g
4. MapServer

open source web mapping

MapServer Documentation
Release 7.0.7

The MapServer Team

2017-11-15

Contents

1 Introduction

1.1

2

An Introduction to MapServer e e e e e e e e e e e e 2
L.1.1T 0 MapServer OVEIVIEW v v v v v e 3
1.1.2 Anatomy of a MapServer Application oo 4
1.1.3 Installation and Requirements L ... 6
Hardware Requirements L e e 6
Software Requirements e e e e e e e e e 6

SKills . . o o e 6
Windows Installation oL e 7

1.1.4 Introductiontothe Mapfile 14
MAP Object e e e e e 16
LAYER Object o o e e e e e 16
CLASS and STYLE Objects v v v v e i e e e e e e e e e e e e e e e e 17
SYMBOLS o e e e 18
LABEL . . . e e 19
CLASS EXPressions o v v v v ittt it e et e e e e e e e e e e 22
INCLUDE . . . e 22

Get MapServer Running e e e e e 23
GetDemo Running L e e e e 23

[.1.5 Making the Site Your Own e 24
Adding Datato Your Site 24
Vector Data o e e e 24
RasterData o e e e 24
Projections e e e e e e e e e 24

[.1.6 Enhancing your Site o 0 i i i e e e e e e e e e e e e e e 25
Adding Query Capability L 25
Attribute qUETIeS L L L e e e 25
Spatial qQUeries e e e e e e e 25
Interfaces L e 25

Data Optimization i it e e e e e e e e e e e e 25

1.1.7 HowdolIgetHelp? e 26
Documentation e e e e e e e e 26

Users Mailing List L . e 26

IRC . e 26
Reporting bugs o e e e e e e e e e e e 26
Tutorial L L e e 26

Test SUIte o o e e e e e e e e 27

Books . . . e 27

2 Tutorial
MapServer Tutorial
Tutorial background

2.1

3 Installation

3.1

2.1.1

2.1.2
2.13

2.14
2.1.5

Tutorial Timeframe
Tutorial Data . . .

Before Using the Tutorial e
Windows, UNIX/LInux ISSUES o v e e e e e e e e e e e e e e e e e

Other Resources .

Section 1: Static Maps and the MapFile
Section 2: CGI variables and the User Interface

HTML Templates .
Examples

Section 3: Query and more about HTML Templates
Section 4: Advanced User Interfaces o

Installation
Compilingon UniX o0 . 0 e e e e e

3.1.1

3.1.5

Introduction
Obtaining the necess

ary softwareo e

Anti-Grain Geometry SUPPOTIt e e e e e e e e e e e

OGC Support . . .
Spatial Warehousing
Compiling
Installation

Compilingon Win32 e

Introduction
Compiling
Set up a Project Dire

CLOTY © o v v i e e e e e

Download MapServer Source Code and Supporting Libraries
The MapServer source code e e

Set Compilation Opt

TONS & v v e e e e e e e e e e e e e

Compile the Libraries e e e e e

Compile MapServer

Compiling MapServer with PostGIS support

Common Compiling
Installation

Errors

Other Helpful Information e

Acknowledgements

PHP MapScript Installation

Introduction
Obtaining, Compilin

g, and Installing PHP and the PHP/MapScript Module

FAQ/Common Problems e
NET MapScript Compilation 0.0 e e e

Compilation . . .
Installation
Known issues . . .
Most frequent errors
Bug reports

IIS Setup for MapServer e

MapServer Setup .
Configuring with IIS

Setting up Applications v o i e e e e e e e e e e e e e e e

Setting up Logging

28
28
28
28
28
29
29
30
30
31
31
31
31
32

33
33
33
33
34
35
35
37
38
39
41
41
42
42
42
43
44
45
45
46
46
47
47
47
47
48
49
52
54
54
56
57
59
59
59
60
61
63
64

Troubleshooting i i e e e e e e e e e 64

3.1.6 OracleInstallation 65
Preface 66
System ASSUMPLONS . . .« v v v e e e e e e e e e e 66
Compile MapServer e e e e 67
Set Environment Variables L e 67

3.1.7 V8 MapScript SUPPOTIt o v o e e e e e e e e e e e e e e 69
Introduction e 69
Obtaining, Compiling, and Installing V8 and V8/MapScript 70

4 Mapfile 72
4.1 Mapfile L e e e e e e 72

4.1.1 Cartographical Symbol Construction with MapServer 72
ADSITact oL e e e e 74
Introduction L e e e e e 74
Using Cartographical Symbols in MapServer 77
Construction of Point Symbols 78
Construction of Line Symbols o 85
Area Symbols 97
Examples (MapServer4) e e e 113
Tricks 119
Mapfile changes related tosymbols L L 123
Current Problems /Open Issues L 123
The End o o o e 124

4.1.2 CLASS . . e 124

4.1.3 CLUSTER e 126
Description e e e e e e e e e e e e e 127
Supported Layer Types o o o i e e e e e e e 127
Mapfile Parameters L L L e e e 127
Supported Processing Optionso e e e 127
Mapfile Snippet oL e e e e e 127
Feature attributes e 128
Handling GetFeatureInfo e 128
PHP MapScript Usage e e e e 129
Example: Clustering Railway Stations 129

414 COMPOSITE o e 131
Background L e e e e 131
Parameters e 131
USage . . o o o e e e e e e e e 132

4.1.5 Display of International Characters in MapServer 133
Credit e e 133
Related Links o o o e e e 134
Requirements e e e e e e e e 134
How to Enable in Your Mapfile (MapServer >=7.0) 134
How to Enable in Your Mapfile MapServer<7.0) 136
Example Using PHP MapScript 137
NOES . . o o o e e e e 138

4.1.6 EXPIessions . . . v v v v v v i e 138
Introduction e 139
Expression Types o . . . e e e 140
String comparison (equality)o Lo 140
Regular expression COmparison o oottt e e e e e e e e 141
LiSt @XPressions . . . v v v v v v v e 142
“MapServer eXpressions”™ o i e e e e e e e e e e e e e e e e e e 143

4177 FEATURE. e 149

4.1.8 FONTSET o e 150
Format of the fontsetfile 150
4.1.9 GEOMTRANSFORM - Geometry Transformations 151
Transformations for simple styling (CLASS STYLE only) 153
Labels (LABEL STYLE only) o 0 it e et et i i e e e e s e 157
Expressions and advanced transformations (LAYER and CLASS STYLE) 159
Javascript transformation L Lo e e 167
4.1.10 GRID . . . oo e 172
Description e e e e e e e e e 172
Mapfile Parameters: e e e e e e e 172
Examplel: Grid Displaying Degrees o i i i e e e 172
Example2: Grid Displaying Degrees with Symbol 173
Example3: Grid Displayed in Other Projection (Google Mercator) 174
4.1.11 INCLUDE. e e e e e e e e 175
NOES . . o o o e e e e e 176
Example e e e e e e e 176
4.1.12 JOIN .. e 177
Description L e e e e e e e e e 177
Supported Formats 177
Mapfile Parameters: e e e e e e e e 177
Example 1: Join from Shape datasetto DBFfile. 178
Example 2: Join from Shape dataset to PostgreSQL table 179
Example 3: Join from Shape datasettoCSVfile. 180
Example 4: Join from Shape datasetto MySQL 182
Example 5: One-to-many join oL 182
4.1.13 LABEL e e 183
4.1.14 LAYER . . . o 190
4.1.15 LEADER e e 204
Description e e e e e e e e e e 204
Supported Layer Types e 204
Mapfile Parameters e e e e 204
Mapfile Snippet o e e e e e e e e e e 204
Example: World Countries Labels e 205
4.1.16 LEGEND e 208
4.1.17 MAP . e e e 209
4.1.18 OUTPUTFORMAT e e e e e e e e e e e e 214
4.1.19 PROJECTION e et e e e e e e 218
Background L e e e e e e 218
Projections with MapServer e e e 218
“Web Mercator” or “Google Mercator”o o 219
PROJECTION AUTO o oo e e e e e e e e e e e e e e 219
Specifying which EPSGfilestouse 219
Important NOtes i e e e e e e e e e e e 220
For More Information L e 220
4.1.20 QUERYMAP o e e e 220
4121 REFERENCE e 221
4.1.22 SCALEBAR o e 222
4.1.23 STYLE . . . e e 223
4.1.24 STYLEITEM Javascript o o i i e e e e e e e e e e e e e e e e 232
Introduction e 232
USage o o e e e e 232
Example 1. Single STYLE definition 233
Example 2. CLASS with multiple STYLE definitions 233

Example 3. Printing logs in MapServerlogso 234

4125 SYMBOL e 234
4.1.26 Symbology Examples 236
Example 1. DashedLine 237
Example 2. TrueType font marker symbol 237
Example 3. Vector triangle marker symbolo oL 237
Example 4. Non-contiguous vector marker symbol (Cross) 238
Example 5. Circle vector symbol e 238
Example 6. Downward diagonal fill L . 238
Example 7. Using the Symbol Type HATCH (new in4.6) 238
Example 8. Styled linesusing GAP 239

4.1.27 Templating o e e e e e e e e e e e e e e e e e 240
Introduction e 240
Format 241
Example Template e 249

4.1.28 VALIDATION e e e 250
Introduction 250
Default values if not providedinthe URL 251
Filterexample e e e e e e 251

4.1.29 UnionLayer. e e 252
Description e e e e 252
Requirements o L e e e e e e 252
Mapfile Configuration o i e e e e e e e e e 252
Feature attributes e 253
Classes and Styles e 253
Projections e 254
Supported Processing Options L. e e e 254
Examples e e e e e e e 254

4130 WEB . . . e 257
4.1.31 XML Mapfile support« o o e e e e e 259
Enabling the support e 259
Usage: . . . e 259

4132 NOES . . v i o e e e e e e e e e 260
5 MapScript 261
5.1 MapScript . . . oo e e 261
51,1 Introduction 261
AppendiCes e e e e e e e e e e e e 261
Documentation Elements L e 261
foo0b] . . . e e 261
Additional Documentation L. e e 262

5.1.2 SWIG MapScript APT Reference e 262
Introduction e 264
MapScript COnstants ot i e e e e e e e e e e e e e 265
MapScript Functions e 271
MapScript CIasses o i i e e e e e e e e e e 271

5.1.3° PHPMapScript o oo e e e e 307
Introduction e 307

PHP MapScript APL e e e 309

PHP MapScript Migration Guide Lo 345

By Example. e 349

5.1.4 Python MapScript AppendixX e 359
Introduction 359
Classes v v v i e 359

Exception Handling e e e 361

5.1.5 Python MapScript Image Generation e 361
Introduction e e e e e e e e e e e e e 361
Imagery Overview e e 362
The imageObj Class e e e e e 362
Image Output e e e e 362
Images and Symbols L e e e e 363

5.1.6 Mapfile Manipulation L e e e e 363
Introduction e e e e e e e e e e e e e e 364
Mapfile Overview L e e e 364
The mapObj Class o e e e e 364
Children of mapODbj o e e e e e e e e 365
Metadata e e e e e e e e e e e 366

507 0 Querying e e e e e e e e e 366
Introduction L e e e e e e e 367
Querying OVEIVIEW v ittt e e e e e e e e e e e 367
Attribute QUETIES e e e e e e e e e e e e e e e 368
Spatial Queries e e e e e e e e e e 368

6 MapCache 369
6.1 MapCache 1.6.1 o e e e e e e e 369

6.1.1 Compilation & Installation e 369
Gettingthe Source L e e e e e e e e 370
Linux Instructions e e e e e e e e e 370
Windows InStructionS e e 377

6.1.2 Configuration File e 380
SOUICE . . o o e e e e e e e e e e e 380
Cache e e e e 382
Format e 383
Grid e e e e e e e 384
Tileset o e e e e 387
SEIVICES . v v v v o e e e e e e e e e e e e e e e e e e 391
Miscellaneous o e e e e e e e e e e e e 392

6.1.3 Supported Tile Services L e 393
TMS Service e e e e e e e e e 393
KML Service 0 e e e e e e e 395
OGC WMTS Service v v vt e 395
OGC WMS Service o v e e e e e e e e e e e e e e e e e e 395
GoogleMaps XYZ Service o v v it e e 397
Virtual Earth tile service e e e e e e e 398

6.1.4 Seeder e e e e e 399
Usage o e 399

6.1.5 Cache Types o v i e e e e e e e e 402
Disk Caches e e e e e e 402
Berkeley DB Caches e 404
SQLite Caches e e e e e e e 404
MBTiles Caches e 407
Memcache Caches e e e e e 408
(Geo)TIFF Caches o e e e e e e e e e 408
REST Caches o e e e e e e e e e 411
Meta Caches e e e e e 413
Riak Caches e 415

6.1.6 Image Formats e e e e e e e e e 415
JPEG Format e e e e e e e e e 415

vi

PNG Format e e e 415

Mixed Format o e e e 416

6.1.7 Tileset DIMensions o . i e e e e e e e e e 416
6.1.8 HTTPRequests e e 416
Specifying the URL 416
TIMEOULS . . . v o o o e 416
Headers L e 417

6.1.9 Featurelnfo Requests L e e 417
6.1.10 Proxying Unsupported Requests 417
Parameter Filtering L 418

Proxy Destination e e e e e e e 418

6.1.11 DataSources o v v v i e e e e e e e e e 419
WMS Sources i e e e e e e 419
MapFile Sources e e e e e e 419
WMTS Sources o e e e e e e e e e e e 419

6.1.12 Tile Assembling e e 420
6.1.13 Locking Mechanisms 0 i i e e e e e e e e e e e 420
Disk LoCKS o e e e e e e e e e e 420
Memcache Locks o e e e e e 421
Fallback Locks e e 421

6.1.14 Features e e e e e e e e e e e e 421
7 Input 423
7.1 Datalnput e 423
T.1.1 VectorData e e e e e e e e 423
Data Format Types o o o i e e e e e e e 424
ArcInfo e 425
ArcSDE . . . e 426
CONOUT o o e et e e e e e e e e e e e e e e e e e e 429

DGN . . e 432
ESRIFile Geodatabase o o i i i i e e e e e e e e e 433

ESRI Personal Geodatabase (MDB) e 435

ESRI Shapefiles (SHP) e e 437

GML . . e 439

GPS Exchange Format (GPX) e 441

Inline e e e e e e e e e 443

KML - Keyhole Markup Language it i 444
MapInfo. e e e e e 451
MSSQL . . e e 452
MySQL . . . e 457

NTF . . e 461

OGR . . e 462
Oracle Spatial e e e e e e e 477
PostGIS/PostgreSQL e e e e 482

SDTS . e 491

ST e 493
Spatiallite o e e e e 495
USGSTIGER e e e 498
Vector field rendering - UVraster. 0 o i i it e e e e 500
Virtual Spatial Data 502

WES e 507

7.1.2 RasterData e e e e e e e e 508
Introduction L e e e e e 509

How are rasters addedtoaMap file? e 509

vii

Supported Formats e e e e e e e e e e e 511

Rasters and Tile Indexing e e e 512

Raster Warping o . e e e e e e e 513

24bit RGB Rendering 513
Special Processing Directives e 514
Raster Query e e e 516

Raster Display Performance Tips o 0 i i e e e 518
Preprocessing Rasters L e e e e e 518
Georeference with World Files oL 520

7.1.3 Virtual File Systemo 520
Virtual File System L e 521

8 Output 525
8.1 Output Generation e e e 525
8.1.1 AGG Rendering Specifics e 525
Introduction e e e e e e 525
Setting the OutputFormat e 525

New Features o . o e e 526
Modified Behavior L e 527

8.1.2 AntiAliasing with MapServer e 527
Whatneedstobedone e 528

8.1.3 Dynamic Charting o e e e e e e e e e e 531
Setup . . . e e e e e e 531
Adding a Chart LayertoaMapfile L o Lo 532
PieCharts e e e 534

Bar Graphs e e e e e e 536

8.1.4 FlashOutput e e e e e e e e e 537
Introduction e 537
Installing MapServer with Flash Support L . 538

How to Output SWF Files from MapServer 539

What is Currently Supported and Not Supported 542

8.1.5 HTML Legends with MapServer i i v ittt e e e 543
Introduction e e 543
Sample Site Usingthe HTML Legend 551

8.1.6 HTML Imagemaps ittt ii e e 552
Introduction e e e 552
Mapfile Layer Definition e e e e 553
Templates o e e e e e e e e e e e e e 553
Request URL o e e e e e 554
Additional Notes e e e e e 554

More Information L. e e e e e 554

8.1.7 Kernel Density Estimation (Dynamic Heatmap) 555
Introduction e e e e 555
Configuration e e e e e e e e e e 556
Advanced sample weighting and filtering oo 558
Raster Color Ramping L e 558
Examplemapfiles e 559

8.1.8 OGROUpUt. o e e e e 561
Introduction e e e e 562
OUTPUTFORMAT Declarations 562
LAYER Metadata o o i e e e e e e e e e 563
MAP/WEB Metadata e e e e 564
Geometry Types Supported e e e e e e 565
Attribute Field Definitions L 565

Return Packaging e e e e e e 565

Test Suite Example e e e e e 566

8.1.9 PDFOUpUt o e e e e e e e 566
Introduction L e e e 566

What is currently supported and not supported 567
Implementing PDF Output e 567
PHP/MapScriptand PDF Output et e 569

8110 SVG . . . o e e 571
Introduction e 571
Feature Types and SVG Support Status oo 572
Testing your SVG Output oot e e e e e e e e e 573
SOSVG . . e e e e e e 575

8.1.11 TileMode e e e 578
Introduction e 578
Configuration L e 579
Utilization e e e e e e 579

8.1.12 Template-Driven Output e e e e e e e e e e e 582
Introduction e 583
OUTPUTFORMAT Declarations 583
Template Substitution Tags L. e 584
Examples L 584

.1.13 KmlOutput e e e e e 588
Introduction e e 588
General Functionality e e e e e 588
Output format o e e e e e e e e 589

Build 589
Limiting the number of featureso oo 589

Map . . . e e e e e e e e e 589
Layers e e e e e e e e 590
Styling e e e e e e e e 593
AUIbULES o L e e e e e e e e e 594
Coordinate SySteM e e e e e e e e e e e e e e e 594
Warning and Error Messages o o b e e e e e e 594

8.1.14 UTFGrid Output o e e e e e e e e e 595
Introduction e 595
Functionality L 595

Build 595
Setting the OutputFormat 595
Exposing Feature Properties i e e e e 596

9 OGC 597
9.1 OGC Supportand Configuration vt vv ittt e e e e 597
9.1.1 MapServer OGC Specification SUPPOTL v v v v v vt e e e e e e e e e e 597
9.1.2 WMS Server e e 597
Introduction 598
Setting Up a WMS Server Using MapServer 599
Changing the Online Resource URL, 605

WMS 1.3.0 Support o o e e e e e e e e e e e 608
Reference Section L e 609
FAQ/Common Problems e 622

9.1.3 INSPIRE View Service i e e e 623
Introduction e e e 624
Activation of INSPIRE support e e 624
Multi-language support for certain capabilities fields 624

Provision of INSPIRE specificmetadata 626

Named group layers e e e e e e e e 627
Style section for root layer and possibly existing group layers 627
9.1.4 WMSClient o i i e e e e e e e 629
Introduction L e e e e e 629
Compilation / Installation L e 630
MapFile Configuration e e e e e e e e e e 631
Limitations/TODO e 637
9.1.5 WMSTIMe e e e e 637
Introduction e e e e e 638
Enabling Time Support in MapServer vt 638
Future Additions e 642
Limitations and Known Bugs e 642
9.1.6 WMSDImension ittt e 642
Introduction L. e e e e 642
Enabling Dimension Support in MapServero 642
GetCapabilities Output o ot e e e e e e e e e e e e 643
Supported Dimension Requests e e e 644
Processing Dimension Requests Lo o 644
9.1.7 Map Context e e e 644
Introduction L. e e e e 645
Implementinga Web Map Context i it 645
9.1.8 WES Server e 652
Introduction e 652
Configuring your MapFile to Serve WFESlayers 653
Stored queries (WES 2.0) o . L 0 e 658
Reference Section L e 660
To-do Items and Known Limitations 665
9.1.9 INSPIRE Download Service e 665
Introduction e 666
Activation of INSPIRE support 666
Multi-language support for certain capabilities fields 667
Provision of INSPIRE specificmetadata 668
9.1.10 . WES CHent e e e e e 669
Introduction e 669
Setting up a WES-client Mapfile L o 670
TODO /Known Limitations oo i ittt e e e e e 674
9.1.11 WES-T Server o oo e e e e 674
WES-T o e e 674
9.1.12 WESFilter Encoding e e e e e 674
Introduction e 675
Currently Supported Features o 675
Getand Post Requests e 676
Use of Filter Encoding in MapServer 677
Limitations e 679
Tests . . 679
O9.1.13 SLD . . o e e e e e 683
Introduction e e e 683
Server Side Support e e e e e e e e e e 684
Client Side Support o v i e e e e e e e e e e e e e 691
Named Styles Support o o . e e e e e e e e e e e 693
Other Items Implemented L 693
Issues Found During Implementation 693
9114 WOCSServer o o v e e e e e e e 693

