francisco, CA, USA, May 18-26, 2013. Ed. by David Notkin, Betty
H. C. Cheng, and Klaus Pohl. IEEE Computer Society, 2013, pp. 1221–
1224.

[Cal+02] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg,
Nathalie Souchon, Laurent Bouillon, Murielle Florins, and Jean Van-
derdonckt. “Plasticity of User Interfaces: A Revised Reference Frame-
work”. In: Task Models and Diagrams for User Interface Design: Proceedings
of the First International Workshop on Task Models and Diagrams for User
Interface Design - TAMODIA 2002, 18-19 July 2002, Bucharest, Romania.
Ed. by Costin Pribeanu and Jean Vanderdonckt. INFOREC Publishing
House Bucharest, 2002, pp. 127–134.

[Cal+03] Gaëlle Calvary, Joëlle Coutaz, David Thevenin, Quentin Limbourg,
Laurent Bouillon, and Jean Vanderdonckt. “A Unifying Reference
Framework for multi-target user interfaces”. In: Interacting with Com-
puters 15.3 (2003), pp. 289–308.

[Cer+00] Stefano Ceri, Piero Fraternali, and Aldo Bongio. “Web Modeling Lan-
guage (WebML): a modeling language for designing Web sites”. In:
Computer Networks 33.1-6 (2000), pp. 137–157.

[Cer+02] Stefano Ceri, Piero Fraternali, and Maristella Matera. “Conceptual
Modeling of Data-Intensive Web Applications”. In: IEEE Internet Com-
puting 6.4 (2002), pp. 20–30.

[Cer+03] Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara
Comai, and Maristella Matera. Designing data-intensive Web applications.
Burlington (MA) USA: Morgan Kaufmann, 2003.

[Cer+07] Stefano Ceri, Florian Daniel, Maristella Matera, and Federico Michele
Facca. “Model-driven development of context-aware Web applica-
tions”. In: ACM Transactions on Internet Technology (TOIT) 7.1 (2007),
p. 2.

[Cha+14] Salma Charkaoui, Zakaria Adraoui, and El Habib Benlahmar. “Cross-
platform mobile development approaches”. In: Third IEEE International
Colloquium in Information Science and Technology, CIST 2014, Tetouan, Mo-
rocco, October 20-22, 2014. Ed. by Mohammed El Mohajir, Mohammed

BIBLIOGRAPHY 303

Al Achhab, and Mohamed Chahhou. IEEE Computer Society, 2014,
pp. 188–191.

[Che+03] Harry Chen, Tim Finin, and Anupam Joshi. “An ontology for context-
aware pervasive computing environments”. In: Knowledge Engineering
Review 18.3 (2003), pp. 197–207.

[Che04] Harry Chen. “An intelligent broker architecture for pervasive context-
aware systems”. PhD thesis. University of Maryland, Baltimore County,
2004.

[Chr93] Panos K Chrysanthis. “Transaction Processing in Mobile Computing
Environment”. In: Proceedings of the IEEE Workshop on Advances in Par-
allel and Distributed Systems. Ed. by Bharat Bhargava. IEEE Computer
Society, 1993, pp. 77 –82.

[Cic+08] Antonio Cicchetti, Davide Di Ruscio, Romina Eramo, and Alfonso
Pierantonio. “Automating Co-evolution in Model-Driven Engineer-
ing”. In: 12th International IEEE Enterprise Distributed Object Computing
Conference, ECOC 2008, 15-19 September 2008, Munich, Germany. IEEE
Computer Society, 2008, pp. 222–231.

[CL11] Andre Charland and Brian LeRoux. “Mobile application development:
web vs. native”. In: Communications of the ACM 54.5 (2011), pp. 49–53.

[Cos+05a] Gennaro Costagliola, Vincenzo Deufemia, Giuseppe Polese, and Michele
Risi. “Building syntax-aware editors for visual languages”. In: Journal
of Visual Languages and Computing 16.6 (2005), pp. 508 –540.

[Cos+05b] Gennaro Costagliola, Vincenzo Deufemia, and Giuseppe Polese. “To-
wards Syntax-Aware Editors for Visual Languages”. In: Electronic Notes
in Theoretical Computer Science 127.4 (2005), pp. 107 –125.

[Cri92] John Crinnion. Evolutionary Systems Development: A Practical Guide to
the Use of Prototyping Within a Structured Systems Methodology. New
York City (NY) USA: Perseus Publishing, 1992.

[Cun+11] Thiago Ferraz V. da Cunha, Valéria Lelli Leitão Dantas, and Rossana
M. C. Andrade. “SLeSS: A Scrum and Lean Six Sigma Integration
Approach for the Development of Sofware Customization for Mobile
Phones”. In: 25th Brazilian Symposium on Software Engineering, SBES
2011, Sao Paulo, Brazil, September 28-30, 2011. IEEE Computer Society,
2011, pp. 283–292.

[DA00] Anind K Dey and Gregory D Abowd. “The context toolkit: Aiding the
development of context-aware applications”. In: Workshop on Software
Engineering for wearable and pervasive computing, June 6, 2000, Limerick,
Ireland. Proceedings. University of Washington, 2000, pp. 431–441.

[Dal+13] Isabelle Dalmasso, Soumya Kanti Datta, Christian Bonnet, and Navid
Nikaein. “Survey, comparison and evaluation of cross platform mobile
application development tools”. In: 2013 9th International Wireless Com-
munications and Mobile Computing Conference, IWCMC 2013, Sardinia,
Italy, July 1-5, 2013. Ed. by Roberto Saracco, Khaled Ben Letaief, Mario
Gerla, Sergio Palazzo, and Luigi Atzori. IEEE, 2013, pp. 323–328.

[DB92] Paul Dourish and Victoria Bellotti. “Awareness and Coordination in
Shared Workspaces”. In: CSCW ’92, Proceedings of the Conference on Com-
puter Supported Cooperative Work, Toronto, Canada, October 31 - Novem-
ber 4, 1992. Ed. by Marilyn Mantel and Ronald Baecker. ACM, 1992,
pp. 107–114.

[DD11] Josh Dehlinger and Jeremy Dixon. “Mobile application software engi-
neering: Challenges and research directions”. In: Workshop on Mobile
Software Engineering, 9th October 2011, Los Angeles, United States. Ed. by
Anthony I. Wassermann. mobileseworkshop.org, 2011.

[Deg+14] Sylvain Degrandsart, Serge Demeyer, Jan Van den Bergh, and Tom
Mens. “A transformation-based approach to context-aware modelling”.
In: Software & Systems Modeling 13.1 (2014), pp. 191–208.

[Dey+01] Anind K. Dey, Gregory D. Abowd, and Daniel Salber. “A Conceptual
Framework and a Toolkit for Supporting the Rapid Prototyping of

304 BIBLIOGRAPHY

Context-Aware Applications”. In: Human-Computer Interaction 16.2-4
(2001), pp. 97–166.

[Dey01] Anind K. Dey. “Understanding and Using Context”. In: Personal and
Ubiquitous Computing 5.1 (2001), pp. 4–7.

[DG00] Ravi A. Dirckze and Le Gruenwald. “A pre-serialization transaction
management technique for mobile multidatabases”. In: Mobile Networks
and Applications 5.4 (2000), pp. 311–321.

[DL+04] Juan De Lara, Hans Vangheluwe, and Manuel Alfonseca. “Meta-modelling
and graph grammars for multi-paradigm modelling in AToM3”. In:
Software & Systems Modeling 3.3 (2004), pp. 194–209.

[Dun+97] Margaret H. Dunham, Abdelsalam Helal, and Santosh Balakrishnan.
“A Mobile Transaction Model That Captures Both the Data and Move-
ment Behavior”. In: Mobile Networks and Applications 2.2 (1997), pp. 149–
162.

[Ehr+05] Karsten Ehrig, Claudia Ermel, Stefan Hänsgen, and Gabriele Taentzer.
“Generation of visual editors as eclipse plug-ins”. In: 20th IEEE/ACM
International Conference on Automated Software Engineering (ASE 2005),
November 7-11, 2005, Long Beach, CA, USA. Ed. by David F. Redmiles,
Thomas Ellman, and Andrea Zisman. ACM, 2005, pp. 134–143.

[Ehr+06] H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Fundamentals of Algebraic
Graph Transformation. Berlin, Heidelberg GER: Springer, 2006.

[Eis+01] Jacob Eisenstein, Jean Vanderdonckt, and Angel R. Puerta. “Applying
model-based techniques to the development of UIs for mobile com-
puters”. In: Proceedings of the 6th International Conference on Intelligent
User Interfaces, IUI 2001, Santa Fe, NM, USA, January 14-17, 2001. Ed. by
Candy L. Sidner and Johanna D. Moore. ACM, 2001, pp. 69–76.

[EK+15] Wafaa S El-Kassas, Bassem A Abdullah, Ahmed H Yousef, and Ayman
M Wahba. “Taxonomy of Cross-Platform Mobile Applications Devel-
opment Approaches”. In: Ain Shams Engineering Journal 8.2 (2015),
pp. 163–190.

[Elo+14] Nadia Elouali, Xavier Le Pallec, José Rouillard, and Jean-Claude Tarby.
“A Model-based Approach for Engineering Multimodal Mobile Inter-
actions”. In: Proceedings of the 12th International Conference on Advances
in Mobile Computing and Multimedia, Kaohsiung, Taiwan, December 8-10,
2014. Ed. by Shyue-Liang Leon Wang, Yu-Hui Tao, Liming Chen, and
Chung-Nan Lee. ACM, 2014, pp. 52–61.

[Emm+13] Christos Emmanouilidis, Remous-Aris Koutsiamanis, and Aimilia Tasi-
dou. “Mobile guides: Taxonomy of architectures, context awareness,
technologies and applications”. In: Journal of Network and Computer
Applications 36.1 (2013), pp. 103–125.

[Eri13] Ericsson. Ericsson mobility report: On the pulse of the Networked Society.
Tech. rep. Ericsson, Sweden, Tech. Rep. EAB-13:028853, 2013.

[Eri16] Ericsson. Ericsson mobility report: On the pulse of the Networked Society.
Tech. rep. Ericsson, Sweden, Tech. Rep. EAB-16:018498, 2016.

[Esc+14] Javier R Escolar, Cristina G Cachón, Ignacio Marín, Jean Vanderdonckt,
and Vivian Motti. “A Model-Based Approach to Generate Connection-
aware Applications for the Mobile Web”. In: Romanian Journal of Human-
Computer Interaction 7.2 (2014), p. 117.

[Fav04] Jean-Marie Favre. “Towards a basic theory to model model driven
engineering”. In: UML Modeling Languages and Applications: UML 2004
Satellite Activities Lisbon, Portugal, October 11-15, 2004, Revised Selected
Papers. Ed. by N.J. Nunes, B. Selic, A.R. da Silva, and A.T. Alvarez.
Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2004,
pp. 44–45.

BIBLIOGRAPHY 305

[FC04] Patrick Fahy and Siobhan Clarke. “CASS–a middleware for mobile
context-aware applications”. In: Workshop on context awareness, Co-
located at MobiSys’04 The Second International Conference on Mobile Sys-
tems, Applications and Services 2004 Boston, MA, USA – June 06 - 09, 2004.
ACM SIGMOBILE, 2004.

[FK05] William B. Frakes and Kyo Kang. “Software Reuse Research: Status
and Future”. In: IEEE Transactions on Software Engineering 31.7 (2005),
pp. 529–536.

[Flo+06] Jacqueline Floch, Svein O. Hallsteinsen, Erlend Stav, Frank Eliassen,
Ketil Lund, and Eli Gjørven. “Using Architecture Models for Runtime
Adaptability”. In: IEEE Software 23.2 (2006), pp. 62–70.

[Flo+14a] Harleen K Flora, Swati V Chande, and Xiaofeng Wang. “Adopting
an Agile Approach for the Development of Mobile Applications”. In:
International Journal of Computer Applications 94.17 (2014), pp. 43–50.

[Flo+14b] Harleen K Flora, Xiaofeng Wang, and Swati V Chande. “An Investi-
gation into Mobile Application Development Processes: Challenges
and Best Practices”. In: International Journal of Modern Education and
Computer Science 6.6 (2014), pp. 1–9.

[Fon07] Frédéric Fondement. “Concrete syntax definition for modeling lan-
guages”. PhD thesis. École Polytechnique Fédérale de Lausanne, 2007.

[Fra+14] Mirco Franzago, Henry Muccini, and Ivano Malavolta. “Towards a
Collaborative Framework for the Design and Development of Data-
intensive Mobile Applications”. In: Proceedings of the 1st International
Conference on Mobile Software Engineering and Systems. MOBILESoft
2014. ACM, 2014, pp. 58–61.

[Fra+15] Rita Francese, Michele Risi, Giuseppe Scanniello, and Genoveffa Tor-
tora. “A Qualitative Empirical Study in the Development of Multi-
platform Mobile Applications”. In: Product-Focused Software Process
Improvement - 16th International Conference, PROFES 2015, Bolzano, Italy,
December 2-4, 2015, Proceedings. Ed. by Pekka Abrahamsson, Luis Cor-
ral, Markku Oivo, and Barbara Russo. Vol. 9459. Lecture Notes in
Computer Science. Springer, 2015, pp. 471–478.

[Fuc09] Thomas Fuchß. Mobile Computing: Grundlagen und Konzepte für mobile
Anwendungen. (in german). Munich GER: Hanser, 2009.

[FV04] Murielle Florins and Jean Vanderdonckt. “Graceful degradation of
user interfaces as a design method for multiplatform systems”. In:
Proceedings of the 9th International Conference on Intelligent User Interfaces,
IUI 2004, Funchal, Madeira, Portugal, January 13-16, 2004. Ed. by Jean
Vanderdonckt, Nuno Jardim Nunes, and Charles Rich. ACM, 2004,
pp. 140–147.

[Gao+15] Lamia Gaouar, Abdelkrim Benamar, and Fethi Tarik Bendimerad.
“Model Driven Approaches to Cross Platform Mobile Development”.
In: Proceedings of the International Conference on Intelligent Information
Processing, Security and Advanced Communication, Batna, Algeria – Novem-
ber 23 - 25, 2015. Ed. by Djallel Eddine Boubiche, Faouzi Hidoussi, and
Homero Toral Cruz. New York, NY, USA: ACM, 2015, 19:1–19:5.

[Gar+06] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. “Deriv-
ing a textual notation from a metamodel: an experience on bridging
Modelware and Grammarware”. In: European Workshop on Milestones,
Models and Mappings for Model-Driven Architecture (3M4MDA), Bilbao,
Spain, July 11, 2006. Proceedings. Ed. by João Paulo Andrade Almeida,
Luís Ferreira Pires, and Marten van Sinderen. CTIT Workshop Proceed-
ings Series WP06-02. Centre for Telematic and Information Technology,
2006.