Introduction e e e e e 694

Configuring Your Mapfile to Serve WCS Layers 695

Test Your WCS 1.0 Server o o i i e e e e e 697

WCS 11O+ ISSUES . . . v o o o e e e e e e e e e e e e e e e 699

WCS 2.0 . o e e e e e e 700
HTTP-POST support o oo e e e e e e e e e e e e e e s 706
Reference Section L e 709

Rules for handling SRS in a MapServer WCS 713
Spatio/Temporal Indexes L 713

WCS 2.0 Application Profile - Earth Observation (EO-WCS) 714

To-do Items and Known Limitations 714

9.1.15 WCSUSe Cases . . . v v v v v i e 714
Landsat e e e e e e e 714

SPOT . . . e e e e e e e 715

DEM . . e e e e e e 716
NetCDF e 717

9.1.16 SOS Server e e e e e e e 719
Introduction e e e e e e e e e e e e e e e e 720
Setting Up an SOS Server Using MapServer. vt vt v v i e o 720
Limitations / TODO e 725
Reference Section 725

Use of sos_procedure and sos_procedure_item 730

9.1.17 How to set up MapServer as a client to access a service overhttps 731
Introduction e e e e e e e e e e e e e e e 732
Requirements L e e e 732
Default Installation (with apt-get install, rpm, manual,etc) 732
Non-Standard Installation (common with msdw and fgs) 732
Remote Server with a Self-Signed SSL Certificate 733

9.1.18 MapScript Wrappers for WxS Services i e 734
Introduction e e 734
Python Examples e 734

Perl Example e e 735
JavaExample e 738

PHP Example o e e e e e e e e e 739

Use in Non-CGI Environments (mod_php, etc) 741

Post Processing Capabilities o . o e e e 741

10 TinyOWS 743
10.1 TinyOWS . . o o e e e e e e e e 743
10.1.1 TinyOWS Installation 0 o e e 743
Requires e e 743

10.1.2 Configuring TinyOWS withan XML File 744
Configuration file simple Example e 744
Testing your config.xmlfile e 745
Structure of the config.xmlfile L L 745

10.1.3 Configuring TinyOWS with a standard Mapfile 750
Mapfile Config File support for TinyOWS 750
Mapfile path of each TinyOWS configelement 751

10.1.4 Sample: WES-T with TinyOWS and OpenLayers 752
10.1.5 Server Tuning: How to speed up your TinyOWS server 757
Tips and Tricks for PostgreSQL / PostGIS databases 757

Tips and Tricks for Apache 757

Using Fast-CGIo e e 757

HTTP GZip cOMPression v v v v v v v e 758

xi

10.1.6 Working Around the LibXML2 XSD Schema GMLBug

Issue .

Workaround and optionsl

11 Optimization
11.1 Optimization .
Debugging MapServer e
Introduction L. e e e e e
Steps to Enable MapServer Debugging oo
Debugging MapServer using Compiler Debugging Tools
Debugging Older Versions of MapServer (before 5.0)
I1.1.2 FastCGI o
Introduction L e
Obtaining the necessary software
mod_fcgid Configuration Lo e
Deprecated mod_fcgi Configuration e e
Common mod_fcgid/mod_fcgi Configuration,
Common Problems
FastCGLlon Win32 e

11.1.1

11.1.3 Mapfile

11.1.4

11.1.6

12 Utilities

Introduction e e e e e

Raster

OVEIVIEWS . . . o o o ot s e e e e
Tileindexes and Internal Tiling L e
Image formats e e e
Remote WMS o L e
11.1.5 TileIndexes o o i i o e e e e e e
Introduction e

Using the tileindex inyourmapfile L L L
Tileindexes may make your map faster.
Tileindexes with tiles in different projections

Vector

Splitting yourdata e e e e e e
Shapefiles o L e e e e

PostGIS

Databases in General (PostGIS, Oracle, MySQL)

12.1 Utilities

12.1.1

legend
Purpose
Syntax

12.1.2 0 mSENCIYPL . . o o v o o e

12.1.3

12.1.4

12.1.5

Purpose
Syntax

Usein Mapfile e e e e e e e
scalebar L L e e e e e e e e e e

Purpose
Syntax

shp2img L e e

Purpose
Syntax
shptree

761
761
761
762
762
770
772
773
773
773
774
774
775
775
775
777
777
779
779
779
780
780
780
780
781
781
781
782
782
783
783
783
783

785
785
785
785
785
785
785
785
786
787
787
787
787
787
788
790

xii

13 CGI
13.1

Purpose e e e e e e 790

Description L e e e e e e e e e e e e 790
SYNEAX . . o e e e e e e e e e e e 790
Mapfile Notes o . e e 791

12.1.6 shptreetst 791
Purpose 791
SYNEAX . o o e e e e e e e e e e e e 791

12.1.7 shptreevis o o e e e e e e e e e e e e e 792
Purpose L e e e e 792
SYNtax e e 792

12.1.8 sortshp. o e 793
12.1.9 sym2img o o e 795
Purpose e e e e e e 795
SYNEAX . o o e e e e e e e e e e 795
12.1.10 tiledms . . . o oo e e e e e e e e e e e e 795
Purpose L e 795
Description e e e e e e e e e e e e e e e 796
SYNEAX . o o e e e e e e e e e e e e e e e e 796

Short Example e e e e e e e 796

Long Example e 796
12.1.11 Batch Scripting e 799
WIndows o L e e e 799

Linux e e 799
12.1.12 File Management v v v v v vt e 799
FilePlacement e 799
Temporary Files e 799

801

CGIL . . 801
13.1.1 MapServer CGI Introduction 801
NOES . . o o e e e e 801
Changes o o o e e e e e e e e e e e 801

[3.1.2 MaPSEIV . o . v o e 802
13.1.3 MapContextFiles e 802
Support for Local Map Context Files 802
Support for Context Files Accessed Througha URL 802
Default Map File o e e e e e e 803

13.1.4 MapServer CGLI Controls o ot e e e e e e e e e e e 803
Variables 803
Changing map file parameters viaaformoraURL 806
Specifying the location of mapfiles using an Apache variable 808
ROSA-Applet Controls o v o e e e e e e e e e e e e 808

13.1.5 Run-time Substitution e 808
Introduction e 809

Basic Example o e 809
Parameters Supported L. oL 809
Default values if not providedinthe URL, 810
VALIDATION e e e e e e e e e e 811

Magic values e e e e e e e 811

13.1.6 A Simple CGI Wrapper Script e e 811
Introduction e e e e e 812

Script Information oL e e 812

13.1.7 MapServer OpenlLayers VIEWer o v i i v it et e e e e e e e 813
Using the OpenLayers VIEBWET v v v v v i it e e e e e e e e e e e e e 813

14 Environment Variables 815

14.1 Environment Variables e 815
15 Glossary 818
151 GlosSary o v i e e e e e e 818
16 Errors 821
16.1 Errors o oo e e e e e 821
16.1.1 drawEPP(): EPPL7 supportisnotavailable 821
Explanation L e e e e e e e 821
16.1.2 loadLayer(): Unknown identifier. Maximum number of classes reached 821
16.1.3 loadMaplnternal(): Given map extentisinvalid 822
How to geta file’s EXTENT values? ittt 822
16.1.4 msGetLabelSize(): Requested fontnotfound 823
16.1.5 msLoadFontset(): Error opening fontset 823
16.1.6 msLoadMap(): Failedtoopenmapfile 823
16.1.7 msProcessProjection(): no options found in ‘init’ file 823
16.1.8 msProcessProjection(): No such fileor directory 824
Setting the location of the epsgfile L 824
16.1.9 msProcessProjection(): Projection library error.major axis or radius = 0 not given 824
Valid Examples o e e e e 824
16.1.10 msQueryByPoint: search returnednoresults 0oL, 825
16.1.11 msReturnPage(): Web application error. Malformed template name 825
16.1.12 msSavelmageGD(): Unable toaccessfile 826
16.1.13 msWMSLoadGetMapParams(): WMS server error. Image Size out of range, WIDTH and
HEIGHT must be between 1 and 2048 pixels 826
16.1.14 Unable to load dll (MapScript) o o i e e 826
C#t-specific informationo 826
17 FAQ 828
17.1 FAQ . . . e e 828
17.1.1 Where is the MapServer log file? 828
17.1.2 What books are available about MapServer? L oL, 828
17.1.3 How do I compile MapServer for Windows? 828
17.1.4 What do MapServer version numbers mean?o e e e 828
17.1.5 Is MapServer Thread-safe? 829
17.1.6 What does STATUS meanina LAYER?, 830
17.1.7 How can I make my maps run faster?o 830
17.1.8 What does Polyline mean in MapServer? 0., 830
17.1.9 Whatis MapScript? o i e e e e e e e e e e e e e e 831
17.1.10 Does MapServer support reverse geocoding?o e 831
17.1.11 Does MapServer support geocoding? oo 831
17.1.12 How do I'setline widthinmy maps? 831
17.1.13 Why do my JPEG input images look different via MapServer? 831
17.1.14 Which image format should Tuse? 832
17.1.15 Why doesn’t PIL (Python Imaging Library) open my PNGs? 832
17.1.16 Why do my symbols look poor in JPEG output? 833
17.1.17 How do I add a copyright notice on the corner of my map? 833
Example Layer o e 833
Result 834
17.1.18 How do I have a polygon that has both a fill and an outline with a width? 834
17.1.19 How can I create simple antialiased line features? 835
17.1.20 Which OGC Specifications does MapServer support? 836
17.1.21 Why does my requested WMS layer not align correctly? 836

xiv

17.1.22

When I do a GetCapabilities, why does my browser want to download mapserv.exe/mapserv? 837

17.1.23 Why do my WMS GetMap requests return exception using MapServer 5.07 837
17.1.24 Using MapServer 6.0, why don’t my layers show up in GetCapabilities responses or are not

found anymore? 838

17.1.25 Where do I find my EPSGcode? 838

17.1.26 How can I reproject my data using 0gr20gr? v it i e 838

17.1.27 How can I help improve the documentation on thissite? 839

17.1.28 What’s with MapServer’s logo? e 839

18 Copyright 840

I8.1 LICeNSE . . . v v v v i et e e e e e e e e e 840

18.2 Documentation License e e e 840

183 Credits o v i e e e e e e e e 840

XV

MapServer Documentation, Release 7.0.7

I
Note: The entire documentation is also available as a single PDF document ==
If you are upgrading from an earlier version of MapServer, be sure to review the MapServer Migration Guide.

Documentation for earlier versions of MapServer can be found on the Download page.

Contents 1

http://www.mapserver.org/pdf/MapServer.pdf
http://www.mapserver.org/pdf/MapServer.pdf

CHAPTER 1

Introduction

1.1 An Introduction to MapServer

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com
Author David Fawcett

Contact david.fawcett at moea.state.mn.us
Author Howard Butler

Contact hobu.inc at gmail.com

Last Updated 2017-02-08

Contents

* An Introduction to MapServer

— MapServer Overview

Anatomy of a MapServer Application

Installation and Requirements
+ Hardware Requirements
* Software Requirements
w Skills
x Windows Installation

— Introduction to the Mapfile

x MAP Object

* LAYER Object

* CLASS and STYLE Objects

* SYMBOLs

* LABEL

*

CLASS Expressions

MapServer Documentation, Release 7.0.7

* INCLUDE
* Get MapServer Running
* Get Demo Running
— Making the Site Your Own
% Adding Data to Your Site
* Vector Data
* Raster Data
* Projections
— Enhancing your site

* Adding Query Capability

*

Attribute queries

*

Spatial queries

x Interfaces

* Data Optimization
— Howdo I get Help?

* Documentation

* Users Mailing List

* IRC

* Reporting bugs

* Tutorial

x Test Suite

% Books

1.1.1 MapServer Overview

MapServer is a popular Open Source project whose purpose is to display dynamic spatial maps over the Internet. Some
of its major features include:

support for display and querying of hundreds of raster, vector, and database formats

ability to run on various operating systems (Windows, Linux, Mac OS X, etc.)

support for popular scripting languages and development environments (PHP, Python, Perl, Ruby, Java, .NET)
on-the-fly projections

high quality rendering

fully customizable application output

many ready-to-use Open Source application environments

In its most basic form, MapServer is a CG/ program that sits inactive on your Web server. When a request is sent to
MapServer, it uses information passed in the request URL and the Mapfile to create an image of the requested map.
The request may also return images for legends, scale bars, reference maps, and values passed as CGI variables.

1.1. An Introduction to MapServer 3

MapServer Documentation, Release 7.0.7

See also:
The Glossary contains an overview of many of the jargon terms in this document.

MapServer can be extended and customized through MapScript or templating. It can be built to support many different
vector and raster input data formats, and it can generate a multitude of oufput formats. Most pre-compiled MapServer
distributions contain most all of its features.

See also:

Compiling on Unix and Compiling on Win32

Note: MapScript provides a scripting interface for MapServer for the construction of Web and stand-alone appli-
cations. MapScript can be used independently of CGI MapServer, and it is a loadable module that adds MapServer
capability to your favorite scripting language. MapScript currently exists in PHP, Perl, Python, Ruby, Tcl, Java, and
.NET flavors.

This guide will not explicitly discuss MapScript, check out the MapScript Reference for more information.

1.1.2 Anatomy of a MapServer Application

A simple MapServer application consists of:

e Map File - a structured text configuration file for your MapServer application. It defines the area of your map,
tells the MapServer program where your data is and where to output images. It also defines your map layers,
including their data source, projections, and symbology. It must have a .map extension or MapServer will not
recognize it.

See also:
MapServer Mapfile Reference

* Geographic Data - MapServer can utilize many geographic data source types. The default format is the ESRI
Shape format. Many other data formats can be supported, this is discussed further below in Adding data to your
site.

See also:
Vector Input Reference and Raster Input Reference

 HTML Pages - the interface between the user and MapServer . They normally sit in Web root. In it’s simplest
form, MapServer can be called to place a static map image on a HTML page. To make the map interactive, the
image is placed in an HTML form on a page.

CGI programs are ‘stateless’, every request they get is new and they don’t remember anything about the last time
that they were hit by your application. For this reason, every time your application sends a request to MapServer,
it needs to pass context information (what layers are on, where you are on the map, application mode, etc.) in
hidden form variables or URL variables.

A simple MapServer CGI application may include two HTML pages:

— Initialization File - uses a form with hidden variables to send an initial query to the web server and
MapServer. This form could be placed on another page or be replaced by passing the initialization infor-
mation as variables in a URL.

— Template File - controls how the maps and legends output by MapServer will appear in the browser. By
referencing MapServer CGI variables in the template HTML, you allow MapServer to populate them with
values related to the current state of your application (e.g. map image name, reference image name, map
extent, etc.) as it creates the HTML page for the browser to read. The template also determines how the
user can interact with the MapServer application (browse, zoom, pan, query).

1.1. An Introduction to MapServer 4

MapServer Documentation, Release 7.0.7

Fig. 1.1: The basic architecture of MapServer applications.

1.1. An Introduction to MapServer 5

MapServer Documentation, Release 7.0.7

See also:
Templating

* MapServer CGI - The binary or executable file that receives requests and returns images, data, etc. It sits in the
cgi-bin or scripts directory of the web server. The Web server user must have execute rights for the directory that
it sits in, and for security reasons, it should not be in the web root. By default, this program is called mapserv

* Web/HTTP Server - serves up the HTML pages when hit by the user’s browser. You need a working Web
(HTTP) server, such as Apache or Microsoft Internet Information Server, on the machine on which you are
installing MapServer.

1.1.3 Installation and Requirements

Hardware Requirements

MapServer runs on Linux, Windows, Mac OS X, Solaris, and more. To compile or install some of the required pro-
grams, you may need administrative rights to the machine. People commonly ask questions about minimum hardware
specifications for MapServer applications, but the answers are really specific to the individual application. For devel-
opment and learning purposes, a very minimal machine will work fine. For deployment, you will want to investigate
Optimization of everything from your data to server configuration.

Software Requirements

You need a working and properly configured Web (HTTP) server, such as Apache or Microsoft Internet Information
Server, on the machine on which you are installing MapServer.

If you are on a Windows machine, and you don’t have a web server installed, it is recommended that you use MS4W,
which will install a pre-configured web server, MapServer, MapCache, PHP, TinyOWS, and many more utilities.
Windows users can optionally check out the OSGeo4W installer as well.

This introduction will assume you are using an MS4W installation to follow along. Obtaining MapServer on Linux or
Mac OS X should be straightforward. Visit download for installing pre-compiled MapServer builds on Mac OS X and
Linux.

Note: The OSGeo-Live virtual machine contains MapServer ready to use as well.

You will also need a Web browser, and a text editor (vi, emacs, notepad++, textpad, homesite) to modify your HTML
and mapfiles.

Skills

In addition to learning how the different components of a MapServer application work together and learning Map File
syntax, building a basic application requires some conceptual understanding and proficiency in several skill areas.

You need to be able to create or at least modify HTML pages and understand how HTML forms work. Since the
primary purpose of a MapServer application is to create maps, you will also need to understand the basics of geographic
data and likely, map projections. As your applications get more complex, skills in SQL, DHTML/Javascript, Java,
databases, expressions, compiling, and scripting may be very useful.

1.1. An Introduction to MapServer 6

http://httpd.apache.org
http://httpd.apache.org/
http://www.ms4w.com
https://trac.osgeo.org/osgeo4w/
https://live.osgeo.org/en/index.html
http://www.w3.org/MarkUp/Guide/

MapServer Documentation, Release 7.0.7

Windows Installation

Note: Pre-compiled binaries for MapServer are available from a variety of sources, refer to the windows section of
the Downloads page.

MS4W (MapServer for Windows) is the long-time installer that contains the Apache Web server, MapServer, and all
of its dependencies and tools; MS4W also contains several add-on packages, that contain over 60+ pre-configured
MapServer configuration files (mapfiles) and data. The following steps illustrate how to install MS4W:

1. Download MS4W (this example will use the -setup.exe file) from http://ms4w.com/
2. Execute (double-click) the .exe

3. Click the “Agree” button, to accept the license.

Note: MS4W uses the very open MIT/X license.

ﬁl PM5AW 53.7.4 Setup: License Agreement — 4

;I.LG ateway Geomatics

Welcome to MS4W, the widely popular MapServer for Windows product.

MS4W Licensing A

M54 General

In general M54W is licensed under an MIT/X style license with the
following terms:

Copyright (c) 2003-2016 Gateway Geomatics (www.gatewaygeomatics. com)

Permission is hereby granted, free of charge, to any person obtaining a
ronw nf thiz enfhware and azenriated donimentatinn files

Cancel WA TS, Comm I Agree

4. Select packages to install. Be sure to also select the “MapServer Itasca Demo Application”, as we will be using
this demo later.

Note: You can optionally install other packages, by clicking the checkbox beside the package name.

1.1. An Introduction to MapServer 7

http://ms4w.com/
http://ms4w.com/LICENSE.html

MapServer Documentation, Release 7.0.7

_‘E;' MSAW 3.1.4 Setup: Installation Options = -

jLGateway Geomatics

This installs the M54W base files, an Apache service on a selected port, as well as
start menu and desktop shortouts. You will be given a choice of what directory to
install in, as well as what Apache port to use.

Select the type of install; { Custom o

Or, select the optional I mapbender 3.0.5.3 A
components you wish to install: [MapServer CGI Viewer

[[] MapServer OGC Web Services Workshy
|:| DOpenlLayers 3.16.0

|:| p.mapper4.4.0

Install and Start Apache Service

Space required: 336. 1MB ¥
£ >

Cancel LA, S COm < Back Mext =

5. Click the “Next” button

6. Click the “Browse...” button, to choose an installation path. You can safely leave the default (C:/), and the
installer will create C./ms4w.

Note: Folders will spaces are supported, if you are using the -setup.exe installer.

1.1. An Introduction to MapServer 8

MapServer Documentation, Release 7.0.7

1_?}' MSAW 3.1.4 Setup: Installation Folder

ELGatewa}r Geomatics

s

You must spedfy the location to install M54W 3.1.4in. For example: "C: /Program
Files" ar "C:/". Mote that an "ms4w” folder will be created by the installer at the

location you choose.,

Destination Root

E:\

Space required: 323.6MB
Space available: 405.0GB

Cancel

7. Click the “Next” button

< Back

Browse...

Mext =

8. Enter a port number to use for the Apache service. In most cases you can leave the port as 80, unless something

is using that port such as an IIS service.

Note: You can specify any number above 1024, such as 8081 or 8082.

1.1. An Introduction to MapServer

MapServer Documentation, Release 7.0.7

5 MSAW 3.1.4 Setup: Apache Port

ELGatewa}r Geomatics

Optionally spedfy a different Apache port. If vou think port 80 might be already in

use, then try a high port number {above 1024} such as 8080.

Apache port:

a0

Cancel

10. Click the “Install” button

< Back

Install

1.1. An Introduction to MapServer

10

MapServer Documentation, Release 7.0.7

15 MSAW 3.1.4 Setup: Installing —

;I-LG ateway Geomatics

Downloading ms4w_3. 1.4.zip

Taa4kE (9 ‘!-_‘u} of 88366kEB at 1916.0kE/s (42 seconds remaining}l

2
I
I

Cancel AT, TS COm = Back

11. Once you see a message of “Installer Complete”, then click the “Close” button

1.1. An Introduction to MapServer 11

MapServer Documentation, Release 7.0.7

1ol MSAW 3.1.4 Setup: Completed =

l Gateway Geomatics

MS4W 3.1.4 Installer COMPLETE

ad Close

12. On your desktop, click on the “MS4W-Localhost” shortcut, and your browser should open http://127.0.0.1 that
loads an MS4W introduction page.

1.1. An Introduction to MapServer 12

http://127.0.0.1

MapServer Documentation, Release 7.

0.7

—

- [MS4W - MapServer 4 Win X

& C | [127.0.0.1

MS4W - MapServer 4 Windows - version 3.1.4

lGateway Geomatics

Introduction

Welcome to MS4W v3.1.4, the MapServer package for Windows, developed by Gateway Geomatics. MS4W is designed to get you up
and running with MapServer with very litle configuration.

There are some important notes about MS4W:

« Pre-configured addon packages for MS4W can be downloaded from the MS4W Downloads page.

Documentation

Please view your local README file for full documentation about your MS4W package.

Features

MS4W contains default installations of Apache, PHE MapServ, MapScript and some sample applications. It is structured in such a way
as to allow upgrading individual components without affecting the install. The base installer package comes pre-configured with the
following software:

Apache 2.4 20
PHP 5.4 45
GDAL 210
MapServer CGI 7.0.1 at lci-hin/mapservexe
MapScript 7.0.1 flavours:
o php_mapscript.dll at ims4widpacheiohpiext
o CSharp mapscript at imsdwi\dpacheicgi-binimapscriphicsham
o Java mapscript at imsdwidpacheicgi-bin\mapscriptjava
o Python mapscript at imsdwidpachelcgi-binimapscripfioython
« Commandline Utilities

13. Verify that MapServer is working, by clicking on the /cgi-bin/mapserv.exe link in the “Features” section of the

page.

Note: If MapServer is working properly, you will receive a message stating: “No query information to
decode. QUERY_STRING is set, but empty.*

1.1. An Introduction to MapServer

13

MapServer Documentation, Release 7.0.7

[127.00.V/cgi-bin/mapser. X

J} =i O x
=

¢ [127.001/c gi-bin/mapserv.exe o7

No querv information to decode. QUERY STRING is set. but empty.

1.1.4 Introduction to the Mapfile

The .map file is the basic configuration file for data access and styling for MapServer. The file is an ASCII text file,
and is made up of different objects. Each object has a variety of parameters available for it. All .map file (or mapfile)

parameters are documented in the mapfile reference. A simple mapfile example displaying only one layer follows, as
well as the map image output:

MAP
NAME "sample"
STATUS ON
SIZE 600 400
SYMBOLSET "../etc/symbols.txt"
EXTENT -180 -90 180 90
UNITS DD
SHAPEPATH "../data"
IMAGECOLOR 255 255 255
FONTSET "../etc/fonts.txt"

#
Start of web interface definition
#
WEB
IMAGEPATH "/msdw/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"

1.1. An Introduction to MapServer 14

MapServer Documentation, Release 7.0.7

END # WEB

#
Start of layer definitions
#
LAYER
NAME 'global-raster'
TYPE RASTER
STATUS DEFAULT
oATA [HijebelLe o1
END # LAYER
END # MAP

Fig. 1.2: Rendered Bluemarble Image

Note:
* Comments in a mapfile are specified with a ‘#’ character

e MapServer parses mapfiles from top to bottom, therefore layers at the end of the mapfile will be drawn last
(meaning they will be displayed on top of other layers)

» Using relative paths is always recommended

Paths should be quoted (single or double quotes are accepted)

The above example is built on the following directory structure:

— The mapfile could be placed anywhere, as long as it is accessible to the web server. Normally, one
would try to avoid placing it at a location that makes it accessible on the web. Let us say it is placed
in /home/msuser/mapfiles/

— The location of the font file is given relative to the map file, in this case: /home/msuser/etc/fonts.txt

— The location of the datasets (bluemarble.gif) is given relative to the map file, in this case:
/home/msuser/data/

1.1. An Introduction to MapServer 15

MapServer Documentation, Release 7.0.7

— The location of the symbol file is given relative to the map file, in this case: /home/msuser/etc/symbols.txt

— The files generated by MapServer will be placed in the directory /ms4w/tmp/ms_tmp/. The web
server must be able to place files in this directory. The web server must make this directory avail-
able as /ms_tmp (if the web server is on www.ms.org, the web address to the directory must be:
httpd://www.ms.org/ms_tmp/.

MAP Object

MAP
NAME "sample"
EXTENT -180 -90 180 90 # Geographic
SIZE 800 400
IMAGECOLOR 128 128 255
END # MAP

e EXTENT is the output extent in the units of the output map
» SIZE is the width and height of the map image in pixels
¢ IMAGECOLOR is the default image background color

Tip: MapServer accepts colors in RGB values, or as a hexadecimal string.

Note: MapServer currently uses a pixel-center based extent model which is a bit different from what GDAL or WMS
use.

LAYER Object

* starting with MapServer 5.0, there is no limit to the number of layers in a mapfile
* the DATA parameter is relative to the SHAPEPATH parameter of the MAP object

* if no DATA extension is provided in the filename, MapServer will assume it is ESRI Shape format (.shp)

Raster Layers

LAYER

NAME "bathymetry"

TYPE RASTER

STATUS DEFAULT

DATA "bath_mapserver.tif"
END # LAYER

See also:

Raster Data

1.1. An Introduction to MapServer 16

MapServer Documentation, Release 7.0.7

Vector Layers

Vector layers of TYPE point, line, or polygon can be displayed. The following example shows how to display only
lines from a TYPE polygon layer, using the OUTLINECOLOR parameter:

LAYER
NAME "world_poly"
DATA 'shapefile/countries_area.shp'
STATUS ON
TYPE POLYGON
CLASS
NAME 'The World'
STYLE
OUTLINECOLOR 0 0 O
END # STYLE
END # CLASS
END # LAYER

Tip: MapServer accepts colors in RGB values, or as a hexadecimal string.

See also:

Vector Data

Fig. 1.3: Rendered Bluemarble image with vector boundaries

CLASS and STYLE Objects

* typical styling information is stored within the CLASS and STYLE objects of a LAYER
* starting with MapServer 5.0, there is no limit to the number of classes or styles in a mapfile

¢ the following example shows how to display a road line with two colors by using overlaid STYLE objects

1.1. An Introduction to MapServer 17

MapServer Documentation, Release 7.0.7

CLASS
NAME "Primary Roads"
STYLE
SYMBOL "circle"
COLOR 178 114 1

SIZE 15
END # STYLE
STYLE

SYMBOL "circle"
COLOR 254 161 0
SIZE 7
END # STYLE
END # CLASS

Tip: MapServer accepts colors in RGB values, or as a hexadecimal string.

SYMBOLs

* can be defined directly in the mapfile, or in a separate file

Fig. 1.4: Rendered Bluemarble image with styled roads

* the separate file method must use the SYMBOLSET parameter in the MAP object:

1.1. An Introduction to MapServer

18

MapServer Documentation, Release 7.0.7

MAP
NAME "sample"
EXTENT -180 -90 180 90 # Geographic
SIZE 800 400
IMAGECOLOR 128 128 255
SYMBOLSET "../etc/symbols.txt"
END # MAP

where symbols.txt might contain:

SYMBOL
NAME "ski"
TYPE PIXMAP
IMAGE "ski.png"
END # SYMBOL

and the mapfile would contain:

LAYER
CLASS
NAME "Ski Area"
STYLE
SYMBOL "ski"
END # STYLE

END # CLASS
END # LAYER

See also:

Cartographical Symbol Construction with MapServer, Symbology Examples, and SYMBOL

LABEL

* defined within a CLASS object

e the LABELITEM parameters in the LAYER object can be used to specify an attribute in the data to be used for
labeling. The label is displayed by the FONT, declared in the FONTSET file (set in the MAP object). The
FONTSET file contains references to the available font names. ENCODING describes which encoding is used
in the file (see Display of International Characters in MapServer).

An example LABEL object that references one of the above fonts might look like:

LABEL

FONT "sans-bold"

TYPE truetype

ENCODING "UTEF-8"

SIZE 10

POSITION LC

PARTIALS FALSE

COLOR 100 100 100

OUTLINECOLOR 242 236 230
END # LABEL

See also:

LABEL, FONTSET

1.1. An Introduction to MapServer

19

MapServer Documentation, Release 7.0.7

Fig. 1.5: Rendered Bluemarble image with skier symbol

1.1. An Introduction to MapServer 20

MapServer Documentation, Release 7.0.7

Fig. 1.6: Rendered Bluemarble image with skier symbol and a label

1.1. An Introduction to MapServer 21

MapServer Documentation, Release 7.0.7

CLASS Expressions

MapServer supports three types of CLASS Expressions in a LAYER (CLASSITEM in LAYER determines the attribute
to be used for the two first types of expressions):

1. String comparisons

’EXPRESSION "africa" ‘

2. Regular expressions

’EXPRESSION /7917°10/ ‘

3. Logical expressions

’EXPRESSION ([POPULATION] > 50000 AND ' [LANGUAGE]' eqg 'FRENCH')

Note: Logical expressions should be avoided wherever possible as they are very costly in terms of drawing time.

See also:

Expressions

INCLUDE

Added to MapServer 4.10, any part of the mapfile can now be stored in a separate file and added to the main mapfile
using the INCLUDE parameter. The filename to be included can have any extension, and it is always relative to the
main .map file. Here are some potential uses:

* LAYERs can be stored in files and included to any number of applications
e STYLEs can also be stored and included in multiple applications
The following is an example of using mapfile includes to include a layer definition in a separate file:

If ‘shadedrelief.lay’ contains:

LAYER
NAME 'shadedrelief'
STATUS ON

TYPE RASTER
DATA 'GLOBALeb3colshade. jpg'
END # LAYER

therefore the main mapfile would contain:

MAP
INCLUDE "shadedrelief.lay"

END # MAP

The following is an example of a mapfile where all LAYER s are in separate .lay files, and all other objects (WEB,
REFERENCE, SCALEBAR, etc.) are stored in a ”.ref” file:

1.1. An Introduction to MapServer 22

MapServer Documentation, Release 7.0.7

MAP
NAME "base"
#
include reference objects
#
INCLUDE "../templates/template.ref"
#
Start of layer definitions
#
INCLUDE "../layers/usa/usa_outline.lay"
INCLUDE "../layers/canada/base/lm/provinces.lay"
INCLUDE "../layers/canada/base/lm/roads_atlas_of_canada_lm.lay"
INCLUDE "../layers/canada/base/Ilm/roads_atlas_of_canada_lm_shields.lay"
INCLUDE "../layers/canada/base/lm/populated_places.lay"
END # MAP

Warning: Mapfiles must have the . map extension or MapServer will not recognize them. Include files can have
any extension you want, however.

See also:

INCLUDE

Get MapServer Running

You can test if MapServer is working by running the MapServer executable (mapserv) with the -v parameter on the
command line (./mapserv -v).

MS4W users that installed through the -setup.exe installer, can use the MS4W-Shell shortcut on the desktop, and then
run mapserv -v at the commandline. MS4W users who did not use the -sefup.exe installer can open a Command
Prompt window, cd to their installation folder, and then execute setenv.bat, before testing a mapserv -v command.

Depending on your configuration, the output could be something like this:

MapServer version 7.0.1 (MS4W 3.1.4) OUTPUT=PNG OUTPUT=JPEG OUTPUT=KML
SUPPORTS=PROJ SUPPORTS=AGG SUPPORTS=FREETYPE SUPPORTS=CAIRO SUPPORTS=ICONV
SUPPORTS=FRIBIDI SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT SUPPORTS=WFS_SERVER
SUPPORTS=WFS_CLIENT SUPPORTS=WCS_SERVER SUPPORTS=SOS_SERVER SUPPORTS=FASTCGI
SUPPORTS=THREADS SUPPORTS=GEOS INPUT=JPEG INPUT=POSTGIS INPUT=OGR INPUT=GDAL
INPUT=SHAPEFILE

You can also send a HTTP request directly to the MapServer CGI program without passing any configuration vari-
ables (e.g. http://127.0.0.1/cgi-bin/mapserv.exe). If you receive the message, ‘No query information to decode.
QUERY_STRING not set.’, your installation is working.

Get Demo Running

Warning: MS4W users do not have to do this step, as the above instructions already installed the demo. You
should see a “MapServer Itasca Demo Application” section on the bottom of the page (after clicking the MS4W-
Localhost shortcut).

1.1. An Introduction to MapServer 23

http://127.0.0.1/cgi-bin/mapserv.exe

MapServer Documentation, Release 7.0.7

Download the MapServer Demo. UnZip it and follow the directions in ReadMe.txt. You will need to move the demo
files to their appropriate locations on your web server, and modify the Map File and HTML pages to reflect the paths
and URLSs of your server. Next, point your browser to init.html and hit the ‘initialize button’. If you get errors, verify
that you have correctly modified the demo files.

1.1.5 Making the Site Your Own

Now that you have a working MapServer demo, you can use the demo to display your own data. Add new LAYERs to
your Map file that refer to your own geographic data layers (you will probably want to delete the existing layers or set
their status to OFF).

Unless you are adding layers that fall within the same geographic area as the demo, modify MAP EXTENT to match
the extent of your data. To determine the extent of your data, you can use ogrinfo. If you have access to a GIS, you
could use that as well. The MAP EXTENT needs to be in the units of your output projection.

If you add geographic data layers with different geographical reference systems, you will need to modify your Map
File to add a PROJECTION block to the MAP (defines the output projection / geographical reference system) and each
of the LAYERs (defines the geographical reference system of the layer dataset).

Adding Data to Your Site

MapServer supports several data input formats ‘natively’, and many more if it is compiled with the Open Source
libraries GDAL and OGR.

Vector Data

Vector data includes features made up of points, lines, and polygons. MapServer support the ESRI Shape format by
default, but it can be compiled to support spatially enabled databases such as PostgreSQL-PostGIS, and file formats
such as Geography Markup Language (GML), Maplnfo, delimited text files, and more formats with OGR.

See the Vector Data reference for examples on how to add different geographic data sources to your MapServer project.
Raster Data

Raster data is image or grid data. Through GDAL, MapServer supports most raster formats - see the GDAL format
list. More specific information can be found in the Raster Data reference.

Note: Since version 6.2 MapServer relies on GDAL for all raster access.

Projections

Because the earth is round and your monitor (or paper map) is flat, distortions will occur when you display geographic
data in a two-dimensional image. Projections allow you to represent geographic data on a flat surface. In doing
so, some of the original properties (e.g. area, direction, distance, scale or conformity) of the data will be distorted.
Different projections excel at accurately portraying different properties. A good primer on map projections can be
found at the University of Colorado.

With MapServer, if you keep all of your spatial data sets in the same projection (or unprojected Latitude and Longi-
tude), you do not need to include any projection info in your Map File. In building your first MapServer application,
this simplification is recommended.

1.1. An Introduction to MapServer 24

http://download.osgeo.org/mapserver/docs/workshop-5.4.zip
http://www.gdal.org/ogrinfo.html
http://postgis.net/
http://en.wikipedia.org/wiki/Geography_Markup_Language
http://www.mapinfo.com/
http://www.gdal.org/
http://www.gdal.org/formats_list.html
http://www.gdal.org/formats_list.html
http://www.colorado.edu/geography/gcraft/notes/mapproj/mapproj_f.html

MapServer Documentation, Release 7.0.7

On-the-fly projection can be accomplished when MapServer is compiled with PROJ.4 support. Instructions on how to
enable PROJ.4 support on Windows can be found on the Wiki.

1.1.6 Enhancing your site
Adding Query Capability

There are two primary ways to query spatial data. Both methods return data through the use of templates and CGI
variable replacement. A QUERYMAP can be used to map the results of the query.

To be queryable, each mapfile LAYER must have a TEMPLATE defined, or each CLASS within the LAYER must have a
TEMPLATE defined. More information about the CGI variables used to define queries can be found in the MapServer
CGI Reference.

Attribute queries

The user selects features based on data associated with that feature. ‘Show me all of the lakes where depth is greater
than 100 feet’, with ‘depth’ being a field in the Shape dataset or the spatial database. Attribute queries are accomplished
by passing query definition information to MapServer in the URL (or form post). Mode=itemquery returns a single
result, and mode=itemnquery returns multiple result sets.

The request must also include a QLAYER, which identifies the layer to be queried, and a QSTRING which contains
the query string. Optionally, QITEM, can be used in conjunction with QSTRING to define the field to be queried.
Attribute queries only apply within the EXTENT set in the map file.

Spatial queries
The user selects features based on a click on the map or a user-defined selection box. Again the request is passed
through a URL or form post. By setting mode=QUERY, a user click will return the one closest feature. In

mode=NQUERY, all features found by a map click or user-defined selection box are returned. Additional query
options can be found in the CGI documentation.

Interfaces

See: OpenLayers http://openlayers.org, GeoMOOSE http://geomoose.org

Note: MS4W users can install both OpenLayers and GeoMOOSE as ready-to-use packages.

Data Optimization

Data organization is at least as important as hardware configuration in optimizing a MapServer application for perfor-
mance. MapServer is quite efficient at what it does, but by reducing the amount of processing that it needs to do at the
time of a user request, you can greatly increase performance. Here are a few rules:

* Index Your data - By creating spatial indexes for your Shape datasets using shptree. Spatial indexes should
also be created for spatially aware databases such as PostGIS and Oracle Spatial.

* Tile Your Data - Ideally, your data will be ‘sliced up’ into pieces about the size in which it will be displayed.
There is unnecessary overhead when searching through a large Shape dataset or image of which you are only
going to display a small area. By breaking the data up into tiles and creating a tile index, MapServer only
needs to open up and search the data files of interest. Shape datasets can be broken into smaller tiles and then a

1.1. An Introduction to MapServer 25

https://github.com/mapserver/mapserver/wiki/WindowsProjHowto
http://openlayers.org
http://geomoose.org
http://ms4w.com/download.html#applications-packaged-for-ms4w

MapServer Documentation, Release 7.0.7

tileindex Shape dataset can be created using the tile4ms utility. A tileindex Shape dataset for raster files can also
be created.

 Pre-Classify Your Data - MapServer allows for the use of quite complex EXPRESSIONs to classify data.
However, using logical and regular expressions is more resource intensive than string comparisons. To increase
efficiency, you can divide your data into classes ahead of time, create a field to use as the CLASSITEM and
populate it with a simple value that identifies the class, such as 1,2,3, or 4 for a four class data set. You can then
do a simple string comparison for the class EXPRESSION.