[Geo+07] Nektarios Georgalas, Shumao Ou, Manooch Azmoodeh, and Kun Yang.
“Towards a Model-Driven Approach for Ontology-Based Context-
Aware Application Development: A Case Study”. In: Model-based Method-
ologies for Pervasive and Embedded Software, 4th International Workshop on

306 BIBLIOGRAPHY

Model-based Methodologies for Pervasive and Embedded Software, MOM-
PES 2007, Braga, Portugal, March 31, 2007, Proceedings. Ed. by João M.
Fernandes, Ricardo Jorge Machado, Ridha Khédri, and Siobhán Clarke.
IEEE Computer Society, 2007, pp. 21–32.

[Ger+16] René Gerlach, Michael Guckert, Cornelius Malerczyk, Hans Christian
Arlt, Steffen Vaupel, Gabriele Taentzer, and Michael Fatum. “Mod-
ellgetriebene Entwicklung mobiler Anwendungen mit Augmented
Reality Funktionalität”. In: Mobile Anwendungen in Unternehmen. Ed.
by Thomas Barton, Christian Müller, and Christian Seel. Springer, 2016,
pp. 193–211.

[GH04] Ping Guo and Reiko Heckel. “Modeling and Simulation of Context-
Aware Mobile Systems”. In: 19th IEEE International Conference on Au-
tomated Software Engineering (ASE 2004), 20-25 September 2004, Linz,
Austria. IEEE Computer Society, 2004, pp. 430–433.

[GM83] Hector Garcia-Molina. “Using Semantic Knowledge for Transaction
Processing in a Distributed Database”. In: ACM Transactions on Database
Systems (TODS) 8.2 (1983), pp. 186–213.

[GM94] Saul Greenberg and David Marwood. “Real Time Groupware as a
Distributed System: Concurrency Control and Its Effect on the Inter-
face”. In: CSCW ’94, Proceedings of the Conference on Computer Supported
Cooperative Work, Chapel Hill, NC, USA, October 22-26, 1994. Ed. by
John B. Smith, F. Donelson Smith, and Thomas W. Malone. ACM, 1994,
pp. 207–217.

[Gol03a] Christoph Gollmick. “Client-oriented replication in Mobile Database
Environments”. In: International Conference on Management of Data and
Symposium on Principles Database and Systems (co-located with FCRC 2003
Conference) San Diego, CA, USA – June 09 - 12, 2003. Ed. by Zachary Ives,
Yannis Papakonstantinou, and Alon Halevy. ACM, 2003.

[Gol03b] Christoph Gollmick. “Replication in Mobile Database Environments: A
Client-Oriented Approach”. In: 14th International Workshop on Database
and Expert Systems Applications (DEXA’03), September 1-5, 2003, Prague,
Czech Republic. IEEE Computer Society, 2003, pp. 980–981.

[Gol06] Christoph Gollmick. “Konzept, Realisierung und Anwendung nutzer-
definierter Replikation in mobilen Datenbanksystemen”. PhD thesis.
University of Jena, Germany, 2006.

[GR11] Mark H. Goadrich and Michael P. Rogers. “Smart smartphone devel-
opment: iOS versus android”. In: Proceedings of the 42nd ACM technical
symposium on Computer science education, SIGCSE 2011, Dallas, TX, USA,
March 9-12, 2011. Ed. by Thomas J. Cortina, Ellen Lowenfeld Walker,
Laurie A. Smith King, and David R. Musicant. ACM, 2011, pp. 607–612.

[Gra+96] Jim Gray, Pat Helland, Patrick E. O’Neil, and Dennis E. Shasha. “The
Dangers of Replication and a Solution”. In: Proceedings of the 1996
ACM SIGMOD International Conference on Management of Data, Montreal,
Quebec, Canada, June 4-6, 1996. Ed. by H. V. Jagadish and Inderpal Singh
Mumick. ACM Press, 1996, pp. 173–182.

[Gro+14] Tor-Morten Gronli, Jarle Hansen, Gheorghita Ghinea, and Muham-
mad Younas. “Mobile application platform heterogeneity: Android vs
Windows Phone vs iOS vs Firefox OS”. In: Advanced Information Net-
working and Applications (AINA), 2014 IEEE 28th International Conference
on. IEEE, 2014, pp. 635–641.

[Gro09] R.C. Gronback. Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit. London UK: Pearson Education, 2009.

[Gru+07] Boris Gruschko, Dimitrios Kolovos, and Richard Paige. “Towards Syn-
chronizing Models with Evolving Metamodels”. In: Proceeding Inter-
natiol Workshop on Model-Driven Software Evolution at IEEE European
Conference on Software Maintenance and Reengineering (ECSMR) March
21-23, 2007. Ed. by Dalila Tamzalit. 2007.

BIBLIOGRAPHY 307

[Grø+10] Tor-Morten Grønli, Jarle Hansen, and Gheorghita Ghinea. “Android vs
Windows Mobile vs Java ME: a comparative study of mobile develop-
ment environments”. In: Proceedings of the 3rd International Conference
on Pervasive Technologies Related to Assistive Environments, PETRA 2010,
Samos, Greece, June 23-25, 2010. Ed. by Fillia Makedon. ACM Interna-
tional Conference Proceeding Series. ACM, 2010.

[Gu+04] Tao Gu, Hung Keng Pung, and Da Qing Zhang. “A middleware for
building context-aware mobile services”. In: Vehicular Technology Con-
ference, 2004. VTC 2004-Spring. 2004 IEEE 59th. Vol. 5. IEEE, 2004,
pp. 2656–2660.

[Guc+15] Michael Guckert, Cornelius Malerczyk, René Gerlach, Gabriele Taentzer,
Steffen Vaupel, and Michael Fatum. “Plattformunabhängige Entwick-
lung mobiler Anwendungen mit Augmented Reality-Funktionalität”.
In: Anwendungen und Konzepte in der Wirtschaftsinformatik – AKWI 3
(2015), pp. 14–18.

[GW13] Olivier Le Goaer and Sacha Waltham. “Yet another DSL for cross-
platforms mobile development”. In: Proceedings of the First Workshop
on the Globalization of Domain Specific Languages, GlobalDSL@ECOOP
2013, Montpellier, France, July 1, 2013. Ed. by Benoît Combemale, Walter
Cazzola, and Robert B. France. ACM, 2013, pp. 28–33.

[Ham+16] Nicholas A.S. Hamm, van Lochem M., Hoek G., Otjes R., van der
Sterren S., and Verhoeven H. “The Invisible Made Visible: Science
and Technology.” In: AiREAS: Sustainocracy for a Healthy City. Ed. by
Jean-Paul Close. Springer International Publishing, 2016.

[Hei+12] Henning Heitkötter, Sebastian Hanschke, and Tim A. Majchrzak. “Eval-
uating Cross-Platform Development Approaches for Mobile Applica-
tions”. In: Web Information Systems and Technologies - 8th International
Conference, WEBIST 2012, Porto, Portugal, April 18-21, 2012, Revised Se-
lected Papers. Ed. by José Cordeiro and Karl-Heinz Krempels. Vol. 140.
Lecture Notes in Business Information Processing. Springer, 2012,
pp. 120–138.

[Hei+13] Henning Heitkötter, Tim A. Majchrzak, and Herbert Kuchen. “Cross-
platform model-driven development of mobile applications with md2”.
In: Proceedings of the 28th Annual ACM Symposium on Applied Computing,
SAC ’13, Coimbra, Portugal, March 18-22, 2013. Ed. by Sung Y. Shin and
José Carlos Maldonado. ACM, 2013, pp. 526–533.

[Hei13] Henning Heitkötter. “Cross-platform development of mobile business
apps: findings on existing approaches and design of a novel model
driven solution”. PhD thesis. University of Münster, 2013.

[Hel+96] Abdelsalam Helal, Santosh Balakrishnan, Margaret Dunham, and
Ramez Elmasri. A Survey of Mobile Transaction Models. Tech. rep. 1259.
Purdue University – Department of Computer Science Technical Re-
ports, 1996.

[Hir+01] Roberto Hirsch, Andres Coratella, Miguel Felder, and Eduardo Ro-
driguez. “A Framework for Analyzing Mobile Transaction Models”.
In: Journal of Database Management 12.3 (2001), p. 36.

[Hof+03] Thomas Hofer, Wieland Schwinger, Mario Pichler, Gerhard Leon-
hartsberger, Josef Altmann, and Werner Retschitzegger. “Context-
Awareness on Mobile Devices - the Hydrogen Approach”. In: 36th
Hawaii International Conference on System Sciences (HICSS-36 2003), CD-
ROM / Abstracts Proceedings, January 6-9, 2003, Big Island, HI, USA. IEEE
Computer Society, 2003, p. 292.

[Hon+09] Jongyi Hong, Euiho Suh, and Sung-Jin Kim. “Context-aware systems:
A literature review and classification”. In: Expert Systems with Applica-
tions 36.4 (2009), pp. 8509–8522.

[HR04] David Harel and Bernhard Rumpe. “Meaningful Modeling: What’s the
Semantics of "Semantics"?” In: IEEE Computer 37.10 (2004), pp. 64–72.

308 BIBLIOGRAPHY

[Hud96] Paul Hudak. “Building Domain-Specific Embedded Languages”. In:
ACM Computing Surveys (CSUR) 28.4es (1996), p. 196.

[HV11a] Zef Hemel and Eelco Visser. “Declaratively programming the mobile
web with Mobl”. In: Proceedings of the 26th Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA,
October 22 - 27, 2011. Ed. by Cristina Videira Lopes and Kathleen Fisher.
ACM, 2011, pp. 695–712.

[HV11b] Zef Hemel and Eelco Visser. “Mobl: the new language of the mobile
web”. In: Companion to the 26th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27,
2011. Ed. by Cristina Videira Lopes and Kathleen Fisher. ACM, 2011,
pp. 23–24.

[IS03] Jadwiga Indulska and Peter Sutton. “Location Management in Perva-
sive Systems”. In: ACSW Frontiers 2003, 2003 ACSW Workshops - the
Australasian Information Security Workshop (AISW) and the Workshop
on Wearable, Invisible, Context-Aware, Ambient, Pervasive and Ubiquitous
Computing (WICAPUC), Adelaide, South Australia, February 2003. Ed. by
Chris W. Johnson, Paul Montague, and Chris Steketee. Vol. 21. CRPIT.
Australian Computer Society, 2003, pp. 143–151.

[Ita+05] Ziad Itani, Hassan Diab, and Hassan Artail. “Efficient pull based repli-
cation and synchronization for mobile databases”. In: Proceedings of the
International Conference on Pervasive Services 2005, ICPS ’05, Santorini,
Greece, July 11-14, 2005. IEEE Computer Society, 2005, pp. 401–404.

[Jao+16] Imen Jaouadi, Raoudha Ben Djemaa, and Hanêne Ben-Abdallah. “A
model-driven development approach for context-aware systems”. In:
Software & Systems Modeling (2016), pp. 1–27.

[Jeo+07] Nam Joo Jeon, Choon Seong Leem, Min Hyung Kim, and Hyoun Gyu
Shin. “A taxonomy of ubiquitous computing applications”. In: Wireless
Personal Communications 43.4 (2007), pp. 1229–1239.

[Jeo+08] Yang-Jae Jeong, Ji-Hyeon Lee, and Gyu-Sang Shin. “Development pro-
cess of mobile application SW based on Agile methodology”. In: Ad-
vanced Communication Technology, 2008. ICACT 2008. 10th International
Conference on. IEEE Computer Society, 2008, pp. 362–366.

[JJ14] Christopher Jones and Xiaoping Jia. “The AXIOM Model Framework -
Transforming Requirements to Native Code for Cross-platform Mobile
Applications”. In: ENASE 2014 - Proceedings of the 9th International
Conference on Evaluation of Novel Approaches to Software Engineering,
Lisbon, Portugal, 28-30 April, 2014. Ed. by Joaquim Filipe and Leszek A.
Maciaszek. SciTePress, 2014, pp. 26–37.

[Joo+13] Mona Erfani Joorabchi, Ali Mesbah, and Philippe Kruchten. “Real
Challenges in Mobile App Development”. In: 2013 ACM / IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement,
Baltimore, Maryland, USA, October 10-11, 2013. IEEE Computer Society,
2013, pp. 15–24.

[Kan+90] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and
A Spencer Peterson. Feature-oriented domain analysis (FODA) feasibility
study. Tech. rep. Defense Technical Information Center, 1990.

[Kap+08] Georgia M. Kapitsaki, Dimitrios A. Kateros, and Iakovos S. Venieris.
“Architecture for provision of context-aware web applications based on
web services”. In: Proceedings of the IEEE 19th International Symposium
on Personal, Indoor and Mobile Radio Communications, PIMRC 2008, 15-18
September 2008, Cannes, French Riviera, France. IEEE, 2008, pp. 1–5.

[Kap+09] Georgia M. Kapitsaki, Dimitrios A. Kateros, George N. Prezerakos,
and Iakovos S. Venieris. “Model-driven development of composite
context-aware web applications”. In: Information & Software Technology
51.8 (2009), pp. 1244–1260.

BIBLIOGRAPHY 309

[Kar+14] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Mar-
tin Schindler, and Steven Völkel. “Design Guidelines for Domain
Specific Languages”. In: The Computing Research Repository (CoRR)
abs/1409.2378 (2014).

[KEG12] Heather Kennedy-Eden and Ulrike Gretzel. “A Taxonomy of Mobile
Applications in Tourism”. In: e-Review of Tourism Research 10.2 (2012),
pp. 47–50.

[Keh+13] Timo Kehrer, Udo Kelter, and Gabriele Taentzer. “Consistency-preserving
edit scripts in model versioning”. In: 2013 28th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2013, Silicon Valley,
CA, USA, November 11-15, 2013. Ed. by Ewen Denney, Tevfik Bultan,
and Andreas Zeller. IEEE, 2013, pp. 191–201.

[KH10] Maximilian Koegel and Jonas Helming. “EMFStore: a model repository
for EMF models”. In: Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 2, ICSE 2010, Cape Town,
South Africa, 1-8 May 2010. Ed. by Jeff Kramer, Judith Bishop, Premku-
mar T. Devanbu, and Sebastián Uchitel. ACM, 2010, pp. 307–308.

[Kle+03] Anneke .G. Kleppe, Jos .B. Warmer, and Wim Bast. MDA Explained,
the Model Driven Architecture: Practice and Promise. Boston (MA) USA:
Addison-Wesley, 2003.