* Pre-Process Your Images - Do resource intensive processing up front. See the Raster Data reference for more
info.

* Generalize for Overview - create a more simple, generalized data layer to display at small scales, and then use
scale-dependent layers utilizing LAYER MINSCALE and LAYER MAXSCALE to show more detailed data layers
as the user zooms in. This same concept applies to images.

See also:

Optimization

1.1.7 How do | get Help?

Documentation
 Official MapServer documentation lives here on this site.
 User contributed documentation exists on the MapServer Wiki.
Users Mailing List

Register and post questions to the MapServer Users mailing list. Questions to the list are usually answered quickly
and often by the developers themselves. A few things to remember:

1. Search the archives for your answer first, people get tired of answering the same questions over and over.

2. Provide version and configuration information for your MapServer installation, and relevant snippets of your
map and template files.

3. Always post your responses back to the whole list, as opposed to just the person who replied to your question.

IRC

MapServer users and developers can be found on Internet Relay Chat. The channel is #mapserver on irc.freenode.net.

Reporting bugs

Software bugs are reported on the MapServer issue tracker. Documentation bugs are reported on the MapServer
documentation issue tracker.

Tutorial

Here is a quick tutorial for new users.

1.1. An Introduction to MapServer 26

https://github.com/mapserver/mapserver/wiki/
http://lists.osgeo.org/mailman/listinfo/mapserver-users/
http://osgeo-org.1560.x6.nabble.com/MapServer-f4226623.html
http://github.com/mapserver/mapserver/issues
http://github.com/mapserver/docs/issues
http://github.com/mapserver/docs/issues
http://www.mapserver.org/tutorial/

MapServer Documentation, Release 7.0.7

Test Suite

Download the MapServer Test Suite for a demonstration of some MapServer functionality.

Books

Web Mapping Illustrated, a book by Tyler Mitchell that describes well and provides real-world examples for the use
of Web mapping concepts, Open Source GIS software, MapServer, Web services, and PostGIS.

Mapping Hacks, by Schuyler Erle, Rich Gibson, and Jo Walsh, creatively demonstrates digital mapping tools and
concepts. MapServer only appears in a handful of the 100 hacks, but many more are useful for concepts and inspiration.

Beginning MapServer: Opensource GIS Development, by Bill Kropla. According to the publisher, it covers in-
stallation and configuration, basic MapServer topics and features, incorporation of dynamic data, advanced topics,
MapScript, and the creation of an actual application.

1.1. An Introduction to MapServer 27

https://github.com/mapserver/mapserver/wiki/Test-Suite/
http://www.oreilly.com/catalog/webmapping/
http://www.oreilly.com/catalog/mappinghks/
http://www.apress.com/book/bookDisplay.html?bID=443

CHAPTER 2

Tutorial

2.1 MapServer Tutorial

Author Pericles S. Nacionales

Contact pnaciona at gmail.com

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com
Updated 2017-02-08

This tutorial (initially created in the early-2000’s by Perry) was designed to give new users a quick (relatively speaking)
introduction to the concepts behind MapServer. It is arranged into four sections with each section having one or more
examples and increasing in complexity. Users can jump to any section at any time although it is recommended that
absolute beginners work on the first three sections sequentially.

Section one focuses on basic MapServer configuration concepts such as layer and class ordering, using vector and
raster data, projections and labeling. Section two provides examples on how to use HTML templates to create a simple
interface for an interactive web mapping application. Section three introduces the use of HTML templates to provide
a “query” interface. Finally, section four introduces some advanced user interface concepts.

2.1.1 Tutorial background

Tutorial Timeframe

While some users can go through this tutorial in one day, those who work on each example in detail can probably
expect to finish in one week.

Tutorial Data

The dataset used in this tutorial was taken from the U.S. Department of the Interior’s National Atlas of the United States
(which is now hosted by data.gov). The dataset was clipped to the upper great lakes region (Minnesota, Michigan,
and Wisconsin) to reduce storage size. Additional raster images were added courtesy of the TerraSIP project at the
University of Minnesota. When using this tutorial, you are encouraged to use your own dataset.

Like MapServer itself, this tutorial is open and customizable to anyone. This was done in the hope that someone (or
some folks) will help design and develop it further.

Download the data (and all html files) for this tutorial at http://download.osgeo.org/mapserver/docs/mapserver-tutorial.
zip.

28

https://catalog.data.gov/harvest/1997-2014-edition-of-the-national-atlas-of-the-united-states
http://download.osgeo.org/mapserver/docs/mapserver-tutorial.zip
http://download.osgeo.org/mapserver/docs/mapserver-tutorial.zip

MapServer Documentation, Release 7.0.7

Before Using the Tutorial

There are some prerequisites to using this tutorial:

1. Users will need to have a web server installed and running on their computer. This web server has to have
support for common gateway interface (CGI) programs.

2. Users should have a basic understanding of web servers and internet security. A poorly configured web server
can easily be attacked by malicious people. At the very least your software installation will be corrupted and
you’ll lose hours of productivity, at worst your computer can be used to attack other computers on the internet.

3. It is recommended that users of this tutorial read the Introduction to MapServer before proceeding with this
tutorial.

4. To use this tutorial, users will need to have a MapServer CGI program (mapserv or mapserv.exe) installed in
their systems. MapServer source code is available for download here. Documentation exists on how to compile
and install MapServer:

* for UNIX users, please read the MapServer UNIX Compilation and Installation HOWTO.
* Windows users should read the MapServer Win32 Compilation and Installation HOWTO

In addition, precompiled binaries exist for a number of platform (see the download page).

Windows, UNIX/Linux Issues

Paths

This tutorial was created on Linux/UNIX but should work with minimal changes on Windows platform. The main
differences are the paths in the map files. Windows users need to specify the drive letter of the hard disk where their
tutorial files reside. Here’s an example:

A UNIX map file might include a parameter like this:

’ SHAPEPATH "/data/projects/tutorial/data"

In Windows, the same parameters might look like this:

’ SHAPEPATH "C:/data/projects/tutorial/data"

or:

’ SHAPEPATH "C:\data\projects\tutoriall\data".

Notice that either slash or backslash works in Windows. The usual backslash may work well for you if you want to
make a distinction between virtual (as in URLs or web addresses) and local paths in your map file. However, if you
plan to move your application to UNIX at some point, you’ll have the tedious task of switching all backslashes to
slashes.

While we’re on the subject of paths, keep in mind that paths in mapfiles are typically relative to the system’s root
directory: the slash (“/”) in UNIX or some drive letter (“C:”) in Windows. This is true except when specifically asked
to enter a URL or when referencing a URL. When working with HTML template files, paths are relative to the web
server’s root directory. i.e., “/tutorial/” is relative to “http://demo.mapserver.org/”. Please read http://www.alistapart.
com/articles/slashforward/ for a few insights on URLSs.

2.1. MapServer Tutorial 29

http://demo.mapserver.org/
http://www.alistapart.com/articles/slashforward/
http://www.alistapart.com/articles/slashforward/

MapServer Documentation, Release 7.0.7

Executable

Another issue is that UNIX executable files don’t require a .EXE or .COM extensions, but they do in Windows. If
you are using Windows, append .exe to all instances of “/cgi-bin/mapserv” or *“/cgi-bin/mapserv50” to make it “/cgi-
bin/mapserv.exe” or “/cgi-bin/mapserv50.exe”.

Other Resources

Other documentation exist to give you better understanding of the many customizations MapServer offer. Please visit
the MapServer documentation page at http://www.mapserver.org/documentation.html. There you will find several
HOWTO documents, from getting started to using MapScript, a scripting interface for MapServer.

Back to Tutorial home | Proceed to Section 1

2.1.2 Section 1: Static Maps and the MapFile

» Take a Shapefile dataset. Any Shapefile dataset. We can use MapServer to display that Shapefile dataset in a
web browser. Look...

— Example 1.1 - A map with a single layer

* We can display the same Shapefile dataset repeatedly. We can display the polygon attributes in one LAYER and
the line attributes in another...

— Example 1.2 - A map with two layers
* And we can select which parts of the Shapefile dataset to display. We do this using the CLASS object...
— Example 1.3 - Using classes to make a “useful” map
* We can also label our maps...
— Example 1.4 - Labeling layers and label layers
* Or add raster data such as satellite images, aerial photographs, or shaded reliefs...
— Example 1.5 - Adding a raster layer
* We can reproject our data from just about any projection to just about any... Yeah, check it out!
— Example 1.6 - Projection/Reprojection
* And we can use layers from other map servers on the Internet (for example WMS servers)...
— Example 1.7 - Adding a WMS layer
* MapServer can output to various formats such as PDF and GeoTIFFE.
— Example 1.8 - A different output format
* MapServer not only generates static maps, it can also create interactive maps...

— Example 1.9 - The difference between map mode and browse mode

Back to Tutorial home | Proceed to Section 2

2.1. MapServer Tutorial 30

http://www.mapserver.org/documentation.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example1-9.map&layer=states&layer=modis

MapServer Documentation, Release 7.0.7

2.1.3 Section 2: CGl variables and the User Interface

So far we have only looked at the mapfile when creating maps. In creating web mapping applications, it is usually
our intention to make maps that can be changed by the user (of the application) interactively. That is, a user should be
able to change the content of (or the information in) the map. To accomplish this interactivity, we use the MapServer
HTML templates.

HTML Templates

A MapServer HTML template is essentially an HTML file with a few MapServer specific tags. These tags are the
MapServer CGI variables and are enclosed in square brackets “[]”. When the MapServer CGI program processes an
application, it first parses the query string and the mapfile, and produces the necessary output. Some of this output
will need to be written to the HTML template file which you would have to also specify in the mapfile using the web
template keyword (or in a separate HTML initialization file). The CGI program will replace all the variables in the
HTML template with the proper value before sending it back to the web browser. If you are to directly view an HTML
template in a web browser, there won’t be any maps rendered and you will instead get blank images and other junk.

Variables

MapServer provides several variables for web mapping: the “img” variable which you’ve seen in Example 1.9 is but
one example. There area few core CGI variables originally designed as part of the mapping interface but practically
all the mapfile parameters can be defined as variables. The definitive reference to the MapServer CGI variables can be
found here.

We can also define our own variables, which MapServer will pass along to our application. For example, we can create
a variable called “root” to represent the root directory of this tutorial, the value for “root” will then be “/tutorial”.
When the MapServer CGI program processes our HTML template, it will replace every instance of he “[root]” tag
with “/tutorial”. You will see this in action for each of the following examples.

Examples

So, let’s build an interactive interface for our application...

» Users of a web mapping application should be able to pan and zoom on the map: Example 2.1 - Pan and Zoom
Controls

* They also should be able to turn on and off layers on a map: Example 2.2 - Layer Control
* A map should always include a scalebar. Example 2.3 - Adding a Scalebar

* If users are to navigate through the map, a reference map should be provided: Example 2.4 - Adding a Reference
Map

* The map should include a legend. Example 2.5- Adding a Legend

Back to Section 1 index | Proceed to Section 3

2.1.4 Section 3: Query and more about HTML Templates

To learn more about query and HTML templates with MapServer, see examples 3.1 to 3.4 in the Tutorial Viewer.

Back to Section 2 index | Proceed to Section 4

2.1. MapServer Tutorial 31

http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-1.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-1.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-2.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-3.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-4.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-4.html
http://demo.mapserver.org/cgi-bin/mapserv?map=/osgeo/mapserver/tutorial/htdocs/example2.map&layer=states&zoom=0&mode=browse&root=/tutorial&program=/cgi-bin/mapserv&map_web=template+example2-5.html
http://demo.mapserver.org/tutorial/section3.html

MapServer Documentation, Release 7.0.7

2.1.5 Section 4: Advanced User Interfaces

To learn more about advanced navigation such as pan and rubber-band zoom with Javascript and MapServer CGI, see
examples 4.1 to 4.4 in the Tutorial Viewer.

Back to Section 3 index | Tutorial home

Begin tutorial

2.1. MapServer Tutorial 32

http://demo.mapserver.org/tutorial/section4.html

CHAPTER 3

Installation

3.1 Installation

3.1.1 Compiling on Unix

Author Howard Butler

Contact hobu.inc at gmail.com

Author Thomas Bonfort

Contact thomas.bonfort at gmail.com
Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2016-06-13

Table of Contents

* Compiling on Unix

Introduction

Obtaining the necessary software

Anti-Grain Geometry Support

OGC Support

Spatial Warehousing

Compiling

Installation

Introduction

The University of Minnesota’s MapServer is an open-source and freely available map rendering engine for the web.
Due to its open-source nature, it can be compiled on a wide variety of platforms and operating systems. We will focus
on how to obtain, compile and install MapServer on UNIX-like platforms.

33

MapServer Documentation, Release 7.0.7

Note: Detailed configuration options are maintained in the INSTALL.CMAKE file packaged at the root of the source
directory:

You might also check the MapServerCompilation wiki page for additional information.

Obtaining the necessary software

You can obtain the MapServer source code as well as the demo package from the download section.

You can also get the latest MapServer source code from git.

Required External Libraries

e libpng: libpng should be on your system by default. Versions back to 1.2.7 should work.
* freetype: Version 2.x or above is required.

* libjpeg: libjpeg allows MapServer to render images in JPEG format. A sufficient version should be installed by
default on your system (probably version 6b from 1998).

Warning: Direct JPEG support was deprecated in MapServer 5.8+, and you should now depend on GDAL
for raster read support in MapServer. JPEG support is however still required for producing (i.e. writing)
images.

zlib: Zlib should be on your system by default. Though not used directly by mapserver, it’s a mandatory
dependency of libpng.

Highly Recommended Libraries

* libproj: libproj provides projection support for MapServer. Version 4.4.6 or greater is required.

libeurl: libeurl is the foundation of OGC (WFS/WMS/WCS) client and server support. Version 7.10 or greater
is required.

OGR: OGR provides access to a lot of vector formats.

GDAL: GDAL provides access to a lot of raster formats.

Optional External Libraries

* GEOS: GEOS allows MapServer to do spatial predicate and algebra operations (within, touches, etc & union,
difference, intersection).

New in version 4.10.
e libxml: libxml is required to use OGC SOS support in MapServer
New in version 4.10.

 Oracle Spatial OCI: The client libraries for your platform are available for download from Oracle’s website.
Ideally, your client library matches the database you are querying from, but this is not a hard requirement.

3.1. Installation 34

https://github.com/mapserver/mapserver/blob/master/INSTALL.CMAKE
http://trac.osgeo.org/mapserver/wiki/MapServerCompilation
http://www.libpng.org/pub/png/libpng.html
http://www.freetype.org/
http://www.ijg.org/
http://www.gzip.org/zlib
http://trac.osgeo.org/proj/
http://curl.haxx.se/libcurl/
http://www.gdal.org/
http://www.gdal.org/
http://trac.osgeo.org/geos/
http://xmlsoft.org
http://www.oracle.com/technology/products/spatial/index.html

MapServer Documentation, Release 7.0.7

* libpq: libpq is required to support the use of PostGIS geometries within the PostgreSQL database. Ideally, your
client library matches the database you are querying from.

» giflib: libgif / libgif is is used for reading GIF files used as PIXMAP symbols.

 FastCGI: FastCGI is a popular protocol for interfacing MapServer with various web servers. You will need to
install the development package. More details on how to use this feature in MapServer is here FustCGI. On
Ubuntu, that would be:

$ apt-get -y install libfcgi-dev

e Cairo (SVG, PDF) support: This library is required to produce PDF and SVG outputs. If you’re on an ubuntu
system, it can be installed with “apt-get install -y libcairo2-dev”

e KML support: This renderer is has no external dependency.

e HarfBuff: Support complex script shaping (to simplify: the tool that will insert ligatures between characters).
Harfbuzz algorithms will be applied on text strings that have been determined to not be latin (i.e. the slowdown
induced by harfbuzz is limited to those languages that actually require shaping). Requires FriBidi.

See also:
rfc98
New in version 7.0.

* MySQL: Support joining with MySQL (the WITH_MYSQL option).

Optional Features

 Cairo SVG parser support: The WITH_SVGCAIRO option is part of a proposal to improve SVG support. Using
this feature requires installing the libsvg-cairo library available here: http://cairographics.org/snapshots/ . You
will need to compile and install cairo, libsvg, and libsvg-cairo.

* SVG support can be enabled either through the unmaintained libsvg / libsvg-cairo combo, or through librsvg
(the WITH_RSVG option) at the cost of more dependencies. Use librsvg if your distro provides a package for
it, or fall back to libsvgcairo if the cost of compiling the librsvg dependencies is too important.

Anti-Grain Geometry Support

Since version 5.0 MapServer supports the AGG rendering backend. MapServer 5.6+ embeds it directly in the source
tree and you do not have to do anything special to have support for it.

OGC Support

MapServer provides support for many OGC specifications. For an overview, see MapServer OGC Specification sup-
port.

WMS support
WMS Server

Support for WMS server is automatically enabled.

You can check it by looking for the following in your configure output:

3.1. Installation 35

http://www.postgresql.org/
http://giflib.sourceforge.net/
https://launchpad.net/ubuntu/precise/+package/libgif-dev
http://www.fastcgi.com
http://cairographics.org/
http://mapserver.org/output/kml_output.html
http://freedesktop.org/wiki/Software/HarfBuzz
http://fribidi.org/
http://mapserver.org/development/rfc/ms-rfc-73.html
http://cairographics.org/snapshots/
http://www.opengeospatial.org

MapServer Documentation, Release 7.0.7

- * WMS SERVER: ENABLED

If, for some reason you don’t want WMS support, you can force it off using “-DWITH_WMS=0OFF".

More information on using this feature is available in WMS Server.

WMS Client

Cascading is also supported. This allows mapserver to transparently fetch remote layers over WMS, basically acting
like a client, and combine them with other layers to generate the final map.

In order to enable this feature, you will need to pass the WITH_CLIENT_WMS option to the configure script.
MapServer will automatically look for libcurl, which is also required.

To verify that this feature is enabled, check the configure output for:

- * WMS CLIENT: ENABLED

Note: This feature is disabled by default, you have to specifically request it.

More information on using this feature is available in WMS Client.

WFS support
WFS Server

Support for WES server is enabled by default. OGR and PROJ.4 support is required.

To verify that this feature is enabled, check the configure output for:

- * WES SERVER: ENABLED

If, for some reason you don’t want WES support, you can force it off using “~-DWITH_WFS=0OFF”.

More information on using this feature is available in WES Server.

WFS Client

MapServer can also act as a WFS client. This effectively means that MapServer reads it’s data from a remote server’s
WFES output and renders it into a map, just like it would when reading data from a shapefile.

In order to enable this feature, you will need to make sure you have OGR (built with Xerces support) and PROJ.4
support, and pass the WITH_CLIENT_WFS option to your configure script. MapServer will automatically look for
libcurl, which is also required.

To verify that this feature is enabled, check the configure output for:

- * WES CLIENT: ENABLED

Note: This feature is disabled by default, you have to specifically request it.

More information on using this feature is available in WF'S Client.

3.1. Installation 36

MapServer Documentation, Release 7.0.7

WCS Server

Support for WCS server is enabled by default. WCS must be compiled against certain libraries. More information on
this service is available in WCS Server.

To verify that this feature is enabled, check the configure output for:

- * WCS SERVER: ENABLED

If, for some reason you don’t want WCS support, you can force it off using “-DWITH_WCS=0OFF”.

SOS Server

Support for SOS is enabled by using the WITH_SOS option. More information on this service is available in SOS
Server.

To verify that this feature is enabled, check the configure output for:

- * SOS SERVER: ENABLED

Note: This feature is disabled by default, you have to specifically request it.

Spatial Warehousing
MapServer can use a wide variety of sources of data input. One of the solutions growing in popularity is to use spatially
enabled databases to store data, and to use them directly to draw maps for the web.

Here you will find out how to enable mapserver to talk to one of these products. Please refer to the MapFile reference
for more details on how to use these. This section only details how to compile MapServer for their use.

PostGIS

PostGIS adds support for geographic objects to the PostgreSQL object-relational database. In effect, PostGIS “spa-
tially enables” the PostgreSQL server, allowing it to be used as a backend spatial database for geographic information
systems (GIS), much like ESRI’s SDE or Oracle’s Spatial extension. PostGIS is included in many distributions’
packaging system, but you can also roll your own if needed.