[KM00] Oliver Köth and Mark Minas. “Generating diagram editors providing
free-hand editing as well as syntax-directed editing”. In: Proc. Interna-
tional Workshop on Graph Transformation (GraTra), Mar 25 - Apr 2, 2000,
Berlin, Germany. 2000.

[Kol+10] Dimitrios S. Kolovos, Louis M. Rose, Saad bin Abid, Richard F. Paige,
Fiona A. C. Polack, and Goetz Botterweck. “Taming EMF and GMF
Using Model Transformation”. In: Model Driven Engineering Languages
and Systems - 13th International Conference, MODELS 2010, Oslo, Norway,
October 3-8, 2010, Proceedings, Part I. Ed. by Dorina C. Petriu, Nicolas
Rouquette, and Øystein Haugen. Vol. 6394. Lecture Notes in Computer
Science. Springer, 2010, pp. 211–225.

[Kor+03] Panu Korpipää, Jani Mäntyjärvi, Juha Kela, Heikki Keränen, and Esko-
Juhani Malm. “Managing Context Information in Mobile Devices”. In:
IEEE Pervasive Computing 2.3 (2003), pp. 42–51.

[Kra11] Frank Alexander Kraemer. “Engineering Android Applications Based
on UML Activities”. In: Model Driven Engineering Languages and Sys-
tems, 14th International Conference, MODELS 2011, Wellington, New
Zealand, October 16-21, 2011. Proceedings. Ed. by Jon Whittle, Tony Clark,
and Thomas Kühne. Vol. 6981. Lecture Notes in Computer Science.
Springer, 2011, pp. 183–197.

[Kri+17] Lars Kristensen, Gabriele Taentzer, and Steffen Vaupel. “Towards Veri-
fication of Connection-Aware Transactions Models for Mobile Applica-
tions”. In: Petri Nets and Software Engineering. International Workshop,
PNSE’17, Zaragoza, Spain, June 25-26, 2017. Proceedings. Ed. by Daniel
Moldt, Lawrence Cabac, and Heiko Rölke. Vol. 1846. CEUR Workshop
Proceedings. CEUR-WS.org, 2017, pp. 227–228.

[KS13] M. Keith and M. Schincariol. Pro JPA 2. New York City (NY) USA:
Apress, 2013.

[KT08] S. Kelly and J.P. Tolvanen. Domain-Specific Modeling: Enabling Full Code
Generation. New York City (NY) USA: Wiley, 2008.

[Kul+11] Vinay Kulkarni, Souvik Barat, and Uday Ramteerthkar. “Early Experi-
ence with Agile Methodology in a Model-Driven Approach”. In: Model
Driven Engineering Languages and Systems, 14th International Conference,
MODELS 2011, Wellington, New Zealand, October 16-21, 2011. Proceed-
ings. Ed. by Jon Whittle, Tony Clark, and Thomas Kühne. Vol. 6981.
Lecture Notes in Computer Science. Springer, 2011, pp. 578–590.

[Küh05] Thomas Kühne. “What is a Model?” In: Language Engineering for Model-
Driven Software Development. Ed. by Jean Bezivin and Reiko Heckel.

310 BIBLIOGRAPHY

Dagstuhl Seminar Proceedings. Internationales Begegnungs- und For-
schungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany,
2005.

[Küs+13] Martin Küster, Benjamin Klatt, Eike Kohnert, Steffen Brandt, and Jo-
hannes Tysiak. “Apps aus Kästchen und Linien - Modellgetriebene
Multi-Plattformentwicklung mobiler Anwendungen”. In: OBJEKTspek-
trum 1 (2013). (in german), pp. 70 –75.

[Kön09] Birgitta König-Ries. “Challenges in Mobile Application Development”.
In: it - Information Technology 51.2 (2009), pp. 69–71.

[Lee+02] Kwanwoo Lee, Kyo Chul Kang, and Jaejoon Lee. “Concepts and Guide-
lines of Feature Modeling for Product Line Software Engineering”. In:
Software Reuse: Methods, Techniques, and Tools, 7th International Confer-
ence, ICSR-7, Austin, TX, USA, April 15-19, 2002, Proceedings. Ed. by
Cristina Gacek. Vol. 2319. Lecture Notes in Computer Science. Springer,
2002, pp. 62–77.

[Lem+13] Rogério de Lemos, Holger Giese, Hausi A. Müller, Mary Shaw, Jes-
per Andersson, Marin Litoiu, Bradley R. Schmerl, Gabriel Tamura,
Norha M. Villegas, Thomas Vogel, Danny Weyns, Luciano Baresi, Basil
Becker, Nelly Bencomo, Yuriy Brun, Bojan Cukic, Ronald J. Desmarais,
Schahram Dustdar, Gregor Engels, Kurt Geihs, Karl M. Göschka, Alessan-
dra Gorla, Vincenzo Grassi, Paola Inverardi, Gabor Karsai, Jeff Kramer,
Antónia Lopes, Jeff Magee, Sam Malek, Serge Mankovski, Raffaela Mi-
randola, John Mylopoulos, Oscar Nierstrasz, Mauro Pezzè, Christian
Prehofer, Wilhelm Schäfer, Richard D. Schlichting, Dennis B. Smith,
João Pedro Sousa, Ladan Tahvildari, Kenny Wong, and Jochen Wuttke.
“Software Engineering for Self-Adaptive Systems: A Second Research
Roadmap”. In: Software Engineering for Self-Adaptive Systems II - Inter-
national Seminar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised
Selected and Invited Papers. Ed. by Rogério de Lemos, Holger Giese,
Hausi A. Müller, and Mary Shaw. Vol. 7475. Lecture Notes in Com-
puter Science. Springer, 2013, pp. 1–32.

[Lia14] S. Liao. Migrating to Swift from Android. New York City (NY) USA:
Apress, 2014.

[Lie+78] Bennet P. Lientz, E. Burton Swanson, and Gerry Edward Tompkins.
“Characteristics of Applications Software Maintenance”. In: Communi-
cations of the ACM 21.6 (1978), pp. 466–471.

[Lie83] Bennet P. Lientz. “Issues in Software Maintenance”. In: ACM Comput-
ing Surveys 15.3 (1983), pp. 271–278.

[Lim+04] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent
Bouillon, and Víctor López-Jaquero. “USIXML: A Language Support-
ing Multi-path Development of User Interfaces”. In: Engineering Human
Computer Interaction and Interactive Systems, Joint Working Conferences
EHCI-DSVIS 2004, Hamburg, Germany, July 11-13, 2004, Revised Selected
Papers. Ed. by Rémi Bastide, Philippe A. Palanque, and Jörg Roth.
Vol. 3425. Lecture Notes in Computer Science. Springer, 2004, pp. 200–
220.

[Lin+14] Stefan Lindner, Philippe Büttner, G Taenzer, Steffen Vaupel, and Nele
Russwinkel. “Towards an efficient evaluation of the usability of an-
droid apps by cognitive models”. In: Proceedings 3. Interdisziplinärer
Workshop Kognitive Systeme: Mensch, Teams, Systeme und Automaten,
Magdeburg, 25.-27. März 2014. Ed. by A. Wendemuth, M. Jipp, A. Kluge,
and D. Söffker. Otto von Guericke Universität Magdeburg, 2014.

[LL09] Fritz Laux and Tim Lessner. “Escrow Serializability and Reconciliation
in Mobile Computing using Semantic Properties”. In: International
Journal On Advances in Telecommunications 2.2 (2009), pp. 72–87.

[LM10] Jeff Linwood and Dave Minter. Beginning Hibernate. New York City
(NY) USA: Apress, 2010.

BIBLIOGRAPHY 311

[Lon03] K. C. London. An Evaluation of Compuware OptimalJ Professional Edition
as an MDA Tool. Tech. rep. University of York, 2003.

[LS80] Bennet P. Lientz and E. Burton Swanson. “Impact of development
productivity aids on application system maintenance”. In: DATA BASE
11.3 (1980), pp. 114–120.

[LS81] Bennet P. Lientz and E. Burton Swanson. “Problems in Application
Software Maintenance”. In: Communications of the ACM 24.11 (1981),
pp. 763–769.

[LS94] Qi Lu and Mahadev Satyanarayanan. “Isolation-Only Transactions for
Mobile Computing”. In: Operating Systems Review 28.2 (1994), pp. 81–
87.

[LS97] John Lee and Keith Simpson. “A High Performance Transaction Pro-
cessing Algorithm for Mobile Computing”. In: Intelligent Information
Systems, 1997. IIS ’97, December 8-10, 1997 Grand Bahama Island, Bahamas.
Proceedings. Ed. by H. Adeli. IEEE Computer Society, 1997, pp. 486–491.

[Lud03] Jochen Ludewig. “Models in software engineering - an introduction”.
In: Software & Systems Modeling 2.1 (2003), pp. 5–14.

[Lup+09] Dennis Lupiana, Ciaran O’Driscoll, and Fredrick Mtenzi. “Characteris-
ing Ubiquitous Computing Environments”. In: International Journal of
Web Applications 1.4 (2009), pp. 253–262.

[Mad+02] Sanjay Kumar Madria, Mukesh K. Mohania, Sourav S. Bhowmick, and
Bharat K. Bhargava. “Mobile data and transaction management”. In:
Information Sciences 141.3-4 (2002), pp. 279–309.

[MB01] Sanjay Kumar Madria and Bharat Bhargava. “A Transaction Model to
Improve Data Availability in Mobile Computing”. In: Distributed and
Parallel Databases 10.2 (2001), pp. 127–160.

[Med+12] Z. Mednieks, L. Dornin, G.B. Meike, and M. Nakamura. Programming
Android. Sebastopol (CA) USA: O’Reilly, 2012.

[Mei+10] G. Meiselwitz, B. Wentz, and J. Lazar. Universal Usability: Past, Present,
and Future. Boston (MA) USA; Delft Netherlands: Now Publishers,
2010.

[Mel+03] Stephen J. Mellor, Anthony N. Clark, and Takao Futagami. “Guest
Editors’ Introduction: Model-Driven Development”. In: IEEE Software
20.5 (2003), pp. 14–18.

[Mer+05] Marjan Mernik, Jan Heering, and Anthony M Sloane. “When and how
to develop domain-specific languages”. In: ACM Computing Surveys
(CSUR) 37.4 (2005), pp. 316–344.

[Mer12] M. Mernik. Formal and Practical Aspects of Domain-Specific Languages:
Recent Developments: Recent Developments. Hershey (PA), New York
City (NY) USA: Information Science Reference, 2012.

[MG06] Tom Mens and Pieter Van Gorp. “A Taxonomy of Model Transfor-
mation”. In: Electronic Notes in Theoretical Computer Science 152 (2006),
pp. 125–142.

[Min02] Mark Minas. “Specifying Graph-like Diagrams with DIAGEN”. In:
Electronic Notes in Theoretical Computer Science 72.2 (2002), pp. 102–111.

[MN82] Daniel A Menascé and Tatuo Nakanishi. “Optimistic versus pessimistic
concurrency control mechanisms in database management systems”.
In: Information systems 7.1 (1982), pp. 13–27.

[Mod+06] Martin Modahl, Bikash Agarwalla, T Scott Saponas, Gregory Abowd,
and Umakishore Ramachandran. “UbiqStack: a taxonomy for a ubiqui-
tous computing software stack”. In: Personal and Ubiquitous Computing
10.1 (2006), pp. 21–27.

[MS13] B. Mutschler and G. Specht. Mobile Datenbanksysteme: Architektur, Im-
plementierung, Konzepte. (in german). Berlin, Heidelberg GER: Springer,
2013.

[Muc+12] Henry Muccini, Antonio Di Francesco, and Patrizio Esposito. “Soft-
ware testing of mobile applications: Challenges and future research
directions”. In: 7th International Workshop on Automation of Software Test,

312 BIBLIOGRAPHY

AST 2012, Zurich, Switzerland, June 2-3, 2012. Ed. by Daniel Hoffman,
John Hughes, and Dianxiang Xu. IEEE Computer Society, 2012, pp. 29–
35.

[Mul+08] Pierre-Alain Muller, Frédéric Fondement, Franck Fleurey, Michel Has-
senforder, Rémi Schnekenburger, Sébastien Gérard, and Jean-Marc
Jézéquel. “Model-driven analysis and synthesis of textual concrete
syntax”. In: Software & Systems Modeling 7.4 (2008), pp. 423–441.

[Muñ+06] Javier Muñoz, Vicente Pelechano, and Carlos Cetina. “Implementing
a Pervasive Meeting Room: A Model Driven Approach.” In: IWUC.
2006, pp. 13–20.

[Nav+09] David Navarre, Philippe A. Palanque, Jean-François Ladry, and Eric
Barboni. “ICOs: A model-based user interface description technique
dedicated to interactive systems addressing usability, reliability and
scalability”. In: ACM Transactions on Computer-Human Interaction (TOCHI)
16.4 (2009), pp. 1–56.

[Nei80] James Milne Neighbors. “Software construction using components”.
PhD thesis. University of California, Irvine, 1980.

[Neu+14] Patrick Neubauer, Tanja Mayerhofer, and Gerti Kappel. “Towards In-
tegrating Modeling and Programming Languages: The Case of UML
and Java”. In: Proceedings of the 2nd International Workshop on The Glob-
alization of Modeling Languages co-located with ACM/IEEE 17th Interna-
tional Conference on Model Driven Engineering Languages and Systems,
GEMOC@Models 2014, Valencia, - Spain, September 28, 2014. Ed. by
Benoît Combemale, Julien DeAntoni, and Robert B. France. Vol. 1236.
CEUR Workshop Proceedings. CEUR-WS.org, 2014, pp. 23–32.

[Nic+07] Robert C. Nickerson, Upkar Varshney, Jan Muntermann, and Henri
Isaac. “Towards a Taxonomy of Mobile Applications”. In: Reaching New
Heights. 13th Americas Conference on Information Systems, AMCIS 2007,
Keystone, Colorado, USA, August 9-12, 2007. Ed. by John A. Hoxmeier
and Stephen Hayne. Association for Information Systems, 2007, p. 338.

[Nov+10] Jernej Novak, Andrej Krajnc, and Rok Zontar. “Taxonomy of static
code analysis tools”. In: MIPRO, 2010 Proceedings of the International
Convention on Information and Communication Technology, Electronics
and Microelectronics , Opatija, Croatia, 24-28 May, 2010. IEEE Computer
Society, 2010, pp. 418–422.

[O’N86] Patrick E. O’Neil. “The Escrow Transactional Method”. In: ACM Trans-
actions on Database Systems (TODS) 11.4 (1986), pp. 405–430.