MapServer can use PostGIS as a data source. PostGIS support is enabled by default.

To verify that this feature is enabled, check the configure output for:

- x POSTGIS: /usr/local/pgsgl/lib/libpg.so

If, for some reason you don’t want PostGIS support, you can force it off using “-DWITH_POSTGIS=0OFF".
To help cmake find your PostGIS installation, you can use the CMAKE_PREFIX PATH option (for instance -
DCMAKE_PREFIX_PATH=/usr/local/pgsql”).

Oracle Spatial

Oracle’s Spatial is also supported by MapServer. In order to connect to it, you will need to compile MapServer against
the Oracle libraries by using the WITH_ORACLESPATIAL option. You will very likely need an ORACLE_HOME
environment variable set to have it configure things correctly.

3.1. Installation 37

http://postgis.net
http://www.postgresql.org

MapServer Documentation, Release 7.0.7

To verify that this feature is enabled, check the configure output for:

- x Oracle Spatial: <path to oracle spatial shared library>

Compiling

First prepare the ground by making sure all of your required and/or recommended libraries are installed before at-
tempting to compile MapServer. This will make your life much less complicated ;). Here is the order that I usually
use:

1. Compile GDAL/OGR. Describing how to compile GDAL/OGR is beyond the scope of this document. If you
have requirements for lots of different formats, make sure to install those libraries first. I often find that building
up a GDAL/OGR library often takes as long as compiling MapServer itself!

2. Compile PROJ.4. PROJ 4 is a straight-forward configure/make/make install library.

3. Compile libcurl. libcurl is a straight-forward configure/make/make install library. This library is only used
along with other features, so “~with-curl-config” won’t do anything unless something like “~with-wmsclient”
or “—with-wfsclient” is also selected.

Note: If you want to configure MapServer to use SSL when accessing a WMS/WES server libcurl must be
configured / compiled with the “~with-ssI” option. Details about how to set this up is available in How to set up
MapServer as a client to access a service over https.

4. Compile/install optional libraries. These might include PostGIS, Oracle Spatial, AGG, Ming, PDFlib, or My-
GIS. Mix and match as you need them.

5. Unpack the MapServer tarball and cd into the mapserver directory:

$ tar -zxvf mapserver-X.Y.Z.tar.gz

6. Create the build directory and configure your environment.

Create the build directory:

$ cd mapserver-X.Y.Z
S mkdir build
$ cd build

Configure your environment using “cmake” (this is an example):

$ cmake -DCMAKE_INSTALL_PREFIX=/opt \
-DCMAKE_PREFIX_PATH=/usr/local/pgsql/91:/usr/local:/opt \
-DWITH_CLIENT_WEFS=ON \
-DWITH_CLIENT_WMS=ON \
-DWITH_CURL=ON \
-DWITH_SOS=ON \
-DWITH_PHP=ON \
-DWITH_PERL=ON \
-DWITH_RUBY=ON \
-DWITH_JAVA=ON \
—-DWITH_CSHARP=ON \
—-DWITH_PYTHON=ON \
-DWITH_SVGCAIRO=ON \
-DWITH_ORACLESPATIAL=ON \
—-DWITH_MSSQL2008=0N \
../ >../configure.out.txt

3.1. Installation 38

MapServer Documentation, Release 7.0.7

The following options are enabled by default (version 7.0: WITH_PROJ, WITH_WMS, WITH_FRIBIDI,
WITH_HARFBUFF, WITH_ICONV, WITH_CAIRO, WITH_FCGI, WITH_GEOS, WITH_POSTGIS,
WITH_GDAL, WITH_OGR, WITH_WFS, WITH_WCS, WITH_LIBXML2, WITH_GIF.

If you want to also build a static version of the library, the BUILD_STATIC and
LINK_STATIC_LIBMAPSERVER options can be used,

There are a number of other options available. For an up-to-date list of available cmake options, refer to the
CMakeLists.txt.

It can be a good idea to place the configuration commands in a file and change its mode to executable (+x) to
save typing and have a record of how MapServer was configured.

7. Now that you have configured your build options and selected all the libraries you wish mapserver to use, you're
ready to compile the source code.

This is actually quite simple, just execute “make”:

s make |

8. Install the MapServer libraries:

’# make install

To make sure all went well, look for the file called mapserv:

$ 1s —-al mapserv
—rwxr—-xr-x 1 user user 13745 mars 11 17:45 mapserv

A simple test is to try and run it:

$./mapserv
This script can only be used to decode form results and
should be initiated as a CGI process via a httpd server.

The message above is perfectly normal, and means exactly what it says. If you get anything else, something
went terribly wrong.

Installation

MapServer binary

The MapServer program itself consists of only one file, the “mapserv” binary executable. This is a CGI executable,
meant to be called and run by your web server.

In this section, we will assume you are running Apache under its default directory structure in /usr/local/apache2. You
may need to have privileges to edit your httpd.conf (the main apache configuration file), or have someone (such as
your webmaster) help you with the configuration details.

If you don’t have apache installed, and you want apache, php, fastcgi, etc, that might look something like this:

$ apt-get install -y apache2 apache2-mpm-worker libapache2-mod-fastcgi
$ aZenmod actions fastcgi alias
$ apt-get install libapache2-mod-php5 phpS5-common php5-cli php5-fpm phpb

The main goal is to get the “mapserv” binary installed in a publicly accessible directory that is configured to run CGI
programs and scripts.

3.1. Installation 39

MapServer Documentation, Release 7.0.7

1. Locate your cgi-bin directory. Under a default configuration, the CGI directory is “/usr/local/apache2/cgi-bin”

(RedHat: “/home/httpd/cgi-bin”, Debian: “/ust/lib/cgi-bin”). If you’re using apache, there should be a ScriptAl-
ias directive in your http.conf, or default site, something like:

$ cat /etc/apache2/sites-available/default | grep 'cgi-bin'
ScriptAlias /cgi-bin/ /usr/lib/cgi-bin/

2. Locate the installation path of your freshly compiled mapserv executable. This is shown when you run “make

install”, something like this:

—— Installing: /usr/local/bin/mapserv
-— Set runtime path of "/usr/local/bin/mapserv" to
"/usr/local/lib:/usr/local/pgsgl/91/1ib"

3. You’ll want to setup a symlink to that executable from your cgi-bin directory:

1ln -s /usr/local/bin/mapserv /usr/lib/cgi-bin/mapserv

Warning: Make sure you are linking against the installed mapserv file (after running ‘make install’) and
NOT against where it was compiled in your source tree.

Testing your new Install

Placing the mapserv file in this directory makes it accessible by the following URL: “http://yourhostname.com/cgi-bin/
mapserv”’. When accessing this URL through your web client, you should expect the following output if all has worked
well: “No query information to decode. QUERY_STRING is set, but empty.” If you get this message, you’re done
installing MapServer.

Common problems

File permissions

The most common problem one is likely to encounter when attempting to install the binary are permissions issues:

* You do not have write permissions into your web server’s CGI Directory. Ask your webmaster to install the file

for you.

* The web server gives you a “403 Permission denied” error. Make sure the user the web server runs as (usually

“nobody”) has execute permission on the binary executable. Making the file world executable is perfectly fine
and safe:

$ chmod o+x mapserv

Apache errors

You may receive a few different type of errors as well if your web server configuration isn’t right:

* 500 Internal server error: This is a fairly generic error message. All it basically tells you is that the web server

was unsuccessful in running the program. You will have to consult the web server’s error log to find out more,
and may need to enlist the help of your webmaster/system administrator. The apache docs also have pointers on
setting up cgi-bin.

3.1.

Installation 40

http://yourhostname.com/cgi-bin/mapserv
http://yourhostname.com/cgi-bin/mapserv
http://httpd.apache.org/docs/2.2/howto/cgi.html

MapServer Documentation, Release 7.0.7

:: Check your server logs $ tail /var/log/apache2/error.log

Where to go once you’ve got it compiled

The An Introduction to MapServer document provides excellent coverage of getting started with MapServer.

3.1.2 Compiling on Win32

Author Pericles Nacionales

Contact pnaciona at gmail.com

Table of Contents

* Compiling on Win32

Introduction

— Compiling

— Set up a Project Directory

— Download MapServer Source Code and Supporting Libraries
— The MapServer source code

— Set Compilation Options

— Compile the Libraries

— Compile MapServer

— Compiling MapServer with PostGIS support

— Common Compiling Errors

— Installation

— Other Helpful Information

Acknowledgements

Introduction

This document provides a simple set of compilation procedures for MapServer on Win32 platforms.

If you’ve made it this far, chances are you already know about MapServer and are at least tempted to try compiling it
for yourself. Pre-compiled binaries for MapServer are available from a variety of sources. Refer to windows. Building
MapServer for win32 platforms can be a daunting task, so if existing binaries are sufficient for your needs, it is strongly
advised that they be used in preference to trying to build everything from source.

However, there can be a variety of reasons to want to build MapServer from source on win32. Reasons include the
need to enable specific options, to build with alternate versions of support libraries (such as GDAL), the desire for
MapScript support not part of the core builds, the need to debug and fix bugs or even to implement new features in
MapServer. To make it easy for users and developers, I’ve made a list of steps to compile MapServer. Background
information is provided in each step, along with examples. Each example is a continuation of the previous one and in
the end will produce the MapServer DLL (libmap.dll), the CGI program (the mapserv.exe), and utility programs.

3.1. Installation 41

MapServer Documentation, Release 7.0.7

Warning: This document may refer to older library versions. You may want to try to use more recent library
versions for your build.

Compiling

If you are new to Windows programming, please follow this document carefully. The compilation steps are fairly
simple but I’ve added a few blurbs in each step to help you understand how MapServer compiles. For the more
experienced programmers, perhaps reading the README.Win32 that accompanies the MapServer source code would
be more useful. For those who are antsy, compiling MapServer involves download and unpacking the source codes,
editing the make files, and invoking Microsoft’s Visual C++ compiler from the command prompt. The resulting
mapserv.exe is the CGI program that installs in the cgi-bin directory of your web server.

For those who are willing to take the time, the compilation steps follow.

Set up a Project Directory

Before you start to compile MapServer, I recommend creating a directory called “projects” where you can put the
source code for MapServer and its supporting libraries. Since you will be working with DOS-style commands, you
might as well get used to the Windows command prompt. For Windows 95/98 users the command processor would be
called command.com. For Windows NT/2000/XP, it would be cmd.exe. So fire up the old command prompt and go to
the drive where you want to create the project directory.

Here is an example of how to create a directory called projects on the C: drive:

C:\Users> mkdir C:\Projects

To go to that directory:

C:\Users> cd \Projects
C:\Projects>

From the projects directory, you can extract the source codes for MapServer and its libraries. Now you’re ready to
download the source codes.

Download MapServer Source Code and Supporting Libraries

After creating a project directory, download the MapServer source code and the codes for the supporting libraries and
save the source code packages in the newly created “projects” directory. These source codes are usually packaged as
ZIP, or as UNIX TAR and GZIP files. You’ll need a software that can unzip these packages. 7-Zip is an example of
software that can handle these files.

Cygwin is a free, open-source software package which is a port of these tools on Windows. You can use the gzip and
tar utilities from this tool collection. Cygwin is available from http://www.cygwin.com.

In order to compile the MapServer CGI program, you must download a few required and optional libraries. At
its simplest configuration, MapServer only requires the GD (to provide the image output) and REGEX (to provide
regular expression support) libraries. This configuration allows the developer/data provider to use shapefiles as input
and, depending on the version of GD library used, GIF or PNG images as output. Additional libraries are needed for
input data in alternative formats. The libraries that work with MapServer are listed below.

3.1. Installation 42

http://www.7-zip.org/
http://www.cygwin.com

MapServer Documentation, Release 7.0.7

The MapServer source code

The MapServer source code can be downloaded from the download page. If you’d like to get the current development
version of the software, following the nightly snapshot link under the Interim Builds title. The absolute latest copy of
the source code can be obtained from git; however, the GitHub repository does not contain several important source
files (maplexer.c, mapparser.c and mapparser.h) normally generated on unix, so if possible, using a nightly snaphot is
substantially easier than working directly from git.

Required Libraries

GD Library: MapServer uses the GD graphics library for rendering map images in GIF, PNG and JPEG format.
These map images are displayed in web browser clients using the MapServer CGI. The current official version
of GD is 2.0.33. The distributed makefiles are setup to use the prebuilt GD Win32 DLL binaries which include
GD, libjpeg, libpng, libz, libgif and FreeType 2 all within one DLL. This package is generally listed as “Windows
DLL .zip” and the latest version is normally available at http://www.boutell.com/gd/http/gdwin32.zip.

Regex: Regex is the regular expression library used by MapServer. It can be downloaded at http://ftp.gnu.org/old-gnu/
regex/regex-0.12.tar.gz

Optional Libraries

JPEG library: This library is required by GD to render JPEG images, if building GD from source. You may down-
load this library at http://www.ijg.org/files/jpegsrc.v6b.tar.gz

PNG library: This library is required by GD to render PNG images, if building GD from source. You may download
this library at http://sourceforge.net/projects/libpng/

Zlib: This library is required by libpng to provide graphics compression support. It can be downloaded along with
the PNG library, or at http://www.gzip.org/zlib.zip .

FreeType 2: FreeType provides TrueType support in MapServer via GD. We only need to build FreeType separately
if building GD from source. It can be downloaded at http://gnuwin32.sourceforge.net/packages/freetype.htm .

PROJ.4: PROIJ.4 provides on-the-fly projection support to MapServer. Users whose data are in different projection
systems can use this library to reproject into a common projection. It is also required for WMS, WES or WCS
services.

GDAL/OGR: The GDAL/OGR library allows MapServer to read a variety of geospatial raster formats (GDAL) and
vector formats (OGR). It can be downloaded at http://www.gdal.org/.

ArcSDE: ArcSDE is an ESRI proprietary spatial database engine. Most users will not have access to it but if you
have ArcSDE license, you can use its libraries to give MapServer access to SDE databases.

EPPL7: This library allows MapServer to read EPPL7 datasets, as well as the older Erdas LAN/GIS files. This library
is set as a default library in MapServer so there’s no special source code to download.

Now that you have reviewed the libraries that provide support to MapServer, it is time to decide which ones to compile
and use. We will work with the pre-built GD distributed on Boutell.com with PNG, GIF, JPEG, and FreeType “built
in”. If you want to provide OGC Web Services (ie. WMS, WES) or want to perform on the fly reprojection then the
PROJ 4 library will be needed. If you need additional raster and vector data sources consider including GDAL/OGR
support. GDAL is also required for WCS service.

Our example calls for the required libraries and on-the-fly projection support so we need to download GD, regex, and
PROJ 4 libraries. Go ahead and get those libraries.

3.1. Installation 43

http://www.libgd.org/
http://www.boutell.com/gd/http/gdwin32.zip
http://ftp.gnu.org/old-gnu/regex/regex-0.12.tar.gz
http://ftp.gnu.org/old-gnu/regex/regex-0.12.tar.gz
http://www.ijg.org/
http://www.ijg.org/files/jpegsrc.v6b.tar.gz
http://www.libpng.org/pub/png/
http://sourceforge.net/projects/libpng/
http://www.gzip.org/zlib/
http://www.gzip.org/zlib.zip
http://www.freetype.org/
http://gnuwin32.sourceforge.net/packages/freetype.htm
http://trac.osgeo.org/proj/
http://www.gdal.org/
http://www.gdal.org/
http://www.esri.com/software/arcgis/arcsde/
http://www.lmic.state.mn.us/resource.html?Id=3603

MapServer Documentation, Release 7.0.7

Set Compilation Options

MapServer, like many of it’s support libraries, comes with a Visual C++ makefile called Makefile.vc. It includes the
file nmake.opt which contains many of the site specific definitions. We will only need to edit the nmake.opt file to
configure the build for our local site options, and support libraries. The Makefile.vc, and nmake.opt template file have
been provided by Assefa Yewondwossen, and the DM Solutions folks.

As of MapServer 4.4, the default MapServer build options only include GD, and regex. MapServer is built using the
/MD option (which means MSVCRT.DLL should be used), so if any support libraries are being built statically (rather
than as DLLs) we need to use /MD when building them as well. By default modern PROJ.4 builds use /MD so we
should be able to use the default PROJ.4 build without tweaking.

The example will compile with the GDWin32 pre-built DLL as well as regex-0.12, and PROJ.4. The PROJ.4 support
will ensure we can enable MapServer OGC-WMS compatibility. Use notepad or another text editor to open the
nmake.opt file and make the following changes.

Comments

Use the pound sign (#) to comment out the lines that you want to disable, or remove the pound sign to enable an
option for NMAKE.

A. Enable PROJ.4 support, and update the path to the PROJ.4 directory. Uncomment the PROJ= line, and the
PROJ_DIR= line as follows, and update the PROJ_DIR path to point to your PROJ build.

Reprojecting.

If you would like mapserver to be able to reproject data from one
geographic projection to another, uncomment the following flag
PROJ.4 distribution (cartographic projection routines). PROJ.4 is
also required for all OGC services (WMS, WFS, and WCS).

For PROJ_DIR use full path to PROJ.4 distribution
PROJ=-DUSE_PROJ -DUSE_PROJ_API_H
PROJ_DIR=c:\projects\proj-4.4.9

If you look down later in the file, you can see that once PROJ is enabled, MapServer will be linked with proj_i.lib, the
PROJ .4 stub library, meaning that MapServer will be using the PROJ.DLL as opposed to statically linking in PROJ.4.

2. Uncomment the WMS option.

Use this flag to compile with WMS Server support.

To find out more about the OpenGIS Web Map Server Specification go to
http://www.opengis.org/

WMS=-DUSE_WMS_SVR

3. Update to use GD. Here’s what it should look like in our example.

GD_DIR=c:/projects/gdwin32
GD_LIB=$ (GD_DIR) /bgd.lib

Note: As distributed the GDWin32 binary build does not include the bgd.lib stub library. It is necessary to run the
makemsvcimport.bat script in the gdwin32 directory first.

D. Make sure the regex path is set correctly. In order for the “delete” command in the “nmake /f makefile.vc clean”
target to work properly it is necessary to use backslashes in the REGEX_DIR definition.

REGEX Library
#

3.1. Installation 44

MapServer Documentation, Release 7.0.7

VC++ does not include the REGEX library... so we must provide our one.

The following definitions will try to build GNU regex-0.12 located in the
regex—0.12 sub-directory.

If it was not included in the source distribution, then you can get it from:

e

ftp://ftp.gnu.org/pub/gnu/regex/regex-0.12.tar.gz

Provide the full path to the REGEX project directory

You do not need this library if you are compiling for PHP mapscript.
In that case the PHP regex library will be used instead

! TFNDEF PHP

REGEX_DIR=c:\projects\regex-0.12

'ENDIF

Your Makefile is now set.

Compile the Libraries

Before compiling MapServer, you must first compile its supporting libraries. How this is done varies for each library.
For the PROJ.4 library a nmake /f makefile.vc command in the proj-4.4.9src directory should be sufficient. The
regex-0.12 code is actually built by the MapServer build process, so you don’t need to do anything there.

Compiling libcurl

Previously, curl libraries can be compiled using the following command:

’nmake /f makefile.vc6 CFG=release

This creates a static library, libcurl.lib, to which you compile against. Versions newer than version 7.10.x should be
compiled as dynamic library. This is accomplished using the command:

’nmake /f makefile.vc6 CFG=release-dll

You will then need to edit MapServer’s nmake.opt to replace the CURL_LIB variable with this line:

’CURL_LIB = $(CURL_DIR)/1lib/libcurl_imp.lib

Compile MapServer

Once you have compiled the supporting libraries successfully, you are ready to take the final compilation step. If
you have not already done so, open a command prompt and set the VC++ environment variables by running the
vevars32.bat usually located in C:Program FilesMicrosoft Visual StudioVC98binvcvars32.bat.

C:\Users> cd \projects\mapserver
C:\Projects\mapservers> C:\Program Files\Microsoft Visual Studio\VC98\Bin\vcvars32.bat

—

C:\Projects\mapserver>

Setting environment for using Microsoft Visual C++ tool.
C:\Projects\mapserver>

Now issue the command: nmake /f Makefile.ve and wait for it to finish compiling. If it compiles successfully, you
should get mapserver.lib, libmap.dll, mapserv.exe, and other .EXE files. That’s it for the compilation process. If you
run into problems, read section 4 about compiling errors. You can also ask for help from the helpful folks in the
MapServer-dev e-mail list.

3.1. Installation 45

MapServer Documentation, Release 7.0.7

Compiling MapServer with PostGIS support

To compile PostGIS support into MapServer, here’s what you need to do:

1.

A

download the PostgreSQL 8.0.1 (or later) source from: ftp:/ftp.heanet.ie/pub/postgresql/source/
I extracted them to C:projectspostgresql-8.0.1

download the Microsoft Platform SDK otherwise you get link errors on shfolder.lib.

compile libpq under C:projectspostgresql-8.0.1srcinterfaceslibpq using the win32.mak makefile

copy everything from C:projectspostgresql-8.0.1srcinterfaceslibpqrelease to C:projectspostgresql-
8.0.1srcinterfaceslibpq as the MapServer makefile will try to find it there

Define the following in the nmake.opt for MapServer: POSTGIS =-DUSE_POSTGIS POSTGIS_DIR
=c:/projects/postgresql-8.0.1/src

nmake /f makefile.vc

don’t forget to copy libpq.dll (from C:projectspostgresql-8.0.1srcinterfaceslibpgrelease) into a location where
MapServer can find it.

Common Compiling Errors

Following are a few common errors you may encounter while trying to build MapServer.

¢ Visual C++ Tools Not Properly Initialized.

C:\projects\mapserver> nmake —-f /makefile.vc
'nmake' is not recognized as an internal or external command,
operable program or batch file.

This occurs if you have not properly defined the path and other environment variables required to use MS
VisualC++ from the command shell. Invoke the VCVARS32.BAT script, usually with the command C:Program
FilesMicrosoft Visual StudioVC98binvcvars32.bat or something similar if visual studio was installed in an
alternate location. To test if VC++ is available, just type “nmake” or “cl” in the command shell and ensure it is
found.

Regex Build Problems.

regex.obj : error LNK2001l: unresolved external symbol _printchar
libmap.dll : fatal error LNK1120: 1 unresolved externals

NMAKE : fatal error U1077: 'link' : return code '0x460'

Stop.

This occurs if you use the stock regex-0.12 we referenced. I work around this by commenting out the “extern”
statement for the printchar() function, and replacing it with a stub implementation in regex-0.12regex.c.

//extern void printchar ();
void printchar(int i) {}

GD Import Library Missing.

LINK : fatal error LNK1104: cannot open file 'c:/projects/gdwin32/bgd.lib’
NMAKE : fatal error Ul1077: '"link' : return code '0x450'
Stop.

If you are using the pre-built GD binaries, you still need to run the makemsvcimport.bat script in the gdwin32
directory to create a VC++ compatible stub library (bgd.lib).

3.1. Installation 46

ftp://ftp.heanet.ie/pub/postgresql/source/
http://www.microsoft.com/downloads/details.aspx?familyid=E6E1C3DF-A74F-4207-8586-711EBE331CDC&displaylang=en

MapServer Documentation, Release 7.0.7

Installation

The file we are most interested in is mapserv.exe. The other executable files are the MapServer utility programs.
See also:

MapServer Utilities

to learn more about these utilities.

To test that the CGI program is working, type mapserv.exe at the command prompt. You should see the following
message:

This script can only be used to decode form results and
should be initiated as a CGI process via a httpd server.

You may instead get a popup indicating that a DLL (such as bgd.dll) is missing. You will need to copy all the required
DLLs (ie. bgd.dll, and proj.dll) to the same directory as the mapserv.exe program.

Now type mapserv -v at the command prompt to get this message:

MapServer version 4.4.0-beta3 OUTPUT=GIF OUTPUT=PNG OUTPUT=JPEG OUTPUT=WBMP
SUPPORTS=PROJ SUPPORTS=FREETYPE SUPPORTS=WMS_SERVER INPUT=SHAPEFILE
DEBUG=MSDEBUG

This tells us what data formats and other options are supported by mapserv.exe. Assuming you have your web server
set up, copy mapserv.exe, libmap.dll, bgd.dll, proj.dll and any other required DLLs to the cgi-bin directory.

You are now ready to download the demo application and try out your own MapServer CGI program. If you wish,
you can also create a directory to store the utility programs. I’d suggest making a subdirectory called “bin” under
the directory “projects” and copy the executables to that subdirectory. You might find these programs useful as you
develop MapServer applications.

Other Helpful Information

The MapServer Unix Compilation and Installation HOWTO has good descriptions of some MapServer compilation
options and library issues. I will write more about those options and issues on the next revision of this HOWTO.

The README documents of each of the supporting libraries provide compilation instructions for Windows.

The MapServer User community has a collective knowledge of the nuances of MapServer compilation. Seek their
advice wisely.

Acknowledgements

Thanks to Assefa Yewondwossen for providing the Makefile.vc. I would not have been able to write this HOWTO
without that file.
Thanks to Bart van den Eijnden for the libcurl and PostGIS compilation info.

Thanks to the Steve Lime for developing MapServer and to the many developers who contribute time and effort in
order to keep the MapServer project successful.

3.1.3 PHP MapScript Installation

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

3.1. Installation 47

MapServer Documentation, Release 7.0.7

Last Updated 2016-06-15

Table of Contents

* PHP MapScript Installation
— Introduction

— Obtaining, Compiling, and Installing PHP and the PHP/MapScript Module

— FAQ/ Common Problems

Introduction
The PHP/MapScript module is a PHP dynamically loadable module that makes MapServer’s MapScript functions and
classes available in a PHP environment.

The original version of MapScript (in Perl) uses SWIG, but since SWIG does not support the PHP language, the
module has to be maintained separately and may not always be in sync with the Perl version.

The PHP module was developed by DM Solutions Group and is currently maintained by Mapgears.
This document assumes that you are already familiar with certain aspects of your operating system:
* For Unix/Linux users, a familiarity with the build environment, notably make.

» For Windows users, some compilation skills if you don’t have ready access to a pre-compiled installation and
need to compile your own copy of MapServer with the PHP/MapScript module.

Which version of PHP is supported?

PHP MapScript was originally developed for PHP-3.0.14 but after MapServer 3.5 support for PHP3 has been dropped
and as of the last update of this document, PHP 4.3.11 or more recent was required (PHPS is well supported).

The best combinations of MapScript and PHP versions are:
* MapScript 4.10 with PHP 5.2.1 and up
e MapScript 4.10 with PHP 4.4.6 and up

Warning: PHP 7 support is still in development; please follow along and contribute through the associated ticket.

How to Get More Information on the PHP/MapScript Module for MapServer

* For a list of all classes, properties, and methods available in the module see the PHP MapScript API reference
document.

* More information on the PHP/MapScript module can be found on the PHP/MapScript page on MapTools.org.
* The MapServer Wiki also has PHP/MapScript build and installation notes and some php code snippets.

* Questions regarding the module should be forwarded to the MapServer mailing list.

3.1. Installation 48

http://www.swig.org/
http://www.dmsolutions.ca/
http://www.mapgears.com
https://github.com/mapserver/mapserver/issues/5252
http://www.maptools.org/php_mapscript/
http://trac.osgeo.org/mapserver/wiki/PHPMapScript

MapServer Documentation, Release 7.0.7

Obtaining, Compiling, and Installing PHP and the PHP/MapScript Module

Download PHP and PHP/MapScript

¢ The PHP source or the Win32 binaries can be obtained from the PHP web site.

* Once you have verified that PHP is installed and is running, you need to get the latest MapServer source and
compile MapServer and the PHP module.

Setting Up PHP on Your Server

Unix
 Check if you have PHP already installed (several Linux distributions have it built in).
* If not, see the PHP manual’s “Installation on Unix systems” section.

Windows

o MS4W (MapServer For Windows) is a package that contains Apache, PHP, and PHP/MapScript ready to use in
a simple zipfile. Several Open Source applications are also available for use in MS4W.

* Windows users can follow steps in the Installing Apache, PHP and MySQL on Windows tutorial to install
Apache and PHP manually on their system.

* Window users running IIS can follow iis.net’s howto for installing PHP.

Note: When setting up PHP on Windows, make sure that PHP is configured as a CGI and not as an Apache module
because php_mapscript.dll is not thread-safe and does not work as an Apache module (See the Example Steps of a Full
Windows Installation section of this document).

Build/Install the PHP/MapScript Module

Building on a Linux Box

NOTE: For UNIX users, see the README.CONFIGURE file in the MapServer source, or see the Compiling on Unix
HowTo.

* The main MapServer configure script will automatically setup the main makefile to compile php_mapscript.so
if you pass the —with-php=DIR argument to the configure script.

* Copy the php_mapscript.so library to your PHP extensions directory, and then use the dI() function to load the
module at the beginning of your PHP scripts. See also the PHP function extension_loaded() to check whether
an extension is already loaded.

¢ The file mapscript/php3/examples/phpinfo_mapscript.phtml will test that the php_mapscript module is properly
installed and can be loaded.

e If you get an error from PHP complaining that it cannot load the library, then make sure that you recompiled
and reinstalled PHP with support for dynamic libraries. On RedHat 5.x and 6.x, this means adding “-rdynamic”
to the CLDFLAGS in the main PHP3 Makefile after running ./configure Also make sure all directories in the
path to the location of php_mapscript.so are at least r-x for the HTTPd user (usually ‘nobody’), otherwise dl()
may complain that it cannot find the file even if it’s there.

Building on Windows

3.1. Installation 49

http://www.php.net/
http://php.net/manual/en/install.unix.php
http://ms4w.com
http://www.php-mysql-tutorial.com/wikis/php-tutorial/installing-php-and-mysql.aspx
http://www.iis.net/learn/application-frameworks/install-and-configure-php-on-iis/install-and-configure-php
http://www.php.net/manual/en/function.extension-loaded.php

MapServer Documentation, Release 7.0.7

» For Windows users, it is recommended to look for a precompiled binary for your PHP version on the MapServer
download page or use the MS4W installer.

* If for some reason you really need to compile your own Windows binary then see the README.WIN?32 file in
the MapServer source (good luck!).

Installing PHP/MapScript

Simply copy the file php4_mapscript.dll to your PHP4 extensions directory (pathto/php/extensions)
Using phpinfo()

To verify that PHP and PHP/MapScript were installed properly, create a ‘.php’ file containing the following code and
try to access it through your web server:

<HTML>
<BODY>

<?php
if (PHP_OS == "WINNT" || PHP_OS == "WIN32")
{
dl ("php_mapscript.dl1l");
}
else
{
dl ("php_mapscript.so");
}
phpinfo () ;
?>

</BODY>
</HTML>

If PHP and PHP/MapScript were installed properly, several tables should be displayed on your page, and ‘MapScript’
should be listed in the ‘Extensions’ table.

Example Steps of a Full Windows Installation

Using MS4W (MapServer for Windows)
1. Download the latest MS4W base package.
2. Extract the files in the archive to the root of one of your drives (e.g. C:/ or D:/).
3. Double-click the file /ms4w/apache-install.bat to install and start the Apache Web server.
4

. In a web browser goto http://127.0.0.1. You should see an MS4W opening page. You are now running PHP,
PHP/MapScript, and Apache.

5. You can now optionally install other applications that are pre-configured for MS4W, which are located on the
MS4W download page.

Manual Installation Using Apache Server
1. Download the Apache Web Server and extract it to the root of a directory (eg. D:/Apache).

2. Download PHP4 and extract it to your Apache folder (eg. D:/Apache/PHP4).

3.1. Installation 50

http://ms4w.com
http://ms4w.com/download.html
http://127.0.0.1
http://ms4w.com/download.html
http://httpd.apache.org/
http://www.php.net/

MapServer Documentation, Release 7.0.7

3.

7.

Create a temp directory to store MapServer created GIFs. NOTE: This directory is specified in the IMAGEPATH
parameter of the WEB Object in the Mapfile reference. For this example we will call the temp directory
“ms_tmp” (eg. E:/tmp/ms_tmp).

Locate the file httpd.conf in the conf directory of Apache, and open it in a text viewer (eg. TextPad, Emacs,
Notepad).

In the Alias section of this file, add aliases to the ms_tmp folder and any other folder you require (for this
example we will use the msapps folder):

Alias /ms_tmp/ "path/to/ms_tmp/"
Alias /msapps/ "path/to/msapps/"

In the ScriptAlias section of this file, add an alias for the PHP4 folder.

’ScriptAlias /cgi-php4d/ "pathto/apache/php4/"

In the AddType section of this file, add a type for php4 files.

’AddType application/x-httpd-php4 .php

In the Action section of this file, add an action for the php.exe file.

’Action application/x-httpd-php4 "/cgi-php4/php.exe"

Copy the file php4.ini-dist located in your Apache/php4 directory and paste it into your WindowsNT folder (eg.
c:/winnt), and then rename this file to php.ini in your WindowsNT folder.

If you want specific extensions loaded by default, open the php.ini file in a text viewer and uncomment the
appropriate extension.

Place the file php_mapscript.dll into your Apache/php4/extensions folder.

Installation Using Microsoft’s IIS

(please see the /1S Setup for MapServer document for uptodate steps)

L.
. Install PHP and PHP/MapScript (see above).

A~ W

Install IIS if required (see the IIS installation procedure).

. Open the Internet Service Manager (eg. C/WINNT/system32/inetsrv/inetmgr.exe).

. Select the Default web site and create a virtual directory (right click, select New/Virtual directory). For this

example we will call the directory msapps.

. In the Alias field enter msapps and click Next.
. Enter the path to the root of your application (eg. “c:/msapps”) and click Next.
. Set the directory permissions and click Finish.

. Select the msapps virtual directory previously created and open the directory property sheets (by right clicking

and selecting properties) and then click on the Virtual directory tab.

. Click on the Configuration button and then click the App Mapping tab.
. Click Add and in the Executable box type: path/to/php4/php.exe %s %s. You MUST have the %s %s on the

end, PHP will not function properly if you fail to do this. In the Extension box, type the file name extension to
be associated with your PHP scripts. Usual extensions needed to be associated are phtml and php. You must
repeat this step for each extension.

3.1.

Installation 51

http://windows.microsoft.com/en-us/windows-vista/install-internet-information-services-iis-7-0

MapServer Documentation, Release 7.0.7

11. Create a temp directory in Explorer to store MapServer created GIFs.

Note: This directory is specified in the IMAGEPATH parameter of the WEB Object in the Mapfile. For this
example we will call the temp directory ms_tmp (eg. C:/tmp/ms_tmp).

12. Open the Internet Service Manager again.

13. Select the Default web site and create a virtual directory called ms_tmp (right click, select New/Virtual direc-
tory). Set the path to the ms_tmp directory (eg. C:/tmp/ms_tmp) . The directory permissions should at least be
set to Read/Write Access.

FAQ / Common Problems

Questions Regarding Documentation

Q Is there any documentation available?

A The main reference document is the PHP MapScript reference, which describes all of the current
classes, properties and methods associated with the PHP/MapScript module.

To get a more complete description of each class and the meaning of their member variables, see the
MapScript reference and the MapFile reference.

The MapServer Wiki also has PHP/MapScript build and installation notes and some php code snip-
pets.

Q Where can I find sample scripts?

A Some examples are included in directory mapserver/mapscript/php3/examples/ in the MapServer
source distribution. A good one to get started is test_draw_map.phtml: it’s a very simple script
that just draws a map, legend and scalebar in an HTML page.

A good intermediate example is the PHP MapScript By Example guide (note that this document was
created for an earlier MapServer version but the code might be still useful).

The original example is the “Gmap demo”, download the whole source and data files from the
MapTools.org download page.

Questions About Installation

Q How can I tell that the module is properly installed on my server?

A Create a file called phpinfo.phtml with the following contents:

<?php dl("php_mapscript.so");
phpinfo();
?>

Make sure you replace the php_mapscript.so with the name under which you installed it, it could be
php_mapscript_46.so on Unix, or php_mapscript_46.dll on Windows

You can then try the second test page mapserver/mapscript/php3/examples/test_draw_map.phtml.
This page simply opens a MapServer .map file and inserts its map, legend, and scalebar in an HTML
page. Modify the page to access one of your own MapServer .map files, and if you get the expected
result, then everything is probably working fine.

3.1. Installation 52

http://trac.osgeo.org/mapserver/wiki/PHPMapScript
http://www.maptools.org/dl/

MapServer Documentation, Release 7.0.7

Q I try to display my .phtml or .php page in my browser but the page is shown as it would it
Notepad.

A The problem is that your PHP installation does not recognize ~.phtml” as a PHP file extension. As-
suming you’re using PHP4 under Apache then you need to add the following line with the other
PHP-related AddType lines in the httpd.conf:

AddType application/x-httpd-php .phtml

For a more detailed explanation, see the Example Steps of a Full Windows Installation section of
this document.

Q Iinstalled the PROJ.4, GDAL, or one of the support libraries on my system, it is recognized by
MapServer’s “configure” as a system lib but at runtime I get an error: “libproj.so.0: No such
file or directory”.

A You are probably running a RedHat Linux system if this happened to you. This happens because the
libraries install themselves under /usr/local/lib but this directory is not part of the runtime library
path by default on your system.

(I'm still surprised that “configure” picked PROJ.4 as a system lib since it’s not in the system’s lib
path...probably something magic in autoconf that we’ll have to look into)

There are a couple of possible solutions:
1. Add a “setenv LD_LIBRARY_PATH” to your httpd.conf to contain that directory

2. Edit /etc/ld.so.conf to add /ust/local/lib, and then run “/sbin/ldconfig”. This will permanently
add /usr/local/lib to your system’s runtime lib path.

3. Configure MapServer with the following options:

—-—with-proj=/usr/local --enable-runpath

and the /usr/local/lib directory will be hardcoded in the exe and .so files

I (Daniel Morissette) personally prefer option #2 because it is permanent and applies to everything
running on your system.

Q Does PHP/MapScript have to be setup as a CGI? If so, why?
A Yes, please see the PHP/MapScript CGI page in the MapServer Wiki for details.

Q I have compiled PHP as a CGI and when PHP tries to load the php_mapscript.so, I get an
‘“undefined symbol: _register_list_destructors’ error. What’s wrong?

A Your PHP CGI executable is probably not linked to support loading shared libraries. The MapServer
configure script must have given you a message about a flag to add to the PHP Makefile to enable
shared libs.

Edit the main PHP Makefile and add “-rdynamic” to the LDFLAGS at the top of the Makefile, then
relink your PHP executable.

Note: The actual parameter to add to LDFLAGS may vary depending on the system you’re running
on. On Linux it is “-rdynamic”, and on *BSD it is “-export-dynamic”.

3.1.

Installation 53

https://trac.osgeo.org/mapserver/wiki/PHPMapScriptCGI

MapServer Documentation, Release 7.0.7

Q What are the best combinations of MapScript and PHP versions?
A The best combinations are:

* MapScript 4.10 with PHP 5.2.1 and up

* MapScript 4.10 with PHP 4.4.6 and up

Q I am dynamically loading gd.so and php_mapscript.so and running into problems, why?

A The source of the problems could be a mismatch of GD versions. The PHP GD module compiles its
own version of libgd, and if the GD library is loaded before the mapscript library, mapscript will
use the php-specific version. Wherever possible you should use a gd.so built with the same GD as
PHPMapScript. A workaround is to load the php_mapscript module before the GD module.

3.1.4 .NET MapScript Compilation

Author Tamas Szekeres

Contact szekerest at gmail.com

Compilation

Before compiling C# MapScript you should compile MapServer with the options for your requirements. For more
information about the compilation of MapServer please see Win32 Compilation and Installation Guide. It is highly
recommended to minimize the library dependency of your application, so when compiling MapServer enable only the
features really needed. To compile the C# binding SWIG 1.3.31 or later is required.

Warning: This document may refer to older library versions. You may want to try to use more recent library
versions for your build.

Win32 compilation targeting the MS.NET framework 1.1

You should compile MapServer, MapScript and all of the subsequent libraries using Visual Studio 2003. Download
and uncompress the latest SWIGWIN package that contains the precompiled swig.exe Open the Visual Studio .NET
2003 Command Prompt and step into the /mapscript/csharp directory. Edit makefile.vc and set the SWIG variable to
the location of your swig.exe

Use:

nmake —-f makefile.vc

to compile mapscript.dll and mapscript_csharp.dIl.