[OB11] D. Oehlman and S. Blanc. Pro Android Web Apps: Develop for Android
using HTML5, CSS3 & JavaScript. New York City (NY) USA: Apress,
2011.

[OB88] Thomas J. Ostrand and Marc J. Balcer. “The Category-Partition Method
for Specifying and Generating Functional Tests”. In: Communications of
the ACM 31.6 (1988), pp. 676–686.

[Ou+06] Shumao Ou, Nektarios Georgalas, Manooch Azmoodeh, Kun Yang,
and Xiantang Sun. “A Model Driven Integration Architecture for
Ontology-Based Context Modelling and Context-Aware Application
Development”. In: Model Driven Architecture - Foundations and Appli-
cations, Second European Conference, ECMDA-FA 2006, Bilbao, Spain,
July 10-13, 2006, Proceedings. Ed. by Arend Rensink and Jos Warmer.
Vol. 4066. Lecture Notes in Computer Science. Springer, 2006, pp. 188–
197.

[Ouz+09] Mourad Ouzzani, Brahim Medjahed, and Ahmed K. Elmagarmid.
“Correctness Criteria Beyond Serializability”. In: Encyclopedia of Database
Systems. Ed. by Ling Liu and M. Tamer Özsu. Springer US, 2009,
pp. 501–506.

[Pae+03] Frauke Paetsch, Armin Eberlein, and Frank Maurer. “Requirements En-
gineering and Agile Software Development”. In: 12th IEEE International
Workshops on Enabling Technologies (WETICE 2003), Infrastructure for

BIBLIOGRAPHY 313

Collaborative Enterprises, 9-11 June 2003, Linz, Austria. IEEE Computer
Society, 2003, pp. 308–313.

[Pai+12] Richard F. Paige, Dimitrios S. Kolovos, and Fiona A. C. Polack. “Meta-
modelling for Grammarware Researchers”. In: Software Language Engi-
neering, 5th International Conference, SLE 2012, Dresden, Germany, Septem-
ber 26-28, 2012, Revised Selected Papers. Ed. by Krzysztof Czarnecki and
Görel Hedin. Vol. 7745. Lecture Notes in Computer Science. Springer,
2012, pp. 64–82.

[Pal+12] Manuel Palmieri, Inderjeet Singh, and Antonio Cicchetti. “Comparison
of cross-platform mobile development tools”. In: 16th International
Conference on Intelligence in Next Generation Networks, ICIN 2012, Berlin,
Germany, October 8-11, 2012. IEEE, 2012, pp. 179–186.

[Pan+11] Prasanta Kumar Panda, Sujata Swain, and PK Pattnaik. “Review of
Some Transaction Models used in Mobile Databases”. In: International
Journal of Instrumentation, Control & Automation (IJICA) 1.1 (2011),
pp. 99–104.

[Pan04] Ray Pandya. Mobile and Personal Communication Systems and Services.
New York City (NY) USA: Wiley, 2004.

[Par12] T. Parr. The Definitive ANTLR 4 Reference. Raleigh (NC) USA: Pragmatic
Bookshelf, 2012.

[PB95] Evaggelia Pitoura and Bharat K. Bhargava. “Maintaining Consistency
of Data in Mobile Distributed Environments”. In: Proceedings of the 15th
International Conference on Distributed Computing Systems, Vancouver,
British Columbia, Canada, May 30 - June 2, 1995. IEEE Computer Society,
1995, pp. 404–413.

[PB99] Evaggelia Pitoura and Bharat Bhargava. “Data Consistency in Inter-
mittently Connected Distributed Systems”. In: IEEE Transactions on
Knowledge and Data Engineering 11.6 (1999), pp. 896–915.

[PD90] Rubén Prieto-Díaz. “Domain analysis: An introduction”. In: ACM
SIGSOFT Software Engineering Notes 15.2 (1990), pp. 47–54.

[Pip10] I. Piper. Learn Xcode Tools for Mac OS X and iPhone Development. New
York City (NY) USA: Apress, 2010.

[Pit96] Evaggelia Pitoura. “A Replication Schema to Support Weak Connec-
tivity in Mobile Information Systems”. In: Database and Expert Systems
Applications, 7th International Conference, DEXA ’96, Zurich, Switzerland,
September 9-13, 1996, Proceedings. Ed. by Roland Wagner and Helmut
Thoma. Vol. 1134. Lecture Notes in Computer Science. Springer, 1996,
pp. 510–520.

[Pou16] Jacob Poushter. Smartphone ownership and Internet usage continues to
climb in emerging economies. Tech. rep. Pew Research Center, 2016.

[PS12] Evaggelia Pitoura and George Samaras. Data management for mobile
computing. Berlin, Heidelberg GER: Springer, 2012.

[Pud10] Arno Puder. “Cross-compiling Android applications to the iPhone”. In:
Proceedings of the 8th International Conference on Principles and Practice
of Programming in Java, PPPJ 2010, Vienna, Austria, September 15-17,
2010. Ed. by Andreas Krall and Hanspeter Mössenböck. ACM, 2010,
pp. 69–77.

[Pue+94] Angel R. Puerta, Henrik Eriksson, John H. Gennari, and Mark A.
Musen. “Beyond Data Models for Automated User Interface Gen-
eration”. In: People and Computers IX, Proceedings of HCI ’94, Glasgow,
August 1994. Ed. by Gilbert Cockton, Stephen W. Draper, and George
R. S. Weir. Cambridge University Press, 1994, pp. 353–366.

[Puv+16] Abhinay Puvvala, Amitava Dutta, Rahul Roy, and Priya Seetharaman.
“Mobile Application Developers’ Platform Choice Model”. In: 49th
Hawaii International Conference on System Sciences, HICSS 2016, Koloa,
HI, USA, January 5-8, 2016. Ed. by Tung X. Bui and Ralph H. Sprague Jr.
IEEE Computer Society, 2016, pp. 5721–5730.

314 BIBLIOGRAPHY

[Ran+12] David Raneburger, Roman Popp, and Jean Vanderdonckt. “An auto-
mated layout approach for model-driven WIMP-UI generation”. In:
ACM SIGCHI Symposium on Engineering Interactive Computing Systems,
EICS’12, Copenhagen, Denmark - June 25 - 28, 2012. Ed. by Simone Diniz
Junqueira Barbosa, José Creissac Campos, Rick Kazman, Philippe A.
Palanque, Michael D. Harrison, and Steve Reeves. ACM, 2012, pp. 91–
100.

[Rod+98] Tom Rodden, Keith Cheverst, K Davies, and Alan Dix. “Exploiting
context in HCI design for mobile systems”. In: Workshop on human com-
puter interaction with mobile devices, Glasgow, Scotland, 21-23rd May 1998.
Ed. by Chris Johnson. Department of Computing Science, University
of Glasgow, Scotland – GIST Technical Report G98-1., 1998, pp. 21–22.

[Rom+00] Gruia-Catalin Roman, Gian Pietro Picco, and Amy L. Murphy. “Soft-
ware engineering for mobility: a roadmap”. In: 22nd International Con-
ference on on Software Engineering, Future of Software Engineering Track,
ICSE 2000, Limerick Ireland, June 4-11, 2000. Ed. by Anthony Finkelstein.
ACM, 2000, pp. 241–258.

[Rom+02] Manuel Román, Christopher K. Hess, Renato Cerqueira, Anand Ran-
ganathan, Roy H. Campbell, and Klara Nahrstedt. “A Middleware
Infrastructure for Active Spaces”. In: IEEE Pervasive Computing 1.4
(2002), pp. 74–83.

[Ros+10] Louis M. Rose, Dimitrios S. Kolovos, Richard F. Paige, and Fiona A. C.
Polack. “Model Migration with Epsilon Flock”. In: Theory and Practice of
Model Transformations, Third International Conference, ICMT 2010, Malaga,
Spain, June 28-July 2, 2010. Proceedings. Ed. by Laurence Tratt and Martin
Gogolla. Vol. 6142. Lecture Notes in Computer Science. Springer, 2010,
pp. 184–198.

[Roy+09] Chanchal Kumar Roy, James R. Cordy, and Rainer Koschke. “Compar-
ison and evaluation of code clone detection techniques and tools: A
qualitative approach”. In: Science of Computer Programming 74.7 (2009),
pp. 470–495.

[Roy87] W. W. Royce. “Managing the Development of Large Software Systems:
Concepts and Techniques”. In: Proceedings, 9th International Conference
on Software Engineering, Monterey, California, USA, March 30 - April 2,
1987. Ed. by William E. Riddle, Robert M. Balzer, and Kouichi Kishida.
ACM Press, 1987, pp. 328–339.

[RR08] Vahid Rahimian and Raman Ramsin. “Designing an agile methodology
for mobile software development: A hybrid method engineering ap-
proach”. In: Proceedings of the IEEE International Conference on Research
Challenges in Information Science, RCIS 2008, Marrakech, Morocco, June
3-6, 2008. Ed. by Oscar Pastor, André Flory, and Jean-Louis Cavarero.
IEEE, 2008, pp. 337–342.

[RS12] André Ribeiro and Alberto Rodrigues da Silva. “Survey on Cross-
Platforms and Languages for Mobile Apps”. In: 8th International Con-
ference on the Quality of Information and Communications Technology,
QUATIC 2012, Lisbon, Portugal, 2-6 September 2012, Proceedings. Ed.
by João Pascoal Faria, Alberto Rodrigues da Silva, and Ricardo Jorge
Machado. IEEE Computer Society, 2012, pp. 255–260.

[Rub+11] D. Rubel, J. Wren, and E. Clayberg. The Eclipse Graphical Editing Frame-
work (GEF). Boston (MA) USA: Addison-Wesley, 2011.

[Rus+10] Davide Di Ruscio, Ralf Lämmel, and Alfonso Pierantonio. “Automated
Co-evolution of GMF Editor Models”. In: Software Language Engineering
- Third International Conference, SLE 2010, Eindhoven, The Netherlands,
October 12-13, 2010, Revised Selected Papers. Ed. by Brian A. Malloy,
Steffen Staab, and Mark van den Brand. Vol. 6563. Lecture Notes in
Computer Science. Springer, 2010, pp. 143–162.

[Rát+10] István Ráth, András Ökrös, and Dániel Varró. “Synchronization of
abstract and concrete syntax in domain-specific modeling languages -

BIBLIOGRAPHY 315

By mapping models and live transformations”. In: Software & Systems
Modeling 9.4 (2010), pp. 453–471.

[SA+04] Patricia Serrano-Alvarado, Claudia Roncancio, and Michel Adiba. “A
Survey of Mobile Transactions”. In: Distributed and Parallel Databases
16.2 (2004), pp. 193–230.

[SA14a] Luis Miguel Pires Teixeira da Silva and Fernando Brito e Abreu. “A
MDE Generative Approach for Mobile Business Apps”. In: 9th Inter-
national Conference on the Quality of Information and Communications
Technology, QUATIC 2014, Guimaraes, Portugal, September 23-26, 2014.
IEEE Computer Society, 2014, pp. 312–317.

[SA14b] Luís Pires da Silva and Fernando Brito e Abreu. “Model-Driven GUI
Generation and Navigation for Android BIS Apps”. In: MODELSWARD
2014 - Proceedings of the 2nd International Conference on Model-Driven
Engineering and Software Development, Lisbon, Portugal, 7 - 9 January,
2014. Ed. by Luís Ferreira Pires, Slimane Hammoudi, Joaquim Filipe,
and Rui César das Neves. SciTePress, 2014, pp. 400–407.

[Sal+99] Daniel Salber, Anind K. Dey, and Gregory D. Abowd. “The Context
Toolkit: Aiding the Development of Context-Enabled Applications”.
In: Proceeding of the CHI ’99 Conference on Human Factors in Computing
Systems: The CHI is the Limit, Pittsburgh, PA, USA, May 15-20, 1999. Ed.
by Marian G. Williams and Mark W. Altom. ACM, 1999, pp. 434–441.

[Sar14] Robert G. Sargent. “Verifying and validating simulation models”. In:
Proceedings of the 2014 Winter Simulation Conference, Savannah, GA, USA,
December 7-10, 2014. Ed. by Stephen J. Buckley and John A. Miller.
IEEE/ACM, 2014, pp. 118–131.

[Sat96] Mahadev Satyanarayanan. “Fundamental Challenges in Mobile Com-
puting”. In: Proceedings of the Fifteenth Annual ACM Symposium on
Principles of Distributed Computing, Philadelphia, Pennsylvania, USA, May
23-26, 1996. Ed. by James E. Burns and Yoram Moses. ACM, 1996,
pp. 1–7.

[Sch+94] Bill N. Schilit, Norman Adams, and Roy Want. “Context-Aware Com-
puting Applications”. In: First Workshop on Mobile Computing Systems
and Applications, WMCSA 1994, Santa Cruz, CA, USA, December 8-9,
1994. IEEE Computer Society, 1994, pp. 85–90.

[Sch+99] Albrecht Schmidt, Kofi Asante Aidoo, Antti Takaluoma, Urpo Tuomela,
Kristof Van Laerhoven, and Walter Van de Velde. “Advanced Interac-
tion in Context”. In: Handheld and Ubiquitous Computing, First Interna-
tional Symposium, HUC’99, Karlsruhe, Germany, September 27-29, 1999,
Proceedings. Ed. by Hans-Werner Gellersen. Vol. 1707. Lecture Notes in
Computer Science. Springer, 1999, pp. 89–101.

[Sei03] Ed Seidewitz. “What Models Mean”. In: IEEE Software 20.5 (2003),
pp. 26–32.

[Sel03] Bran Selic. “The Pragmatics of Model-Driven Development”. In: IEEE
Software 20.5 (2003), pp. 19–25.

[Ser+01] Patricia Serrano-Alvarado, Claudia Roncancio, and Michel E. Adiba.
“Analyzing Mobile Transaction Supports for DBMS”. In: 12th Inter-
national Workshop on Database and Expert Systems Applications (DEXA
2001), 3-7 September 2001, Munich, Germany. Ed. by A Min Tjoa and
Roland Wagner. IEEE Computer Society, 2001, pp. 595–600.

[Ser+10] Estefanía Serral, Pedro Valderas, and Vicente Pelechano. “Towards the
Model Driven Development of context-aware pervasive systems”. In:
Pervasive and Mobile Computing 6.2 (2010), pp. 254–280.

[SF13] Andreas Schuler and Barbara Franz. “Rule-Based Generation of Mo-
bile User Interfaces”. In: Tenth International Conference on Information
Technology: New Generations, ITNG 2013, 15-17 April, 2013, Las Vegas,
Nevada, USA. Ed. by Shahram Latifi. IEEE Computer Society, 2013,
pp. 267–272.

316 BIBLIOGRAPHY

[SG09] Andrea Sindico and Vincenzo Grassi. “Model driven development of
context aware software systems”. In: International Workshop on Context-
Oriented Programming, COP 2009, Genova, Italy, July 7, 2009. Ed. by
Pascal Costanza, Richard P. Gabriel, Robert Hirschfeld, and Jorge Valle-
jos. ACM, 2009, 7:1–7:5.

[Sha01] Mary Shaw. “The Coming-of-Age of Software Architecture Research”.
In: Proceedings of the 23rd International Conference on Software Engineering,
ICSE 2001, 12-19 May 2001, Toronto, Ontario, Canada. Ed. by Hausi A.
Müller, Mary Jean Harrold, and Wilhelm Schäfer. IEEE Computer
Society, 2001, pp. 656–664.

[Shi+12] Qiao Shi, Dong Wen, and Xiaoyan Yang. “Study of logical transac-
tion based data synchronization scheme for pervasive computing”.
In: World Automation Congress (WAC), 24-28 June 2012, Puerto Vallarta,
Mexico. IEEE, 2012.

[Sho+08] Marwa Shousha, Lionel Briand, and Yvan Labiche. “A UML/SPT
model analysis methodology for concurrent systems based on genetic
algorithms”. In: Model Driven Engineering Languages and Systems (2008),
pp. 475–489.

[Sil+14] Luís Pires da Silva, Fernando Brito e Abreu, and Vasco Amaral. “A
Model-Driven Approach for Mobile Business Information Systems
Applications”. In: Proceedings of Doctoral Symposium co-located with
17th International Conference on Model Driven Engineering Languages and
Systems (2014), Valencia, Spain, September 30, 2014. Ed. by Benoit Baudry.
Vol. 1321. CEUR Workshop Proceedings. CEUR-WS.org, 2014.

[SK12] Archana Sharma and Vineet Kansal. “An Analysis of Mobile Trans-
action Methods and Limitations in Execution of M-Commerce Trans-
action”. In: International Journal of Computer Applications 43.21 (2012),
pp. 14–19.

[SLP04] Thomas Strang and Claudia Linnhoff-Popien. “A context modeling sur-
vey”. In: First International Workshop on Advanced Context Modelling, Rea-
soning And Management at UbiComp 2004, Nottingham, England, Septem-
ber 7, 2004. 2004.

[Spi01] Diomidis Spinellis. “Notable design patterns for domain-specific lan-
guages”. In: Journal of Systems & Software 56.1 (2001), pp. 91–99.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. (in german). Berlin, Hei-
delberg GER: Springer, 1973.

[Ste+09] Dave Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework. Boston (MA) USA: Addison-Wesley,
2009.

[Str+08] Detlef Streitferdt, Georg Wendt, Philipp Nenninger, Alexander Nyßen,
and Horst Lichter. “Model Driven Development Challenges in the
Automation Domain”. In: Proceedings of the 32nd Annual IEEE Interna-
tional Computer Software and Applications Conference, COMPSAC 2008,
28 July - 1 August 2008, Turku, Finland. IEEE Computer Society, 2008,
pp. 1372–1375.

[Str+15] Eleni Stroulia, Blerina Bazelli, Joanna W. Ng, and Tinny Ng. “WL++:
Code Generation of Multi-platform Mobile Clients to Restful Back-
Ends”. In: 2nd ACM International Conference on Mobile Software Engi-
neering and Systems, MOBILESoft 2015, Florence, Italy, May 16-17, 2015.
Ed. by Aharon Abadi, Danny Dig, and Yael Dubinsky. IEEE Computer
Society, 2015, pp. 136–137.

[Str98] Susanne Strahringer. “Ein sprachbasierter Metamodellbegriff und
seine Verallgemeinerung durch das Konzept des Metaisierungsprinzips”.
In: Modellierung ’98, Proceedings des GI-Workshops in Münster, 11.-13.
März 1998. Ed. by Klaus Pohl, Andy Schürr, and Gottfried Vossen.
Vol. 9. CEUR Workshop Proceedings. CEUR-WS.org, 1998.

[SV03] Nathalie Souchon and Jean Vanderdonckt. “A Review of XML-compliant
User Interface Description Languages”. In: Interactive Systems. Design,

BIBLIOGRAPHY 317

Specification, and Verification, 10th International Workshop, DSV-IS 2003,
Funchal, Madeira Island, Portugal, June 11-13, 2003, Revised Papers. Ed.
by Joaquim A. Jorge, Nuno Jardim Nunes, and João Falcão e Cunha.
Vol. 2844. Lecture Notes in Computer Science. Springer, 2003, pp. 377–
391.

[Tae+07] Gabriele Taentzer, André Crema, René Schmutzler, and Claudia Ermel.
“Generating Domain-Specific Model Editors with Complex Editing
Commands”. In: Applications of Graph Transformations with Industrial
Relevance, Third International Symposium, AGTIVE 2007, Kassel, Germany,
October 10-12, 2007, Revised Selected and Invited Papers. Ed. by Andy
Schürr, Manfred Nagl, and Albert Zündorf. Vol. 5088. Lecture Notes
in Computer Science. Springer, 2007, pp. 98–103.

[Tal10] A.K. Talukdar. Mobile Computing, 2E. New York City (NY) USA: McGraw-
Hill Inc., 2010.

[Tan08] D. Taniar. Mobile computing: concepts, methodologies, tools, and applica-
tions. Hershey (PA) USA: IGI Global, 2008.

[Tes+10] Ricardo Tesoriero, José A. Gallud, María Dolores Lozano, and Victor
M. Ruiz Penichet. “CAUCE: Model-driven Development of Context-
aware Applications for Ubiquitous Computing Environments”. In:
Journal of Universal Computer Science 16.15 (2010), pp. 2111–2138.

[TG95] Rajiv Tewari and Peter Grillo. “Data Management for Mobile Com-
puting on the Internet”. In: Proceedings of the 1995 ACM 23rd Annual
Conference on Computer Science, CSC ’95, Nashville, TN, USA, February
28 - March 2, 1995. Ed. by Richard S. Brice, C. Jinshong Hwang, and
Betty W. Hwang. ACM, 1995, pp. 246–252.

[Thü+11] Thomas Thüm, Christian Kästner, Sebastian Erdweg, and Norbert Sieg-
mund. “Abstract Features in Feature Modeling”. In: Software Product
Lines - 15th International Conference, SPLC 2011, Munich, Germany, Au-
gust 22-26, 2011. Ed. by Eduardo Santana de Almeida, Tomoji Kishi,
Christa Schwanninger, Isabel John, and Klaus Schmid. IEEE Computer
Society, 2011, pp. 191–200.

[TK05] Juha-Pekka Tolvanen and Steven Kelly. “Defining Domain-Specific
Modeling Languages to Automate Product Derivation: Collected Ex-
periences”. In: Software Product Lines, 9th International Conference, SPLC
2005, Rennes, France, September 26-29, 2005, Proceedings. Ed. by J. Henk
Obbink and Klaus Pohl. Vol. 3714. Lecture Notes in Computer Science.
Springer, 2005, pp. 198–209.

[TR03] Juha-Pekka Tolvanen and Matti Rossi. “MetaEdit+: defining and using
domain-specific modeling languages and code generators”. In: Com-
panion of the 18th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, OOPSLA 2003, Oc-
tober 26-30, 2003, Anaheim, CA, USA. Ed. by Ron Crocker and Guy
L. Steele Jr. ACM, 2003, pp. 92–93.

[Tra+12] Vi Tran, Jean Vanderdonckt, Ricardo Tesoriero, and François Beuvens.
“Systematic generation of abstract user interfaces”. In: ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, EICS’12, Copen-
hagen, Denmark - June 25 - 28, 2012. Ed. by Simone Diniz Junqueira
Barbosa, José Creissac Campos, Rick Kazman, Philippe A. Palanque,
Michael D. Harrison, and Steve Reeves. ACM, 2012, pp. 101–110.

[Træ02] Hallvard Trætteberg. “Using User Interface Models in Design”. In:
Computer-Aided Design of User Interfaces III, Proceedings of the Fourth
International Conference on Computer-Aided Design of User Interfaces, May,
15-17, 2002, Valenciennes, France. Ed. by Christophe Kolski and Jean
Vanderdonckt. Kluwer, 2002, pp. 131–142.

[Tuo00] Antti-Pekka Tuovinen. “Practical Error Handling in Parsing Visual
Languages”. In: Journal of Visual Languages & Computing 11.5 (2000),
pp. 505–528.

318 BIBLIOGRAPHY

[TV16] Gabriele Taentzer and Steffen Vaupel. “Model-Driven Development of
Mobile Applications: Towards Context-Aware Apps of High Quality”.
In: Proceedings of the International Workshop on Petri Nets and Software
Engineering 2016, including the International Workshop on Biological Pro-
cesses & Petri Nets 2016 co-located with the 37th International Conference on
Application and Theory of Petri Nets and Concurrency Petri Nets 2016 and
the 16th International Conference on Application of Concurrency to System
Design ACSD 2016, Toruń, Poland, June 20-21, 2016. Ed. by Lawrence
Cabac, Lars Michael Kristensen, and Heiko Rölke. Vol. 1591. CEUR
Workshop Proceedings. CEUR-WS.org, 2016, pp. 17–29.

[UB16] Eric Umuhoza and Marco Brambilla. “Model Driven Development
Approaches for Mobile Applications: A Survey”. In: Mobile Web and
Intelligent Information Systems - 13th International Conference, MobiWIS
2016, Vienna, Austria, August 22-24, 2016, Proceedings. Ed. by Muham-
mad Younas, Irfan Awan, Natalia Kryvinska, Christine Strauss, and
Do Van Thanh. Vol. 9847. Lecture Notes in Computer Science. Springer,
2016, pp. 93–107.

[Usm+14] Muhammad Usman, Muhammad Zohaib Z. Iqbal, and Muhammad
Uzair Khan. “A Model-Driven Approach to Generate Mobile Applica-
tions for Multiple Platforms”. In: 21st Asia-Pacific Software Engineering
Conference, APSEC 2014, Jeju, South Korea, December 1-4, 2014. Volume 1:
Research Papers. Ed. by Sungdeok (Steve) Cha, Yann-Gaël Guéhéneuc,
and Gihwon Kwon. IEEE, 2014, pp. 111–118.

[Van05] Jean Vanderdonckt. “A MDA-Compliant Environment for Develop-
ing User Interfaces of Information Systems”. In: Advanced Information
Systems Engineering, 17th International Conference, CAiSE 2005, Porto,
Portugal, June 13-17, 2005, Proceedings. Ed. by Oscar Pastor and João Fal-
cão e Cunha. Vol. 3520. Lecture Notes in Computer Science. Springer,
2005, pp. 16–31.

[Vau+14] Steffen Vaupel, Gabriele Taentzer, Jan Peer Harries, Raphael Stroh,
René Gerlach, and Michael Guckert. “Model-Driven Development of
Mobile Applications Allowing Role-Driven Variants”. In: Model-Driven
Engineering Languages and Systems - 17th International Conference, MOD-
ELS 2014, Valencia, Spain, September 28 - October 3, 2014. Proceedings. Ed.
by Jürgen Dingel, Wolfram Schulte, Isidro Ramos, Silvia Abrahão, and
Emilio Insfrán. Vol. 8767. Lecture Notes in Computer Science. Springer,
2014, pp. 1–17.

[Vau+15] Steffen Vaupel, Daniel Strüber, Felix Rieger, and Gabriele Taentzer.
“Agile Bottom-Up Development of Domain-Specific IDEs for Model-
Driven Development”. In: Proceedings of the Workshop on Flexible Model
Driven Engineering co-located with ACM/IEEE 18th International Con-
ference on Model Driven Engineering Languages & Systems (MoDELS
2015), Ottawa, Canada, September 29, 2015. Ed. by Davide Di Ruscio,
Juan de Lara, and Alfonso Pierantonio. Vol. 1470. CEUR Workshop
Proceedings. CEUR-WS.org, 2015.

[Vau+16a] Steffen Vaupel, Damian Wlochowitz, and Gabriele Taentzer. “A generic
architecture supporting context-aware data and transaction manage-
ment for mobile applications”. In: Proceedings of the International Confer-
ence on Mobile Software Engineering and Systems, MOBILESoft ’16, Austin,
Texas, USA, May 14-22, 2016. ACM, 2016, pp. 111–122.

[Vau+16b] Steffen Vaupel, Gabriele Taentzer, René Gerlach, and Michael Guckert.
“Model-driven development of platform-independent mobile applica-
tions supporting role-based app variability”. In: Software Engineering
2016, Fachtagung des GI-Fachbereichs Softwaretechnik, 23.-26. Februar 2016,
Wien, Österreich. Ed. by Jens Knoop and Uwe Zdun. Vol. 252. LNI. GI,
2016, pp. 99–100.

[Vau+18a] Steffen Vaupel, Gabriele Taentzer, and Michael Guckert. “Model-Driven
Design of Connectivity-Aware Mobile Applications”. In: Mobile Apps

BIBLIOGRAPHY 319

Engineering: Architecture, Design, Development and Testing. Ed. by Ghita
Kouadri Mostefaoui, Mitul Shukla, and Faisal Tariq. (To appear). CRC
Press, 2018.

[Vau+18b] Steffen Vaupel, Gabriele Taentzer, René Gerlach, and Michael Guckert.
“Model-driven development of mobile applications for Android and
iOS supporting role-based app variability”. In: Software and System
Modeling 17.1 (2018), pp. 35–63.

[VB07] Dániel Varró and András Balogh. “The model transformation language
of the VIATRA2 framework”. In: Science of Computer Programming 68.3
(2007), pp. 214–234.

[VD+00] Arie Van Deursen, Paul Klint, and Joost Visser. “Domain-specific lan-
guages: An annotated bibliography”. In: ACM Sigplan Notices 35.6
(2000), pp. 26–36.

[VG14] Thomas Vogel and Holger Giese. “On Unifying Development Mod-
els and Runtime Models”. In: Proceedings of the 9th Workshop on Mod-
els@run.time co-located with 17th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2014), Valencia, Spain,
September 30, 2014. Ed. by Sebastian Götz, Nelly Bencomo, and Robert
B. France. Vol. 1270. CEUR Workshop Proceedings. CEUR-WS.org,
2014, pp. 5–10.