Win32 compilation targeting the MS.NET framework 2.0

You should compile MapServer, MapScript and all of the subsequent libraries using Visual Studio 2005. Download
and uncompress the latest SWIGWIN package that contains the precompiled swig.exe Open the Visual Studio 2005

3.1. Installation 54

MapServer Documentation, Release 7.0.7

Command Prompt and step into the /mapscript/csharp directory Edit makefile.vc and set the SWIG variable to the
location of your swig.exe.

Use:

nmake —-f makefile.vc

to compile mapscript.dll and mapscript_csharp.dll.

Win32 compilation targeting the MONO framework

Before the compilation you should download and install the recent mono Win32 setup package (eg. mono-1.1.13.2-

gtksharp-2.8.1-win32-1.exe) Edit makefile.vc and set the CSC variable to the location of your mcs.exe. Alternatively
you can define:

MONO = YES

in your nmake.opt file.

You should use the same compiler for compiling MapScript as the compiler has been used for the MapServer compi-
lation. To compile MapScript open the Command Prompt supplied with your compiler and use:

nmake —-f makefile.vc

to compile mapscript.dll and mapscript_csharp.dIl.

Alternative compilation methods on Windows

Beginning from MapServer 4.8.3 you can invoke the C# compilation from the MapServer directory by uncommenting
DOT_NET in nmake.opt:

.NET will of course only work with MSVC 7.0 and 7.1. Also note that
you will definitely want USE_THREAD defined.

#DOT_NET = YES

and invoking the compilation by:

’nmake -f makefile.vc csharp ‘

You can also use:

’nmake -f makefile.vc install ‘

for making the compilation an copying the targets into a common output directory.

Testing the compilation

For testing the compilation and the runtime environment you can use:

3.1. Installation 55

MapServer Documentation, Release 7.0.7

nmake —-f makefile.vc test

within the csharp directory for starting the sample applications compiled previously. Before making the test the
location of the corresponding libraries should be included in the system PATH.

Linux compilation targeting the MONO framework

Before the compilation you should download and install the recent mono Linux package. Some distributions have pre-
compiled binaries to install, but for using the latest version you might want to compile and install it from the source.
Download and uncompress the latest SWIG release. You should probably compile it from the source if pre-compiled
binaries are not available for your platform.

Before compiling MapScript, MapServer should be configured and compiled. Beginning from MapServer 4.8.2 during
configuration the mapscript/csharp/Makefile will be created according to the configuration options. Edit this file and
set the SWIG and CSC for the corresponding executable paths if the files could not be accessed by default. To compile
at a console step into the /mapscript/csharp directory use:

’make

to compile libmapscript.so and mapscript_csharp.dll.

For testing the compilation and the runtime environment you can use:

’make test

for starting the sample applications compiled previously.

OSX compilation targeting the MONO framework

Beginning from 4.10.0 the csharp/Makefile supports the OSX builds. Before making the build the recent MONO
package should be installed on the system.

Before compiling MapScript, MapServer should be configured and compiled. Beginning from MapServer 4.8.2 during
configuration the mapscript/csharp/Makefile will be created according to the configuration options. Edit this file and
set the SWIG and CSC for the corresponding executable paths if the files could not be accessed by default. To compile
at a console step into the /mapscript/csharp directory use:

’make

to compile libmapscript.dylib and mapscript_csharp.dll.

For testing the compilation and the runtime environment you can use:

’make test

for starting the sample applications compiled previously.

To run the applications mapscript_csharp.dll.config is needed along with the mapscript_csharp.dll file. This file is
created during the make process

Installation

The files required for your application should be manually installed. It is highly recommended to copy the files into
the same folder as the executable resides.

3.1. Installation 56

MapServer Documentation, Release 7.0.7

Known issues

Visual Studio 2005 requires a manifest file to load the CRT native assembly wrapper

If you have compiled MapServer for using the CRT libraries and you are using the MS.NET framework 2.0 as the
execution runtime you should supply a proper manifest file along with your executable, like:

<?xml version="1.0" encoding="utf-8"7?>

<assembly xsi:schemalocation="urn:schemas-microsoft-com:asm.vl
assembly.adaptive.xsd" manifestVersion="1.0"
xmlns:asmvl="urn:schemas-microsoft-com:asm.v1l"
xmlns:asmv2="urn:schemas-microsoft-com:asm.v2"
xmlns:dsig="http://www.w3.0rg/2000/09/xmldsig#"
xmlns="urn:schemas-microsoft-com:asm.v1l"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance">
<assemblyIdentity name="drawmap.exe" version="1.0.0.0" type="win32" />
<dependency>

<dependentAssembly asmv2:dependencyType="install"
asmv2:codebase="Microsoft.VC80.CRT.manifest" asmv2:size="522">
<assemblyIdentity name="Microsoft.VC80.CRT" version="8.0.50608.0"
publicKeyToken="1fc8b3b%lel8e3b" processorArchitecture="x86"
type="win32" />

<hash xmlns="urn:schemas-microsoft-com:asm.v2">

<dsig:Transforms>

<dsig:Transform Algorithm="urn:schemas-microsoft-com:HashTransforms.Identity" />
</dsig:Transforms>

<dsig:DigestMethod Algorithm="http://www.w3.0rg/2000/09/xmldsig#shal" />
<dsig:DigestValue>UMO1lhUBGeKRrrg9DaaPNgyhRjyM=</dsig:DigestValue>
</hash>

</dependentAssembly>

</dependency>

</assembly>

This will inform the CLR that your exe depends on the CRT and the proper assembly wrapper is to be used. If you are
using the IDE the manifest file could be pregenerated by adding a reference to Microsoft. VC80.CRT.manifest within
the /Microsoft Visual Studio 8/VC/redist/x86/Microsoft. VC80.CRT directory.

Manifests for the dll-s must be embedded as a resource

According to the windows makefile the MapScript compilation target (mapscript.dll) is linked with the /MD option. In
this case the VS2005 linker will generate a manifest file containing the unmanaged assembly dependency. The sample
contents of the manifest file are:

<?xml version='1l.0' encoding='UTF-8' standalone='yes'?>

<assembly xmlns='urn:schemas-microsoft-com:asm.v1l' manifestVersion='1.0">
<dependency>

<dependentAssembly>

<assemblyIdentity type='win32' name='Microsoft.VC80.CRT'
version='8.0.50608.0"' processorArchitecture="'x86"
publicKeyToken='1fc8b3b9%alel8e3b' />

</dependentAssembly>

</dependency>

</assembly>

Like previously mentioned if you are creating a windows application the common language runtime will search for a
manifest file for the application. The name of the manifest file should be the same as the executable append and end

3.1. Installation 57

MapServer Documentation, Release 7.0.7

with the .manifest extension. However if the host process is not controlled by you (like web mapping applications using
aspnet_wp.exe as the host process) you will not be certain if the host process (.exe) will have a manifest containing a
reference to the CRT wrapper. In this case you may have to embed the manifest into the dll as a resource using the mt
tool like:

mt /manifest mapscript.dll.manifest /outputresource:mapscript.dll; #2

the common language runtime will search for the embedded resource and load the CRT assembly properly.

Normally it is enough to load the CRT with the root dll (mapscript.dll), but it is not harmful embedding the manifest
into the dependent libraries as well.

Issue with regex and Visual Studio 2005

When compiling with Microsoft Visual Studio 2005 variable name collision may occur between regex.c and crtdefs.h.
For more details see:

https://github.com/mapserver/mapserver/issues/1651

C# MapScript library name mapping with MONO

Using the MapScript interface created by the SWIG interface generator the communication between the C# wrapper
classes (mapscript_csharp.dll) and the C code (mapscript.dll) takes place using platform invoke like:

[DllImport ("mapscript", EntryPoint="CSharp_new_mapObi")]
public static extern IntPtr new_mapObj(string jargl);

The DIllImport declaration contains the library name, however to transform the library name into a file name is platform
dependent. On Windows the library name is simply appended with the .dll extension (mapscript.dll). On the Unix
systems the library file name normally starts with the 1ib prefix and appended with the .so extension (libmapscript.so).

Mapping of the library name may be manually controlled using a dll.config file. This simply maps the library file
the DllImport is looking for to its unix equivalent. The file normally contains the following information (map-
script_csharp.dll.config):

<configuration>
<dllmap dll="mapscript" target="libmapscript.so" />
</configuration>

and with the OSX builds:

<configuration>
<dllmap dll="mapscript" target="libmapscript.dylib" />
</configuration>

The file should be placed along with the corresponding mapscript_csharp.dll file, and created by default during the
make process. For more information see:

https://github.com/mapserver/mapserver/issues/1596 http://www.mono-project.com/Interop_with_Native_Libraries

Localization issues with MONO/Linux

According to https://github.com/mapserver/mapserver/issues/1762 MapServer may not operate equally well on differ-

99 93

ent locale settings. Especially when the decimal separator is other than ”.” inside the locale of the process may cause

3.1. Installation 58

https://github.com/mapserver/mapserver/issues/1651
https://github.com/mapserver/mapserver/issues/1596
http://www.mono-project.com/Interop_with_Native_Libraries
https://github.com/mapserver/mapserver/issues/1762

MapServer Documentation, Release 7.0.7

parse errors when the mapfile contains float numbers. Since the MONO process takes over the locale settings of the
environment it is worth considering to set the default locale to “C” of the host process, like:

LC_ALL=C mono ./drawmap.exe ../../tests/test.map test_csharp.png

Most frequent errors

This chapter will summarize the most frequent problems the user can run into. The issues were collected mainly from
the -users list and the IRC.

Unable to load dIl (MapScript)

You can get this problem on Windows and in most cases it can be dedicated to a missing or an unloadable shared
library. The error message talks about mapscript.dll but surely one or more of the dll-s are missing that libmap.dll
depends on. So firstly you might want to check for the dependencies of your libmap.dll in your application directory.
You can use the Visual Studio Dependency Walker to accomplish this task. You can also use a file monitoring tool
(like SysInternal’s filemon) to detect the dll-s that could not be loaded. I propose to store all of the dll-s required by
your application in the application folder. If you can run the drawmap C# sample application with your mapfile your
compilation might be correct and all of the dlls are available.

You may find that the MapScript C# interface behaves differently for the desktop and the ASP.NET applications.
Although you can run the drawmap sample correctly you may encounter the dll loading problem with the ASPNET
applications. When creating an ASPNET project your application folder will be ‘Inetpubwwwroot[YourApp]bin’
by default. The host process of the application will aspnet_wp.exe or w3wp.exe depending on your system. The
application will run under a different security context than the interactive user (under the context of the ASPNET
user by default). When placing the dll-s outside of your application directory you should consider that the PATH
environment variable may differ between the interactive and the ASPNET user and/or you may not have enough
permission to access a dll outside of your application folder.

Bug reports

If you find a problem dedicated to the MapScript C# interface feel free to file a bug report to the Issue Tracker.

3.1.5 1IS Setup for MapServer

Author Seth Girvin
Contact sgirvin at compass.ie

Last Updated 2017-06-26

* MapServer Setup
» Configuring with IIS
e Setting up Applications

 Setting up Logging

* Troubleshooting

3.1. Installation 59

https://github.com/mapserver/mapserver/issues

MapServer Documentation, Release 7.0.7

This document details how to configure a pre-built version of MapServer to run on IIS (Microsoft’s web server -
Internet Information Services). These steps have a minimum requirement of IIS 7 and Windows 7, and should work
for all release since up to IIS 10 and Windows 10.

MapServer can also be run on Windows using MS4W (MapServer for Windows) - which installs its own preconfigured
Apache web server, and other related tools such as PHP, TinyOWS, and MapCache (which doesn’t currently run under
IIS). Running MapServer under IIS may be necessary when deploying to servers where the installation of an additional
web server is restricted, or where system administrators have more experience maintaining IIS.

Note: The MapServer executables from MS4W can also be used under IIS as well; for more information see the
section in MS4W’s README, or ask the MS4W community for assistance (subscribe).

MapServer Setup

Precompiled versions of MapServer and GDAL (a required dependency) can be downloaded from http:/www.
gisinternals.com/release.php. These downloads are built and maintained by Tamas Szekeres a long term contribu-
tor to MapServer, and Project Steering Committee (PSC) member.

Note: Which version should I download?
 Unless you are using deprecated features in your Mapfiles you should download the latest stable release.

e Nearly all servers will now have a x64 (64-bit) architecture, so unless you are restricted to a win32 (32-bit)
server download a x64 release.

* Unless you have a good reason you should use the latest compiler version. MSVC 2013 means the binaries were
compiled with using Visual C++ 2013. If you rely on Python2 Mapscript you will need to use the MSVC 2008
version so that it matches the version Python2 was compiled with.

* This installation guide uses the “Compiled binaries in a single .zip package” download (release-1800-x64-gdal-
2-1-3-mapserver-7-0-4). There is also a “MapServer installer with IIS registration support” option but at the
time of writing this did not install successfully.

Once you have downloaded the zip file follow the steps below.

1. Unzip the folder to your machine. In this example we will assume it has been unzipped to C: \MapServer.
Make sure that have “unblocked” the zip, to avoid and security related issues later. Right-click on the zip file,
select properties and click the “Unblock” button on the General tab.

3.1. Installation 60

http://www.ms4w.com
http://www.ms4w.com
http://ms4w.com/README_INSTALL.html#o-installing-the-ms4w-mapserver-binaries-in-other-environments
https://lists.ms4w.com/mailman/listinfo/ms4w-users
http://www.gisinternals.com/release.php
http://www.gisinternals.com/release.php

MapServer Documentation, Release 7.0.7

release-1800-x64-gdal-2-1-3-rmapserver-7-0-4.zip Prope... @
General | Securty | Details | Previous Yersions

g releaze-1800-264-gdal-2-1-3-mapzerver-7-0-4. zip

Type of file: Comprezsed [zipped) Folder [zip]

Openz with: = whindows Ewplarer | Change...
Location: C:h
Sizer 29.0 ME [30.464 469 bytez)

Size ondigk: 29.0 MB [30,466,048 bytes]

Created: 26 June 2017, 14:03:24
b odified: 26 June 2017, 140310
Aocezzed: 26 June 2017, 14:03:24

Attributes: R ead-anly Hidden | Advanced. .. |

Security: Thiz file zame fram anather
computer and might be blocked to | Llnblock |
help protect this computer.

0k] | Cancel Apply

2. Test that MapServer is working by double clicking C : \MapServer\SDKShell.bat to start a new Windows
command session configured with MapServer environment settings, and then type:

mapserv -v

The MapServer version and supported format types should be displayed in the command window.

Configuring with IIS

These steps assume IIS 7 or higher is installed on the development machine, and MapServer will use the default
website location at C: \Inetpub\wwwroot. All command line steps should be “Run as Administrator” (to select
this option this right-click on the Windows command line icon). Make sure IIS is on the machine - if you have a folder
named C: \ Inetpub then it is likely IIS is already installed.

1. First copy the required .exes into the same folder as the MapServer DLLs. This can be done using the command
below:

xcopy C:\MapServer\bin\ms\apps* C:\MapServer\bin

2. Create a new folder C: \ Inetpub\wwwroot\mapserver

3.1. Installation 61

MapServer Documentation, Release 7.0.7

md C:\Inetpub\wwwroot\mapserver

3. Create a new, empty C: \Inetpub\wwwroot\mapserver\web.config file:

4. Paste in the following configuration:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
<system.webServer>
<handlers>
<add name="MapServerFastCgi" path="%" verb="«" type="" modules=
—"FastCgiModule" scriptProcessor="C:\Mapserver\bin\mapserv.exe" resourceType=
—"Unspecified" requireAccess="Script" allowPathInfo="false" preCondition="" />
</handlers>
<caching enabled="true" enableKernelCache="true" />
</system.webServer>
</configuration>

5. Next set up the web application in IIS:

"$systemroot¥\system32\inetsrviappcmd" add app /site.name:"Default Web Site" /
—path:/mapserver /physicalPath:"C:\Inetpub\wwwroot\mapserver"

6. Next make sure the required ISAPI and CGI modules are installed in IIS with the following command:

start /w pkgmgr /iu:IIS-CGI;IIS-ISAPIExtensions;IIS-ISAPIFilter;

Note: You can enable IIS modules through the useer interface as follows:
(a) Click “Start button”
(b) In the Search box, enter “Turn windows features on or off”
(c) In the Features window, Click: “Internet Information Services”
(d) Click: “World Wide Web Services”
(e) Click: “Application Development Features”
(f) Check (enable) the features.

(g) IIS may then need to be restarted

3.1. Installation 62

MapServer Documentation, Release 7.0.7

Turn Windows features on or off

To turn a feature on, select its check bowx. To turn a feature off, clear its check bow. A filled box
means that only part of the feature & tumed on.

% 14 FTP Server
& Wl) Web Management Tools
= [l) World Wide Web Services
= W] Ju Application Development Features
71 L MET Extensibility
74 AsP
7L AsPMET
Wk cal
| | 1SAP] Extensions
| L. ISAPIFilters
[# 1, Server-Side Includes
m W | Common HTTP Features
i B | Health and Diagnostics
o @ | Performance Festures
) :‘I ks SEEJ.IIT'.'}'
10 Internet Information Services Hostable Web Core
a4 Medis Festures
w W L Micresoft MET Framework 3.5.1

. Next we set the mapserver.exe to be a FastCGI application and allow it to run in IIS:

"Ssystemroot%\system32\inetsrviappcmd" set config —-section:system.webServer/
—fastCgi /+"[fullPath='C:\Mapserver\bin\mapserv.exe']" /commit:apphost
"Ssystemroot%\system32\inetsrviappcmd" set config /section:isapiCgiRestriction /+
" [path="C:\MapServer\bin\mapserv.exe',description='MapServer',allowed="True']"

Test the setup was successful by entering the following URL in a browser: http://localhost/mapserver/. If the
following text is displayed then MapServer has been successfully configured as a FastCGI application in IIS.

No query information to decode. QUERY_STRING is set, but empty.

Setting up Applications

MapServer applications consist of a Mapfile, and additional optional files for data, symbols, logs, and images. The
same instance of MapServer can be used to serve many applications. In this example we will create a new test
subfolder for a test application in a C: \MapServer\apps folder.

md C:\MapServer\apps\test

Now create a new test .map file in this folder and paste in the test Mapfile below.

MAP

EXTENT -180 -90 180 90
Set the path to where the map projections are stored
CONFIG "PROJ_LIB" "C:\MapServer\bin\proj\SHARE"
NAME "TestMap"
WEB
METADATA

3.1.

Installation 63

http://localhost/mapserver/

MapServer Documentation, Release 7.0.7

"ows_enable_request" "x"
END
END
PROJECTION
"init=epsg:4326"
END
LAYER
NAME "country_bounds"
TYPE RASTER
CONNECTION "http://demo.mapserver.org/cgi-bin/wms?"
CONNECTIONTYPE WMS

METADATA
"wms_srs" "EPSG:4326"
"wms_name" "country_bounds"
"wms_server_version" "1.1.1"
"wms_format" "image/gif"
END
END

END

You should now be able to test the application is accessible through IIS using the following URL to
retrieve an image via WMS: http://localhost/mapserver/mapserv?map=C:/MapServer/apps/test/test. map&
SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&LAYERS=country_bounds&STYLES=&CRS=EPSG:
4326&BB0OX=-180,-90,180,90&WIDTH=400& HEIGHT=300& FORM AT=image/png

Setting up Logging

You can setup MapServer logging by adding the following lines to your MAP block.