[VH08] Samyr Vale and Slimane Hammoudi. “Context-aware model driven
development by parameterized transformation”. In: Proceedings of the
First International Workshop on Model Driven Interoperability for Sustain-
able Information Systems (MDISIS’08), June 16, 2008, Montpellier, France.
Ed. by Jean-Pierre Bourey and Reyes Grangel Seguer. Vol. 340. CEUR
Workshop Proceedings. CEUR-WS.org, 2008.

[Vli98] J. Vlissides. Pattern hatching: design patterns applied. Boston (MA) USA:
Addison-Wesley, 1998.

[VV01] Upkar Varshney and Ronald J. Vetter. “A Framework for the Emerg-
ing Mobile Commerce Applications”. In: 34th Annual Hawaii Interna-
tional Conference on System Sciences (HICSS-34), January 3-6, 2001, Maui,
Hawaii, USA. IEEE Computer Society, 2001.

[Völ+13] M. Völter, T. Stahl, J. Bettin, A. Haase, S. Helsen, and K. Czarnecki.
Model-Driven Software Development: Technology, Engineering, Manage-
ment. New York City (NY) USA: Wiley, 2013.

[Völ09] Markus Völter. “MD* Best Practices”. In: Journal of Object Technology
8.6 (2009), pp. 79–102.

[Was10] Anthony I. Wasserman. “Software engineering issues for mobile ap-
plication development”. In: Proceedings of the Workshop on Future of
Software Engineering Research, FoSER 2010, at the 18th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2010,
Santa Fe, NM, USA, November 7-11, 2010. Ed. by Gruia-Catalin Roman
and Kevin J. Sullivan. ACM, 2010, pp. 397–400.

[WC97] Gary D. Walborn and Panos K. Chrysanthis. “PRO-MOTION : Man-
agement of Mobile Transactions”. In: Proceedings of the 1997 ACM sym-
posium on Applied Computing, SAC’97, San Jose, CA, USA, February 28 -
March 1. Ed. by Barrett R. Bryant, Janice H. Carroll, Dave Oppenheim,
Jim Hightower, and K. M. George. ACM, 1997, pp. 101–108.

[WK05] Manuel Wimmer and Gerhard Kramler. “Bridging Grammarware and
Modelware”. In: Satellite Events at the MoDELS 2005 Conference, MoD-
ELS 2005 International Workshops, Doctoral Symposium, Educators Sympo-
sium, Montego Bay, Jamaica, October 2-7, 2005, Revised Selected Papers. Ed.
by Jean-Michel Bruel. Vol. 3844. Lecture Notes in Computer Science.
Springer, 2005, pp. 159–168.

[Wol+14] D. Wolber, H. Abelson, E. Spertus, and L. Looney. App Inventor 2: Create
Your Own Android Apps. Sebastopol (CA) USA: O’Reilly, 2014.

320 BIBLIOGRAPHY

[WV02] G. Weikum and G. Vossen. Transactional Information Systems: Theory, Al-
gorithms, and the Practice of Concurrency Control and Recovery. Burlington
(MA) USA: Morgan Kaufmann, 2002.

[Yen+14] M. Yener, A. Theedom, and R. Rahman. Professional Java EE Design
Patterns. New York City (NY) USA: Wiley, 2014.

[Zap13] B.C. Zapata. Android Studio Application Development. Birmingham UK:
Packt Publishing, 2013.

[ZP11] Yuefeng Zhang and Shailesh Patel. “Agile Model-Driven Development
in Practice”. In: IEEE Software 28.2 (2011), pp. 84–91.

321

Index

abstract syntax element 79, 80,
81, 82, 83, 86, 87, 88, 89, 90, 91, 92

ACID.... .153
agile methods 32, 44, 45
air quality application 213, 216,

220, 221, 222, 223
Android... .5, 7, 8, 9, 11,

14, 16, 17, 18, 31, 33, 34, 36, 37, 38,
41, 44, 45, 51, 52, 57, 58, 59, 60, 63,
64, 65, 72, 98, 100, 101, 104, 105, 106,
107, 109, 110, 111, 113, 114, 115, 116,
117, 118, 120, 121, 122, 123, 124, 126,
127, 128, 129, 130, 131, 132, 133, 134,
139, 140, 141, 142, 171, 187, 195, 212,
253, 275, 292, 293

ANTLR 92
Apache ... 33, 37, 137
API 7, 28, 37, 110, 212, 215,

216, 276, 278
APK.... .33
application developer 1, 2,

9, 10, 11, 14, 17, 33, 36, 37, 38, 39,
40, 41, 44, 45, 48, 49, 51, 52, 55, 58,
60, 73, 98, 109, 113, 115, 118, 122,
129, 130, 137, 138, 148, 155, 166, 173,
174, 187, 192, 195, 199, 200, 201, 207,
208, 210, 212, 213, 214, 226, 227,
228, 229, 231, 233, 234, 235, 236, 237

AR 5, 17, 33, 34, 36, 66, 69,
82, 99, 102, 108, 116, 117, 146, 273,
274, 275, 276, 277, 278, 279, 280,
281, 282, 283, 284, 285, 286, 287,
288, 289, 290, 291

architectural requirements...12,
16, 50, 52, 163

architecture 9, 10, 11, 13,
14, 15, 17, 18, 19, 24, 26, 32, 33, 34,
36, 37, 47, 50, 52, 55, 58, 59, 60, 61,
98, 102, 104, 105, 111, 112, 114, 115,
123, 124, 128, 130, 138, 139, 140, 141,
142, 145, 148, 149, 150, 151, 152, 154,
155, 157, 158, 159, 161, 163, 165, 171,
172, 182, 192, 199, 200, 203, 208, 209,
210, 211, 212, 213, 214, 220, 221,
223, 224, 225, 226, 228, 231, 233,
234, 235

ARM..... .33, 34, 36
AS 16, 28, 32, 69, 79, 80, 81,

82, 83, 86, 87, 88, 89, 90, 91, 92, 226,
284

Assign 71, 85, 88, 92, 128
asynchron 70, 98, 115, 153, 173
ATM..... .204
augmented reality...17, 125, 126,

146, 291
BIS ... 140
BPEL 25, 70
BPMN 25, 70, 129
BSD 34
business concerns 1, 137
C1 205, 206, 207, 209, 210, 212, 214
C2.... . .205, 206, 207, 209, 210, 211, 212,

213, 214
C2 MTM 209, 211, 213, 214
C3 205, 206, 207, 209, 210, 212, 214
CAA.... .228
camera 99, 126, 182, 184, 195, 196,

260, 263
case example...1, 5, 14, 15,

19, 20, 102, 123, 124, 125, 126, 127,
128, 177, 195, 215, 223, 234

CIM 25, 26, 111, 118, 138
client-server 8, 11, 13, 14,

15, 17, 139, 140, 141, 145, 149, 150,
152, 155, 158, 203, 212, 220, 231, 233,
234

CMS.... .106, 292
code generation...13, 16, 24,

40, 48, 49, 51, 53, 66, 76, 98, 99, 102,
109, 110, 111, 113, 114, 115, 118, 122,
128, 137, 139, 142, 166, 237

code generator...5, 8, 10, 12,
13, 14, 16, 17, 19, 23, 25, 26, 27, 28,
31, 32, 37, 38, 39, 40, 41, 42, 43, 45,
48, 49, 51, 65, 69, 75, 76, 84, 97, 99,
100, 101, 102, 105, 106, 109, 110, 111,
113, 114, 115, 116, 117, 118, 120, 121,
122, 123, 124, 128, 130, 131, 132, 133,
134, 137, 139, 140, 141, 142, 174, 175,

322 INDEX

182, 187, 203, 212, 216, 220, 233, 234,
235, 236, 249, 253

COM 228
concrete syntax element...78, 79,

80, 81, 84, 86, 87, 88, 89, 90, 91, 92,
245

conference application 177, 178,
184, 252, 253, 260

conflict 9, 15, 103, 104, 141,
149, 150, 151, 152, 153, 154, 155,
156, 158, 159, 160, 161, 164, 165, 166,
167, 172, 176, 188, 199, 200, 201, 202,
203, 204, 205, 206, 207, 208, 209,
210, 211, 212, 213, 214, 215, 222, 231

conflict analysis 166, 188, 200,
201, 204, 205, 208, 213

conflict matrix 160, 201, 206,
207

connectivity context 232, 235
constraint 74, 75, 157, 241
context-aware 1, 7, 9, 12,

13, 14, 18, 19, 20, 31, 58, 59, 60, 105,
124, 141, 145, 146, 147, 148, 163, 166,
169, 170, 171, 172, 173, 174, 187, 225,
226, 227, 228, 229, 230, 231, 232,
234, 235, 236

Cordova 33, 37, 38, 137, 235
CPIM.... .227, 228
Create...48, 67, 71, 72, 78, 79,

87, 111, 113, 114, 121, 122, 174, 184,
185, 190, 195, 196, 216, 217, 218, 219,
220, 248, 249, 263, 264, 269, 291

cross-platform....8, 33, 36, 37,
38, 118, 137, 138, 139, 140, 141, 142,
147, 235, 291

CRUD....48, 49, 60, 65, 66, 67,
70, 71, 72, 90, 106, 110, 111, 115, 116,
121, 122, 127, 128, 130, 131, 140, 166,
174, 177, 178, 179, 180, 184, 205, 216,
217, 221, 249, 254, 255, 261, 263,
264, 271, 273, 282, 283

CrudGui...71, 74, 90, 98, 178,
180, 184, 242

CSCW 145, 146
CSS.... .37, 140
CSS3 37
custom code....68, 69, 109, 118,

120, 138, 220, 237
customized....65, 66, 67, 76, 77,

102, 111, 119, 126, 127, 128, 140,
150, 184, 185, 205, 247, 249, 253, 261,
271, 292

CustomPage 69, 82, 118, 119, 120,
246, 247

DAO 106, 117, 121

data management ... 128

data model48, 50, 65, 66, 67,
68, 69, 70, 73, 94, 98, 99, 100, 106,
110, 111, 113, 114, 115, 116, 117, 123,
130, 134, 139, 140, 154, 155, 158, 166,
167, 177, 182, 188, 190, 202, 204, 206,
208, 210, 211, 212, 216, 219, 220,
221, 231, 252, 255, 259

database...9, 15, 25, 48, 50,
103, 106, 112, 113, 115, 117, 128,
131, 151, 152, 153, 154, 158, 159, 163,
164, 165, 166, 199, 212

DB.... . . .15, 103, 112, 146, 151, 152, 154,
155, 220

DBMS 15, 103, 112, 151, 152, 154,
155

Delete48, 67, 71, 88, 111, 113,
114, 121, 122, 174, 184, 185, 186,
189, 191, 222, 248, 249, 267, 269

deploy....1, 12, 14, 15, 17, 30,
31, 40, 48, 51, 63, 64, 140, 164, 167,
176, 192, 193, 224, 234, 237, 271

design time 1, 13, 16, 17,
20, 48, 49, 60, 63, 73, 97, 148, 164,
165, 172, 173, 176, 187, 188, 226, 227,
228, 229, 230, 233, 234, 237, 254,
261, 271

device context 11, 12, 15, 16,
17, 138, 148, 163, 165, 169, 170, 187,
192, 195, 231, 234

device type...8, 11, 17, 30,
109, 164, 169, 172, 187, 190, 195, 226

diagram....77, 78, 79, 80, 81,
82, 83, 84, 86, 87, 90, 94, 99, 134,
140, 148, 173, 174, 228

domain analysis...1, 16, 19,
40, 55, 56, 63, 169, 234

domain experts...10, 14, 19, 27,
38, 47, 48, 49, 51, 52, 56, 61, 65, 128,
130, 164, 167, 182

domain-specific modeling language.1,
14, 16, 19, 24, 26, 27, 38, 39, 40, 41,
44, 45, 48, 49, 51, 55, 63, 65, 66, 70,
75, 76, 78, 84, 85, 92, 95, 97, 98, 99,
100, 111, 113, 122, 128, 130, 132, 137,
138, 139, 140, 141, 142, 177, 190, 192,
201, 230, 233, 234, 236, 241

dp.... .119, 193, 195

DSML 14, 44, 45, 208

DVM..... .33

EAttribute... .68, 188

EBNF 24

INDEX 323

eBook....30, 33, 68, 170, 195, 196,
197, 245

EClass ... 44, 68, 71
ecore76, 77, 94, 115, 116, 117,

241, 242, 243
EDataType 68
EditPage 41, 69, 70, 72, 82,

99, 111, 114, 121, 178, 180, 190, 219,
243, 248, 249, 253, 258, 264

eLearningPage 41, 69, 260
EMF 42, 53, 66, 70, 75, 76,

77, 78, 95, 97, 98, 106, 108, 110, 114,
117, 118, 120, 122, 129, 131, 141, 142,
166, 219, 220, 276, 278

EMOF 66
end user 31, 103, 117, 167, 169,

172, 173, 176, 177, 178, 179, 180,
181, 183, 185, 254, 257, 258, 261, 268,
292

endogen 25, 111, 188, 227
EPackage ... 68
EReference ... 68, 188
Escrow.... . .149, 154, 155, 156, 157, 158,

160, 161, 210, 211
EStructuralFeature... .68
exogen 25, 227
Expression....71, 92, 93, 94
extended client-server architecture.14,

17, 140, 145, 149, 155, 220, 233
feature model16, 19, 55, 56,

57, 58, 59, 60, 61, 97, 101, 102, 169,
170, 234

FODA 55
forward engineering 101, 102, 105,

106
forward-engineered.... . . .101, 102, 106,

108, 109
freehand editing... .98
GCS 16, 79, 80, 81, 82, 83,

84, 86, 87, 88, 89, 90, 91, 92
GEF 76, 77, 78
generation time 1, 133, 134
GI ... 18, 32
GMF....39, 42, 76, 77, 78, 84,

86, 92, 94, 98
GPL 27, 33
GPML.... .141
GPS....57, 70, 192, 193, 216, 226,

273
grammarware... .24
graphical concrete syntax element..78,

79, 80, 81, 84, 86, 87, 89, 90, 245

GUI....15, 17, 19, 29, 30, 49,
64, 65, 66, 69, 70, 71, 73, 74, 75, 79,
84, 89, 94, 95, 99, 100, 108, 111, 112,
113, 114, 117, 120, 121, 122, 130, 142,
152, 155, 166, 177, 183, 190, 192, 216,
219, 223, 228, 229, 230, 232, 235,
242, 243, 246, 249, 253, 260, 266,
276, 277, 279, 280, 281, 283, 284,
286, 287

GUI model 29, 30, 49, 65, 69,
70, 71, 73, 74, 75, 84, 94, 99, 100, 108,
114, 117, 177, 183, 190, 192, 216, 219,
223, 235, 246, 253, 260

HCI... .145
Hibernate108, 117, 212
HTML 8, 33, 37, 140, 163
HTML5 37
HUTN 139
hybrid 13, 15, 27, 38, 48, 58,

104, 124, 128, 148, 165, 169, 170,
172, 176, 233

IDE 16, 18, 19, 27, 36, 37,
39, 40, 41, 42, 43, 44, 45, 51, 57, 93,
102, 109, 110, 116, 121, 122, 132, 134,
231

If48, 71, 72, 78, 85, 90, 91,
92, 93, 112, 116, 128, 145, 150, 151,
152, 154, 157, 158, 161, 174, 176, 177,
185, 188, 194, 195, 199, 202, 205, 216,
229, 232

IfElse ... 71, 85, 90, 91
information system 19, 48, 57,

101, 102, 103, 104, 124, 128, 140,
164, 165, 205, 215

infrastructure developer...1, 26,
31, 41, 43, 44, 45, 98, 131, 138, 182,
237

InvokeGUI....71, 74, 75, 89, 111,
113, 114, 120, 190, 242, 243, 249, 266

InvokeOperation...71, 89, 113,
114, 189, 219

InvokeProcess...70, 71, 90, 113,
114, 242

iOS 5, 8, 9, 14, 16, 18,
33, 34, 35, 36, 37, 38, 41, 44, 51, 52,
57, 58, 59, 60, 63, 64, 72, 98, 100, 101,
104, 105, 106, 107, 110, 111, 113, 114,
115, 116, 117, 118, 120, 121, 123, 124,
126, 127, 128, 129, 130, 131, 132, 133,
134, 139, 141, 171, 187, 292, 293

J2ME 228, 229, 293
Java 8, 27, 28, 33, 34, 36,

37, 95, 100, 115, 118, 140, 163, 212,
215, 288, 293

324 INDEX

JEE 34, 139
JPA.... .212
JSE 293
JSON....215, 216, 219, 220
JVM.... 8, 33
key2guide 102, 103, 104, 105, 106,

292
key2operate 103, 104, 105, 106,

293
Keypool 149, 154, 155, 156, 157,

158, 160, 161, 210
ListPage...69, 70, 72, 74, 75,

83, 178, 180, 243, 248, 249, 250, 251,
253, 257, 258

ListStyleSetting ... 69, 80
M0.... 14, 24, 64, 86
M1 14, 24, 64, 108, 212
M2 8, 24, 25, 27, 28, 64, 228
M2C.... .8, 25, 27, 228
M2M.... .25, 228
M2T.... .28
MapPage...69, 70, 74, 82, 180,

217, 242
Mathematikum....125, 126, 128
MDA.... .26, 28
mDBMS 154
MDD 1, 3, 5, 24, 25, 26,

28, 30, 32, 34, 36, 38, 40, 41, 42, 44,
45, 48, 50, 52, 56, 58, 60, 75, 94, 97,
120, 124, 130, 137, 138, 140, 142, 147,
172, 211, 226, 227, 228, 229, 230, 231,
232

MDIA.... .228
MediaPage ... 69, 82, 180
Menu....67, 69, 70, 79, 80, 81,

82, 83, 122, 178, 179, 180, 181, 184,
185, 193, 220

MenuStyleSetting 69, 80, 81
meta-modeling 24, 47, 49, 66,

76, 92
meta-tools 31, 39, 42, 43, 53,

138
metamodel19, 24, 25, 26, 28,

41, 42, 43, 49, 51, 63, 66, 67, 68, 69,
70, 71, 72, 75, 79, 84, 85, 92, 93, 97,
98, 111, 132, 167, 190, 228, 241

metric...50, 78, 95, 96, 97, 98
microphone 182, 184, 195, 260, 264
middleware 1, 225, 226, 227
MMW..... .231

mobile client 7, 9, 11, 50,
104, 140, 149, 150, 151, 152, 153,
154, 156, 157, 158, 159, 160, 161, 165,
199, 203, 204, 205, 208, 209, 211, 220,
223

mobile transaction model 15, 104,
145, 149, 151, 152, 153, 154, 155,
157, 158, 159, 165, 209, 210, 211, 213,
214

model analysis 1, 138, 200, 203,
205, 231, 233

model compiler 26, 27, 28, 29,
31, 32, 111

model editor...1, 16, 19, 26,
27, 39, 40, 42, 43, 45, 51, 53, 63, 66,
75, 76, 77, 78, 84, 85, 86, 92, 94, 95,
97, 98, 106, 108, 118, 121, 128, 129,
139, 140, 166, 201, 233, 235

model interpreter...26, 29, 30,
31, 141, 176

model transformation....1, 14,
17, 24, 25, 26, 42, 56, 77, 84, 95, 132,
138, 165, 187, 188, 190, 191, 192, 227,
228

model-based simulation...1, 13,
17, 200

model-driven development approach1,
8, 9, 10, 11, 12, 13, 14, 15, 19, 23,
26, 29, 30, 36, 38, 40, 51, 60, 66, 118,
123, 124, 128, 137, 138, 139, 141, 147,
216, 232, 235, 236, 271

model-driven development infrastruc-
ture ... 1,
5, 16, 17, 19, 23, 26, 28, 31, 34, 36,
38, 39, 44, 45, 47, 53, 55, 60, 63, 66,
75, 76, 97, 101, 104, 105, 106, 109,
122, 123, 124, 128, 129, 130, 131, 132,
133, 138, 139, 140, 164, 173, 182, 187,
188, 220, 223, 229, 230, 231, 233, 234,
235, 236, 271, 291

Model-View-Controller...52, 114,
118, 139, 140

modeling language requirements...19,
97, 166

modelware ... 24, 26
MOF.... .24, 66
MPIS ... 105
MTM.....209, 210, 211, 212, 213, 214
multi-editor... .94
multi-platform....8, 9, 10, 113
multi-user 9, 15, 50, 57, 149,

163, 165, 173, 231, 233, 234
multimedia 34, 104, 292
MVC.... .52

INDEX 325

MySQL 113, 158
native...1, 8, 9, 10, 12, 13,

23, 25, 26, 27, 28, 29, 30, 31, 32, 33,
36, 37, 38, 42, 49, 50, 51, 57, 58, 59,
60, 72, 99, 102, 103, 104, 105, 110,
114, 124, 126, 127, 128, 130, 131, 132,
133, 134, 137, 138, 139, 140, 141, 142,
147, 148, 149, 170, 187, 190, 191, 207,
212, 230, 232, 233, 234, 235, 237,
292, 293

NFC.... 127, 150, 154, 204
NIB.... .36
notebook.... .188, 190
object model 65, 73, 112, 116,

117, 166, 178, 179, 183
Objective-C....8, 35, 36, 100,

106, 114, 118
OCL.... .49, 74, 95
offline-capable 13, 14, 17,

102, 103, 141, 148, 149, 150, 151,
154, 155, 163, 165, 166, 167, 170, 171,
199, 200, 201, 202, 203, 204, 207, 208,
209, 210, 211, 212, 213, 214, 215,
216, 221, 223, 230, 231, 232, 234

OLTP.... .103
OMG.... .24, 26, 228
one-level ... 13, 14
online-only 171, 199, 200, 203,

208, 209, 210, 212, 214, 221, 223
OpenGL/ES.... .33, 34
ORM 155, 158
OWL 230
PageContainer...69, 79, 80, 82,

83
PageStyleSettings 69, 80, 81
payment application 150, 160, 202,

203, 206, 207, 209, 210, 211
Permission 70, 71, 87, 88, 89,

90, 98
PervML.... .230
phone book 63, 66, 67, 68, 70,

72, 73, 74, 119, 128, 129, 130, 131,
174, 175, 188, 190, 191, 192, 194, 213,
245, 246, 250, 251, 271

PIM 5, 25, 26, 66, 108, 111,
118, 138, 140, 142, 227, 228, 273,
274, 275, 276, 277, 278, 279, 280,
281, 282, 283, 284, 285, 286, 287,
288, 289, 290, 291

PIMAR....5, 66, 108, 273, 274, 275,
276, 277, 278, 279, 280, 281, 282,
283, 284, 285, 286, 287, 288, 289,
290, 291

PIMAR....5, 66, 108, 273, 274, 275,
276, 277, 278, 279, 280, 281, 282,
283, 284, 285, 286, 287, 288, 289,
290, 291

pixel .. .193, 196
platform context 12, 14, 16,

51, 58, 59, 60, 147, 148, 170, 187,
228, 230

POJO.... .28, 50
Process 18, 25, 29, 30, 40,

41, 43, 44, 57, 65, 67, 69, 70, 71, 72,
73, 74, 78, 83, 84, 85, 86, 87, 88, 89,
90, 91, 92, 95, 99, 111, 113, 114, 116,
117, 159, 166, 174, 175, 178, 180, 181,
183, 184, 185, 192, 193, 195, 200, 201,
202, 206, 208, 209, 213, 214, 216,
217, 219, 220, 228, 241, 242, 247,
248, 249, 250, 251, 253, 254, 255,
256, 257, 258, 261, 262, 263, 264,
266, 267, 268, 269, 293

process instance model...65, 73,
98, 111, 116, 117, 176, 177, 192, 194,
271

process model 19, 23, 43, 47,
51, 65, 66, 70, 73, 74, 84, 85, 86, 94,
99, 111, 113, 114, 116, 117, 130, 139,
164, 166, 173, 174, 175, 176, 177, 182,
188, 190, 192, 203, 206, 211, 247, 254,
261, 293

ProcessContainer...71, 78, 86,
241

ProcessSelector...29, 30, 69,
70, 71, 72, 73, 74, 83, 87, 117, 174,
178, 180, 184, 185, 202, 217, 219, 220,
241, 242, 247

ProcessSelectorPage 29, 30, 69,
70, 72, 83, 178, 180, 185, 202, 217

provider model...15, 63, 65, 73,
100, 108, 114, 115, 116, 117, 124,
134, 165, 166, 176, 177, 178, 179, 183,
194, 254, 261

providing user...15, 48, 63, 73,
98, 163, 166, 169, 177, 191, 254, 261

PSM 25, 26, 111, 118, 138, 142,
227, 228

quality ... 1, 5, 9, 10, 19,
40, 41, 42, 49, 50, 61, 63, 95, 96, 98,
101, 105, 109, 138, 213, 214, 215, 216,
217, 219, 220, 221, 222, 223, 234, 236

re-engineered....16, 101, 106, 215,
216, 220, 221, 223

Read 43, 48, 71, 72, 88, 111,
113, 114, 121, 122, 133, 190, 205,
206, 211, 213, 247, 249, 255

RecordAudioPage 69, 260

326 INDEX

refactor...25, 26, 40, 44, 50,
61, 95, 97, 101, 190

reference application 1, 16,
19, 29, 31, 39, 40, 44, 47, 48, 50, 55,
101, 102, 103, 104, 105, 106, 108, 109,
113, 122, 123, 124, 139

reference applications...1, 16,
19, 29, 31, 39, 40, 44, 47, 50, 55, 101,
102, 104, 105, 106, 108, 109, 113, 122,
123, 124, 139

reintegration 151, 156, 165, 199,
212

replication...57, 103, 140, 150,
151, 153, 154, 155, 156, 157, 159,
160, 165, 166, 170, 172, 199, 200, 201,
212, 214, 219, 223, 231, 235

return value commutativity...160,
204, 205

reverse engineering 101, 102
RGB....69, 80, 96, 193, 194, 243
rich-client...8, 13, 106, 139,

141, 149, 212
RISC 33
RTE 26
rule 19, 24, 31, 49, 51, 57,

59, 61, 63, 74, 93, 97, 98, 100, 111,
170, 171, 187, 188, 189, 190, 191, 227,
229, 236, 241

runtime 1, 8, 13, 14, 15,
16, 17, 19, 20, 26, 30, 31, 32, 35, 37,
45, 48, 49, 58, 60, 63, 66, 73, 76, 98,
99, 105, 106, 107, 108, 109, 110, 112,
114, 115, 116, 117, 123, 124, 126, 128,
129, 130, 131, 132, 133, 134, 137, 141,
148, 163, 164, 165, 170, 171, 172, 173,
176, 177, 187, 192, 194, 195, 201, 207,
208, 220, 224, 226, 227, 228, 229,
230, 231, 232, 233, 234, 237, 271

runtime adaptation 20, 126, 148,
165, 187, 192, 194, 195, 226, 227,
228, 234, 271

runtime performance 1
SAP.... .137
scalability 1, 123, 131, 132,

133, 134
SCXML 231
SDK....8, 33, 77, 99, 115, 116,

276, 278
SE....1, 3, 11, 18, 23, 24, 26,

28, 30, 32, 34, 36, 38, 55, 56, 58, 60,
70, 140, 141, 142, 220, 288, 293

SelectableListPage 69, 70, 72,
74, 75, 83, 178, 180, 243, 248, 249,
250, 251, 253, 257, 258

SelectionStyleSetting...69, 80,
81

service 9, 11, 12, 15, 33,
57, 72, 106, 113, 115, 116, 117, 140,
145, 147, 149, 158, 164, 172, 173, 193,
199, 215, 219, 226, 230, 231, 235, 250,
292

service mobility ... 147
SGL.... .33, 34
simulation system....13, 167, 200,

208, 209, 211, 221, 224
smartphone 1, 7, 33, 34, 176,

187, 188, 191, 260, 292
SmartPlug 126, 127
SQL....33, 34, 113, 114, 117, 131,

154, 158, 204
SSL 33, 34
standalone system 57, 123, 170
state commutativity...160, 204, 205
style model 65, 73, 98, 99,

114, 117, 128, 134, 178, 179, 183,
192, 194, 195, 197

StyleSettings 30, 69, 79, 80,
81

SVG.... 77
Swift.. .8
synchronization...57, 103, 104,

149, 151, 153, 154, 155, 156, 157,
159, 160, 161, 165, 166, 167, 170, 172,
199, 200, 201, 204, 212, 214, 231

SysML.... .25
system context 9, 11, 12, 13,

14, 17, 145, 148, 169, 170, 171, 172,
199, 230, 232

system context 9, 11, 12, 13,
14, 17, 145, 148, 169, 170, 171, 172,
199, 230, 232

tablet..33, 34, 187, 188, 191, 292
TakePicturePage 69, 82, 99,

184, 219, 260
technical concerns ... 1
template 11, 16, 28, 29, 30,

31, 40, 41, 101, 110, 113, 121, 122,
132, 229, 236

Teneo.... .108, 117, 212
terminal mobility 147, 151
throughput 13, 15, 165, 166, 167,

199, 200, 201, 204, 207, 208, 209,
210, 211, 212, 214, 215, 216, 221,
222, 223, 224

TM 8, 15, 33, 37, 112, 140, 151,
152, 154, 155, 163, 204, 209, 210,
211, 212, 213, 214, 220

INDEX 327

tool requirements...16, 51, 166
transaction management...14, 58,

60, 105, 112, 124, 126, 148, 164, 165,
169, 170, 172, 199, 200, 202

transaction manager...15, 151, 152,
158, 164, 201

transaction processing...103, 104,
151, 152, 155, 158, 159, 212, 235

transaction system 57, 101, 103,
104, 124, 165, 170, 200, 205, 215,
231, 233, 234

tree-based 73, 75, 76, 77, 85
TV 18, 33, 127, 128, 169, 170, 187,

195
TV Reminder ... 127, 128
TV-stick... .187
two-level 13, 14, 16, 17, 124,

163, 165, 176, 177, 192, 233, 234
UAT 109
UML 24, 25, 129, 138, 140, 141,

227, 231
usability 1, 5, 17, 27, 70,

214, 227, 234, 236
use case 10, 16, 41, 44, 45,

72, 126, 148, 150, 173, 174, 176, 177,
178, 180, 184, 185, 186, 216, 221, 223,
271

user context 13, 14, 17, 32,
145, 148, 165, 169, 170, 171, 173,
174, 175, 176, 177, 192, 193, 231, 234

user role...148, 163, 164, 165, 169,
173, 174, 175, 176, 177, 178, 182, 183

Variable 71, 74, 85, 86, 87,
92, 114, 189, 190, 242, 243

ViewPage....41, 69, 70, 72, 83,
99, 114, 120, 121, 122, 178, 180, 243,
247, 248, 249, 253, 258

VPN.... .35

VR 146

W3C.... .193

WAI 193

WCAG.... .193, 194

Wearable ... 169

web-based 7, 8, 9, 11, 12,
13, 32, 37, 38, 58, 103, 106, 108, 139,
140, 147, 148, 230, 233, 292

WebML 230

well-formedness...19, 49, 51,
63, 74, 98, 100, 241

WeSense...215, 218, 219, 223

While 1, 7, 9, 25, 39, 43,
61, 63, 66, 71, 76, 84, 85, 90, 92, 95,
99, 113, 115, 128, 129, 134, 137, 139,
152, 156, 166, 173, 187, 190, 199, 204,
209, 210, 211, 216, 229, 230, 241, 242

word trainer application 177, 182,
183, 186, 195, 196, 259, 260

XMI 75, 106, 113, 131

XML....33, 36, 65, 75, 100, 187,
228, 231, 292, 293

XnU.... 34

Xtext ... 39, 42, 98

COVER/EINBAND (175 * pages: height=297mm, width=210mm = 18.20mm 90gr/qm 1:1)

A Framework for Model-Driven
Development of Mobile Applications
with Context Support

Steffen Vaupel

Philipps-Universität Marburg, Deutschland
Fachbereich Mathematik und Informatik
2018

Model-driven development (MDD) of software systems has been a serious trend in dif-
ferent application domains over the last 15 years. While technologies, platforms, and
architectural paradigms have changed several times since model-driven development pro-
cesses were first introduced, their applicability and usefulness are discussed every time
a new technological trend appears. Looking at the rapid market penetration of smart-
phones, software engineers are curious about how model-driven development technologies
can deal with this novel and emergent domain of software engineering (SE).

Indeed, software engineering of mobile applications provides many challenges that model-
driven development can address. Model-driven development uses a platform independent
model as a crucial artifact. Such a model usually follows a domain-specific modeling
language and separates the business concerns from the technical concerns. These platform-
independent models can be reused for generating native program code for several mobile
software platforms. However, a major drawback of model-driven development is that
infrastructure developers must provide a fairly sophisticated model-driven development
infrastructure before mobile application developers can create mobile applications in a
model-driven way.

Hence, the first part of this thesis deals with designing a model-driven development in-
frastructure for mobile applications. We will follow a rigorous design process comprising
a domain analysis, the design of a domain-specific modeling language, and the develop-
ment of the corresponding model editors. To ensure that the code generators produce
high-quality application code and the resulting mobile applications follow a proper archi-
tectural design, we will analyze several representative reference applications beforehand.
Thus, the reader will get an insight into both the features of mobile applications and the
steps that are required to design and implement a model-driven development infrastruc-
ture.

As a result of the domain analysis and the analysis of the reference applications, we
identified context-awareness as a further important feature of mobile applications. Cur-
rent software engineering tools do not sufficiently support designing and implementing of
context-aware mobile applications. Although these tools (e.g., middleware approaches)
support the definition and the collection of contextual information, the adaptation of the
mobile application must often be implemented by hand at a low abstraction level by the
mobile application developers.

Thus, the second part of this thesis demonstrates how context-aware mobile applications
can be designed more easily by using a model-driven development approach. Techniques
such as model transformation and model interpretation are used to adapt mobile appli-
cations to different contexts at design time or runtime. Moreover, model analysis and
model-based simulation help mobile application developers to evaluate a designed mobile
application (i.e., app model) prior to its generation and deployment with respected to
certain contexts.

We demonstrate the usefulness and applicability of the model-driven development in-
frastructure we developed by seven case examples. These showcases demonstrate the
designing of mobile applications in different domains. We demonstrate the scalability of
our model-driven development infrastructure with several performance tests, focusing on
the generation time of mobile applications, as well as their runtime performance. More-
over, the usability was successfully evaluated during several hands-on training sessions by
real mobile application developers with different skill levels.

A
F
ra

m
e
w
o
rk

fo
r
M

o
d
e
l-D

riv
e
n
D
e
v
e
lo
p
m
e
n
t
o
f
M

o
b
ile

A
p
p
lica

tio
n
s
w
ith

C
o
n
te
x
t
S
u
p
p
o
rt•

S
te
ff
e
n
V
a
u
p
e
l

	Abstract
	Kurzfassung
	Acknowledgements
	Introduction
	Motivation
	Challenges
	Goals of This Work
	Approach
	Design Models and Runtime Models
	Extended Client-Server Architecture

	Contributions
	Model-Driven Development Infrastructure (Contribution 1)
	Context Support for Mobile Applications (Contribution 2)

	Thesis-Related List of Publications
	Outline

	I Model-Driven Development of Mobile Applications
	MDD and SE of Mobile Applications – Foundations and Definitions
	Model-Driven Development
	Design of Model-Driven Development Infrastructures
	Design of Modeling Languages and Model Editors
	Design of Model Compilers
	Visitor-Based Approach
	Template-Based Approach

	Model Compiler vs. Model Interpreter

	Software Engineering of Mobile Applications
	Model-Driven Development of Mobile Applications

	Mobile Software Platforms
	Android – Concepts and Technology
	iOS – Concepts and Technology
	Comparing Android and iOS
	Cross-Platform Technologies
	Comparing Cross-Platform Technologies and MDD

	Agile Bottom-Up Development of IDEs for MDD
	Agile Bottom-Up IDE Development Process
	Domain Analysis
	Continuous Language and IDE Development
	Migration of App Models

	Three-Tier Agile Process Model
	Demonstration
	Setup
	Applicability of the Approach (Question 1)
	Usefulness of the Approach (Question 2)

	Requirements for MDD of Mobile Applications
	Modeling Language Requirements
	Detailed Data Modeling
	Abstract and Detailed Behavior Modeling
	Abstract Graphical User Interface Modeling
	Well-Formedness of the App Model
	Model Quality Assurance

	Architectural Requirements
	Data-Driven Mobile Applications
	Single User System with Back-End Access

	Tool Requirements
	Graphical Model Editor
	Code Generator

	Discussion

	Domain Analysis (MDD and SE of Mobile Applications)
	Sources of Domain Knowledge
	Feature Identification and Definition
	Feature Model
	Feature Composition Rules
	Feature Binding

	Focused Features
	Evaluation

	Domain-Specific Modeling Language and Model Editors
	Design Decisions
	Eclipse Modeling Framework (EMF)
	Domain-Specific Modeling Language Definition
	Data Model
	Graphical User Interface (GUI) Model
	Process Model
	Provider Model
	Well-Formedness Rules

	Domain-Specific Modeling Language Implementation
	Graphical Modeling Framework (GMF)
	Workflow

	Graphical Concrete Syntax and Edit Operations
	Graphical Concrete Syntax for the Data Model
	Graphical Concrete Syntax for the GUI Model
	Graphical Concrete Syntax for the Process Model
	Extended Process Model
	Graphical Concrete Syntax for the Extended Process Model

	Combining Textual and Graphical Editing
	Graphical Model Editor Implementation
	Further EMF-Based Tools and Frameworks
	Tooling for Model Quality Assurance
	Tooling for Model Transformation

	Evaluation
	Setup
	Requirement Coverage (Question 1)
	Language Adequacy (Question 2)
	Design Guidelines for Domain-Specific Modeling Languages
	Design Guidelines for User Interface Description Languages

	Threats to Validity

	Reference Applications, Code Generators, and Prototypes
	Reverse Engineering of Reference Applications
	Information System
	Transaction System
	Standalone System
	Coverage of Focused Features

	Forward Engineering of Reference Applications
	Front End
	Back End
	Simple Back End
	Web-Based Back-End Model Editor

	Evaluation of the Forward Engineered Reference Applications
	Compatibility Test
	Functional Test
	Qualitative Review

	Construction of Code Generators
	Initialization of the IDEs
	Platform-Specific Project Initialization (Android)
	Platform-Specific Project Initialization (iOS)

	Preprocessing an App Model
	App Model Decoration
	App Model Concretization

	Processing an App Model
	Architecture of Generated Mobile Applications
	Mapping of Model Elements to Platform-Specific Types
	Code Generation for Android
	Code Generation for iOS

	Processing a Provider Model
	Injection of Custom Code
	Platform-Specific Model Annotation
	External Library Inclusion

	Code Generator Implementation
	Similarity Between the Code Generators

	Evaluation
	Setup
	Requirement Coverage (Question 1)
	Feature Coverage (Question 2)
	Case Example 1 (Mathematikum)
	Case Example 2 (SmartPlug)
	Case Example 3 (TV Reminder)
	Potentials and Limits

	User Experience Evaluation (Question 3)
	Undergraduate Testers
	Graduate Testers
	Expert Testers
	General Observations and Results

	Similarity Between Applications (Question 4)
	Code Generator Testing (Question 5 and 6)
	Functional Tests
	Scalability Tests

	Threats to Validity

	Related Work: MDD of Mobile Applications
	MDD vs. Non-MDD Cross-Platform Approaches
	Comparison Criteria for MDD Approaches
	Comparison with Related Approaches

	II Context Support
	Context Support – Foundations and Definitions
	Context and Context-Awareness
	Mobility
	Platform-, Device-, and User Context Support
	Platform Context Support
	User Context Support
	Device Context Support

	System Context Support
	Application Domain and Example Applications
	Payment App
	Course Booking App

	Online- and Offline-Capable Architecture Design
	Working Model of the Local Transaction Manager
	Anomalies
	Replication and Synchronization
	Mobile Transaction Models

	Problem Statement
	Generic Online- and Offline-Capable Architecture Design
	Conflict-Free Mobile Transaction Models
	Modification of the Working Model

	Requirements for Context Support
	Architectural Requirements
	Support of User Roles (User Context)
	Heterogeneous Device Support (Device Context)
	Interoperable, Multi-User Systems
	Online and Offline Capability (System Context)
	Non-Functional Architectural Requirements

	Modeling Language Requirements
	Declaration of Online- and Offline-Capable Data

	Tool Requirements
	Provider Model Editor
	Simulation System

	Discussion

	Domain Analysis (Mobile Contexts)
	Feature Identification and Definition
	Feature Model
	Feature Composition Rules
	Feature Binding

	Focused Features

	User Contexts
	Design Time Instantiation
	Runtime Instantiation
	Runtime Instantiation Implementation

	Demonstration
	Case Example 4 (Conference Application)
	Case Example 5 (Word Trainer Application)

	Device Contexts
	Design Time Adaptation
	Runtime Adaptation
	Runtime Adaptation Implementation

	Demonstration
	Case Example 6 (Word Trainer Application – eBook)
	Device-Specific Processes
	Device-Specific Style Configuration

	System Contexts
	Design Process Overview
	Modeling
	Model-Based Analysis
	Model-Based Simulation
	Model-Driven Generation
	Running Example (Simple Payment Application)

	Model-Based Analysis
	Conflict Definition and Conflict Levels
	Explicating Data Object Access
	Running the Model-Based Conflict Analysis

	Model-Based Simulation
	Dynamic Conflict Analysis by Simulation
	Running the Model-Based Simulation
	Restricting Data Object Access
	Design and Implementation of the Simulation System

	Model-Driven Generation
	Introducing Online and Offline Capability

	Evaluation
	Usefulness of the Design Process (RQ1)
	Usability of the Design Process (RQ2)
	Case Example 7 (Air Quality Application)

	Threats to Validity

	Related Work: MDD of Context-Aware Mobile Applications
	Middleware-Based Context-Aware Systems
	MDD Techniques for Context-Aware System Design
	MDD Frameworks for Context-Aware System Creation

	Summary and Outlook
	Summary
	Outlook

	Well-Formedness Rules
	Constraints for the Data Model
	Constraints for the Process Model
	Constraints for the GUI Model

	App Models
	Phone Book App Model
	Data Model
	GUI Model
	Process Model
	Process Main
	Process ViewPerson
	Process CreatePerson
	Process EditPerson
	Process DeletePerson
	Process AllPersons
	Process CRUDPerson
	Process SearchPerson
	Process CallPerson
	Process SelectAndShowPersonAddressOnMap
	Process PersonsWithAddress
	Process ShowPersonAddressOnMap
	Process NearToMe

	Conference App Model
	Data Model
	GUI Model
	Process Model
	Process Main
	Process Favorites
	Standard CRUD Processes
	Standard Read Processes
	Process RRoom
	Process RVenue
	Process AddFavorite
	Process RemoveFavorite
	Process SearchPaper
	Process SearchPerson

	Word Trainer App Model
	Data Model
	GUI Model
	Process Model
	Process Main and sub-processes
	Standard CRUD Processes
	Process CreatePicture
	Process CreateAudio
	Process CreateAnswer
	Process CreateWord
	Process SearchWord
	Process ViewWord
	Process DeleteWord
	Processes LearnAndTest
	Process Favorites/MyWord

	Tutorial
	Miscellaneous
	The Research Project PIMAR
	The Mobile Application key2guide
	The Mobile Application key2operate

	Bibliography
	Index