DEBUG 5 # a value from 0 (OFF) to 5 (detailed)
CONFIG "MS_ERRORFILE" "logs\ms.log"

The path to the log file is relative to the Mapfile, so in this example you need to create a new
C:\MapServer\apps\test\logs folder:

’md C:\MapServer\apps\test\logs

You will then need to set read-write permissions on the log file to the IIS application pool user (in this example we are
using the default ITS AppPool\DefaultAppPool account that the MapServer FastCGI runs under):

icacls "C:\MapServer\apps\test\logs" /grant "IIS AppPool\DefaultAppPool": (OI) (CI)RW

If a different application pool is used, or you don’t set the permissions you will receive the following message (also
check that the C: \MapServer\apps\test\logs folder exists as it will not be created automatically).

msSetErrorFile () : General error message. Failed to open MS_ERRORFILE C:/MapServer/
—apps/test/logs/ms.log

Troubleshooting

* Check that the file exists if you receive the following error. If it does exist then check the file permissions.

msLoadMap () : Unable to access file. (C:/MapServer/apps/test/test.map)

3.1. Installation 64

http://localhost/mapserver/mapserv?map=C:/MapServer/apps/test/test.map&SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&LAYERS=country_bounds&STYLES=&CRS=EPSG:4326&BBOX=-180,-90,180,90&WIDTH=400&HEIGHT=300&FORMAT=image/png
http://localhost/mapserver/mapserv?map=C:/MapServer/apps/test/test.map&SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&LAYERS=country_bounds&STYLES=&CRS=EPSG:4326&BBOX=-180,-90,180,90&WIDTH=400&HEIGHT=300&FORMAT=image/png
http://localhost/mapserver/mapserv?map=C:/MapServer/apps/test/test.map&SERVICE=WMS&VERSION=1.3.0&REQUEST=GetMap&LAYERS=country_bounds&STYLES=&CRS=EPSG:4326&BBOX=-180,-90,180,90&WIDTH=400&HEIGHT=300&FORMAT=image/png

MapServer Documentation, Release 7.0.7

» MapServer projections are stored in C: \MapServer\bin\proj\SHARE. When the projection is specified
in the following form "init=epsg:3857", MapServer will try to find this code in the epsg file, where
it is listed as <3857> +proj=merc +a=6378137.... If you receive the error below then make sure
the CONFIG "PROJ_LIB" "C:\MapServer\bin\proj\SHARE" setting is pointing to the correct path.
Note on one installation this message was shown as forward slashes rather than backslashes were used.

msProcessProjection(): Projection library error. proj error "No such file or
—directory" for "init=epsg:3857"

* The following error is caused if IIS has been locked-down so settings cannot be overridden at the web . config
level.

HTTP Error 500.19 - Internal Server Error
The requested page cannot be accessed because the related configuration data for
—the page is invalid.

This configuration section cannot be used at this path. This happens when the_,
—section is locked at a parent level.

Locking is either by default (overrideModeDefault="Deny"), or set explicitly by a_
—location tag with

overrideMode="Deny" or the legacy allowOverride="false".

Run the following in a command window (with administrator permissions). This enables the handlers section
in the /mapserver/web.config file to override the ones set at the machine level. See http://stackoverflow.com/
questions/9794985/iis- this-configuration-section-cannot-be-used- at- this- path-configuration-lock

Swindirs\system32\inetsrv\appcmd.exe unlock config —-section:system.webServer/
—handlers

e Check C:\MapServer\bin\mapserv.exe exists if you encounter the error below.

HTTP Error 500.0 - Internal Server Error
The FastCGI executable could not be found

e To view the CGI applications registered with IIS you can use the command below (this reads the
C:\Windows\System32\inetsrv\config):

"$systemroot%\system32\inetsrviappcmd" list config /section:isapiCgiRestriction

This should output XML similar to below for this section:

<system.webServer>
<security>
<isapiCgiRestriction>
<add path="C:\MapServer\bin\mapserv.exe" allowed="true" description=
—"MapServer" />
</isapiCgiRestriction>
</security>
</system.webServer>

3.1.6 Oracle Installation

Author Till Adams
Last Updated 2007/02/16

3.1. Installation 65

http://stackoverflow.com/questions/9794985/iis-this-configuration-section-cannot-be-used-at-this-path-configuration-lock
http://stackoverflow.com/questions/9794985/iis-this-configuration-section-cannot-be-used-at-this-path-configuration-lock

MapServer Documentation, Release 7.0.7

Table of Contents

e Oracle Installation

— Preface

System Assumptions

Compile MapServer

Set Environment Variables

Preface

This document explains the whole configuration needed to get the connect between MapServer CG/ and an Oracle
database server on a linux (Ubuntu) box. The aim of this document is just to put a lot of googled knowledge in ONE
place. Hopefully it will preserve many of people spending analog amount of time than I did!

This manual was written, because I spent several days googling around to get my UMN having access to an oracle
database. I'm NOT an oracle expert, so the aim of this document is just to put a lot of googled knowledge in ONE
place. Hopefully it will preserve many of people spending analog amount of time than I did! (Or: If you have the
choice: Try PostGIS ;-))

Before we start, some basic knowledge, I didn’t know before:

* MapServer can access oracle spatial as well as geodata from any oracle locator installation! Oracle locator
comes with every oracle instance, there is no need for an extra license.

 There is no need for further installation of any packages beside oracle/oracle OCI

System Assumptions
We assume that Oracle is already installed, there is a database and there is some geodata in the database. The following
paths should be known by the reader:

* ORACLE_HOME

¢ ORACLE_SID

« ORACLE_BASE

e LD_LIBRARY_PATH

We also assume that you have installed apache2 (our version was 2.0.49) and you are used to work with Linux/UNIX
systems. We also think you are able to handle the editor vi/vim.

We ensure that the Oracle user who later accesses the database has write-access to the oracle_home directory.

We also assume, that you already have setup the tnsnames.ora file. It should look like that:

MY_ORACLE =
(DESCRIPTION =
(ADDRESS = (PROTOCOL = TCP) (HOST = host) (PORT = 1521))
(CONNECT_DATA =
(SERVICE_NAME = your_name)
)

3.1. Installation 66

MapServer Documentation, Release 7.0.7

It is important that you know the NAME of the datasource, in this example this is “MY_ORACLE” and will be used
further on. Done that, you're fine using User/Password@MY_ORACLE in your mapfile to connect to the oracle
database. But first we have to do some more stuff.

Compile MapServer

Compile as normal compilation and set this flag:

’ffwithforaclespatial=/path/to/oracle/home/</p>

If MapServer configure and make runs well, try

’./mapserv -V

This should at least give this output:

’ INPUT=ORACLESPATIAL

If you got that, you’re fine from the MapServer point of view.

Set Environment Variables

It is important to set all environment variables correctly. There are one the one hand system-wide environment vari-
ables to be set, on the other hand there should be set some for the cgi-directory in your Apache configuration.

System Variables

On Ubuntu (and on many other systems) there is the file “/etc/profile” which sets environment variables for all users
on the system (you may also dedicate user-specific environment variables by editing the users ”.profile” file in their
home directory, but usually the oracle database users are not users of the system with their own home)

Set the following variables:

$ cd /etc

$ echo export ORACLE_HOME=/path/to/oracle/home >> /etc/profile

x*(e.g. ORACLE_HOME=/app/oracle/oralOg)

$ echo export ORACLE_BASE=path/to/oracle >> /etc/profile

xx(e.g. ORACLE_HOME=/app/oracle)

$ echo export ORACLE_SID=MY_ORACLE >> /etc/profile

$ echo export LD_LIBRARY_PATH=path/to/oracle/home/lib >> /etc/profile

xx(e.g. ORACLE_HOME=/app/oracle/orallg/lib)

The command comes silent, so there is no system output if you didn’t mistype anything!

3.1. Installation 67

MapServer Documentation, Release 7.0.7

Setting the Apache Environment

Sometimes it is confusing WHERE to set WHAT in the split apache2.conf-files. In the folder
“/etc/apache2/sites_available” you find your sites-file. If you did not do sth. Special e.g. installing virtual hosts,
the file is named “default”. In this file, the apache cgi-directory is defined. Our file looks like this:

ScriptAlias /cgi-bin/ /var/www/cgi-bin/
<Directory "/var/www/cgi-bin">
AllowOverride None
Options ExecCGI -MultiViews +SymLinksIfOwnerMatch
Order allow,deny
Allow from all
</Directory></p>

In this file, the local apache environment variables must be set. We did it within a location-block like this:

<Location "/cgi-bin/">
SetEnv ORACLE_HOME "/path/to/oracle/home"
</Location></p>

Where /cgi-bin/ in the opening location block refers to the script alias /cgi-bin/ and the TNS_ADMIN directory point
to the location of the tnsnames.ora file.

Then restart apache:

$ /etc/init.d/apache2 force-reload

Create mapfile

Before we start creating our mapfile ensure that you have a your access data (User/Password) and that you know the
Oracle SRID, which could be different from the proj-EPSG!

The data access parameters:
* CONNECTIONTYPE oraclespatial
* CONNECTION ‘user/password@MY_ORACLE'*
* DATA ‘GEOM FROM MY _LAYER USING SRID 82032’
[...]
Where:
* GEOM is the name of the geometry column
¢ MY_LAYER the name of the table
* 82032 is equivalent to the EPSG code 31468 (German projection system)

Testing & Error handling

So you are fine now. Load the mapfile in your application and try it. If everything goes well: Great, if not, possibly this
ugly error-emssage occurs (this one cmae by querying MapServer through the WMS interface as a GetMap-request):

<ServiceExceptionReport version="1.0.1">
<ServiceException>
msDrawMap () : Image handling error. Failed to draw layer named 'testl'.

3.1. Installation 68

mailto:'user/password@MY_ORACLE

MapServer Documentation, Release 7.0.7

msOracleSpatialLayerOpen(): OracleSpatial error. Cannot create OCI Handlers.
Connection failure. Check the connection string. Error:
</ServiceException>
</ServiceExceptionReport>

This points us towards, that there might be a problem with the connection to the database. First of all, let’s check, if
the mapfile is all right. Therefore we use the MapServer utility program shpZ2img.

Let’s assume you are in the directory, where you compiled MapServer and run shp2img:

$ cd /var/src/mapserver_version/

$ shp2img -m /path/to/mapfile/mapfile.map -i png -o /path/to/output/output.png

The output of the command should look like this:

[Fri Feb 2 14:32:17 2007].522395 msDrawMap(): Layer 0 (testl), 0.074s
[Fri Feb 2 14:32:17 2007].522578 msDrawMap () : Drawing Label Cache, 0.000s
[Fri Feb 2 14:32:17 2007].522635 msDrawMap () total time: 0.075s

If not, this possibly points you towards any error in your mapfile or in the way to access the data directly. In this
case, take a look at Oracle Spatial. If there is a problem with your oracle connect, the same message as above
(MsDrawMap() ...) occurs. Check your mapfile syntax and/or the environment settings for Oracle.

For Debian/Ubuntu it’s worth also checking the file “/etc/environment” and test-wise to add the system variables
comparable to System Variables

If the output is OK, you may have a look at the generated image (output.png). Then your problem reduces to the access
of apache to oracle home directory. Carefully check your apache configuration. Please note, that the apache.config file
differs in several linux-distributions. For this paper we talk about Ubuntu, which should be the same as Debian.

3.1.7 V8 MapScript Support

Author Alan Boudreault

Contact aboudreault@mapgears.com

Table of Contents

* V8 MapScript Support

— Introduction

— Obtaining, Compiling, and Installing V8 and V8/MapScript

Introduction
The V8/MapScript cannot be used as its own like other mapscripts. V8 is currently used internally to add 2 function-
alities:

e Javascript Styleitem: rfc102

* Javascript Geomtransform: rfc106

These instructions are for Unix/Linux users.

3.1. Installation 69

mailto:aboudreault@mapgears.com

MapServer Documentation, Release 7.0.7

Version of V8 supported

You have to use v8 3.20, which is the version of the nodejs release:0.11.7. For future compatibility, this is a good thing
to be synchronized to nodejs project.

Obtaining, Compiling, and Installing V8 and V8/MapScript
Download and Compile V8

¢ The V8 source can be obtained from the v8 website.

Download v8:

git clone git://github.com/v8/v8.git v8

Compile the v8 library:

cd v8

git checkout 3.20

make dependencies

library=shared make -j8 x64.release

Note: Use ia32.release if you are using a 32bits machine.

Install the v8 library and include headers:

mkdir -p /opt/v8/1lib && cp ./out/x64.release/lib.target/libv8.so /opt/v8/1lib
mkdir /opt/v8/include && cp include/v8x /opt/v8/include

Note: Modify the library path if needed (32bits)

Setup the v8 lib in the system paths:

echo "/opt/v8/1ib" > /etc/ld.so.conf.d/v8.conf
ldconfig

Compile MapServer with V8 Support

Configure:

cd mapserver

mkdir build

cd build

cmake -DCMAKE_PREFIX_PATH=/opt/v8 -DWITH_V8=yes

Compile and install: (from the build directory)

make install

Verify the V8 support:

3.1. Installation 70

https://code.google.com/p/v8/

MapServer Documentation, Release 7.0.7

/path/to/mapserv -v

You should see: SUPPORTS=VS. You can now refer to the following pages to try the javascript functionalities:
* Javascript Styleitem: STYLEITEM Javascript

e Javascript Geomtransform: Javascript transformation

3.1. Installation 71

CHAPTER 4

Mapfile

4.1 Mapfile

Author Steve Lime

Contact steve.lime at dnr.state.mn.us
Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com
Last Updated 2017-06-16

The Mapfile is the heart of MapServer. It defines the relationships between objects, points MapServer to where data
are located and defines how things are to be drawn.

The Mapfile consists of a MAP object, which has to start with the word MAP.

There are some important concepts that you must understand before you can reliably use mapfiles to configure
MapServer. First is the concept of a LAYER. A layer is the combination of data plus styling. Data, in the form of
attributes plus geometry, are given styling using CLASS and STYLE directives.

See also:

An Introduction to MapServer for “An Introduction to the Mapfile”

4.1.1 Cartographical Symbol Construction with MapServer

Author Peter Freimuth

Contact pf at mapmedia.de

Author Arnulf Christl

Contact arnulf.christl at wheregroup.com

Author HAg&vard Tveite

Contact havard.tveite at nmbu.no

Table of Contents

e Abstract

e Introduction

72

MapServer Documentation, Release 7.0.7

— Multiple Rendering and Overlay
— Symbol Scaling
— MapServer and symbol specification
» Using Cartographical Symbols in MapServer
— Output formats
— Symbol units
— Scaling of Symbols

* Construction of Point Symbols

Symbols of TYPE vector and ellipse

Symbols of TYPE truetype
Symbols of TYPE pixmap

Symbol definitions for the figure that demonstrates point symbols

Combining symbols
* Construction of Line Symbols
— Overlaying lines
— Use of the PATTERN and GAP parameters
+ LINECAP
* LINEJOIN
* LINEJOINMAXSIZE (only relevant for LINEJOIN miter)
— Use of the OFFSET parameter
— Asymmetrical line styling with point symbols
* Area Symbols
Hatch fill

Polygon fills with symbols of TYPE pixmap

Polygon fills with symbols of TYPE vector

+ Excerpts from the map file for the polygon fill vector examples above

Polygon outlines
* Examples (MapServer 4)
— Basic Symbols
— Complex Symbols
* Tricks
— Changing the center of a point symbol
* Mapfile changes related to symbols

— Version 6.2

— Version 6.0

4.1. Mapfile 73

MapServer Documentation, Release 7.0.7

* Current Problems / Open Issues
— GAP - PATTERN incompatibility
* The End

Abstract

This Document refers to the syntax of map and symbol files for MapServer 6. The first version of the document
was based on the results of a project carried out at the University of Hannover, Institute of Landscape and Nature
Conservation. It was initiated by Mr. Dipl. Ing. Roland Hachmann. Parts have been taken from a study carried
through by Karsten Hoffmann, student of Geography and Cartography at the FU Berlin. In the context of a hands-on
training in the company GraS GmbH Mr. Hoffman mainly dealed with the development of symbols. (Download study
report in German) His degree dissertation will also concern this subject.

The document has been heavily revised for MapServer 6.

Introduction

A map is an abstract representation that makes use of point, line and area symbols. Bertin (1974) created a clear and
logical symbol scheme in which symbols can be varied referring to graphical variables. The following graphical vari-
ables can be used within MapServer: FORM, SIZE, PATTERN, COLOR and LIGHTNESS. Point and area symbols
as well as text fonts (ttf) can additionally be displayed with a frame which we call OUTLINE.

The following figure shows the theoretical structure of cartographical symbols, which is also used in MapServer:

Multiple Rendering and Overlay

Say you want to display a highway with a black border line, two yellow lanes and a red center lane. This calls for a
combination of signatures.

Complex cartographical effects can be achieved by rendering the same vector data with different symbols, sizes and
colours on top of each other. This can be done using separate LAYERs. This could, however, have performance effects
for the application, as every rendering process of the same geometry will take up additional processor time. The
preferred solution is to use multiple STYLES to create complex symbols by overlay.

To create the highway symbol mentioned above with a total width of 9 units, the lowest STYLE (in drawing order) will
be a broad black line with a width of 9 units. The second level STYLE will be a yellow line with a width of 7 units,
and the topmost STYLE will be a red line with a width of 1 unit. That way each yellow coloured lane will have a width
of (7-1)/2 = 3 units.

Combining symbols can be a solution for many kinds of cartographical questions. A combination of different geometry
types is also possible. A polygon data set can be rendered as lines to frame the polygons with a line signature. It can
also be rendred as polygons with a symbol filling the polygon. When the polygon fill is rendered on top of the lines,
the inner part of the underlying outline is covered by the fill symbol of the polygon. What is observed here is a clipping
effect tha in will result in an asymmetric symbol for the boundary line. To present the outline without clipping, just
reorder the LAYERs or STYLEs and put the outline presentation on top of the fill.

Yet another way to construct advanced line signatures for framed polygons is to tamper with the original geometries
by buffering or clipping the original geometry such that the new objects lie inside the original polygons or grow over
the borders. PostGIS can help achieve a lot of effects.

The OPACITY parameter of LAYER and STYLE can be used to achieve transparency (making lower symbols “shine”
through upper symbols).

4.1. Mapfile 74

http://www.mapmedia.de/fileadmin/user_upload/dokumente/umn_signaturen_howto/Praktikumsarbeit.zip
http://www.mapmedia.de/fileadmin/user_upload/dokumente/umn_signaturen_howto/Praktikumsarbeit.zip

MapServer Documentation, Release 7.0.7

Structure of Cartographic Symbols

¥

COLOR =
+ POINT Features

?

LIGHTNESS ! Internal Variation \‘ /

Symbol

Geometry LINE Features

2ATTERN

N A : :::_' i
N A‘AA' I ~ AREAFeatures

external Variation

© mm ¢
)
" mQr

Fig. 4.1: Structure of Cartographical Symbols*

Size

4.1. Mapfile 75

MapServer Documentation, Release 7.0.7

Symbol Scaling

There are two basically different ways of handling the display size of symbols and cartographical elements in a map
at different scales. The size of cartographical elements is either set in screen pixels or in real world units.

* If the size is set in real world units (for example meters), the symbol will shrink and grow according to the scale
at which the map is displayed.

« If the size is set in screen pixels, symbols look the same at all scales.

The default behaviour of MapServer is to implement the “screen pixels” size type for displaying cartographical ele-
ments.

“Real world units”, as described above, can be achieved using either the SIZEUNITS or the SYMBOLSCALEDENOM
parameter of the LAYER.

e When SIZEUNITS is set (and is not pixels), symbol sizes are specified in real world units (for instance meters).
For available units, see the SIZEUNIT documentation.

* When SYMBOLSCALEDENOM is set, the given symbols size is used for the map scale 1:SYMBOLSCALEDE-
NOM, for other scales, the symbols are scaled proportionally.

STYLE MAXSIZE and MINSIZE limits the scaling of symbols.

MapServer and symbol specification

In a MapServer application, SYMBOL parameters are organised in the map file as follows:

* Each LAYER has a TYPE parameter that defines the type of geometry (point, line or polygon). The symbols are
rendered at points, along lines or over areas accordingly.

* Basic symbols are defined in SYMBOL elements, using the parameters TYPE, POINTS, IMAGE, FILLED, AN-
CHORPOINT and more (SYMBOL elements can be collected in separate symbol files for reuse).

* Colour, lightness, size and outline are defined inside the STYLE sections of a CLASS section using the parameters
COLOR, SIZE, WIDTH and OUTLINECOLOR.

* Patterns for styling lines and polygons are defined in STYLE sections using GAP and PATTERN.
* Several basic elements can be combined to achieve a complex signature using several STYLEs inside one CLASS.

The following example shows the interaction of some of these elements and explains the configuration in the LAYER
and the SYMBOL sections necessary for rendering a cartographical point symbol (a red square with a 1 pixel wide
black outline and a smaller blue circle inside):

Fig. 4.2: The generated overlay symbol

4.1. Mapfile 76

MapServer Documentation, Release 7.0.7

Table 4.1: Commented LAYER and SYMBOL sections.

LAYER section of the map file

SYMBOL (from a separate symbol file or in-line in
the map file)

Start of layer definition
LAYER
Name of the layer
NAME "mytest"
TYPE POINT # Point geometries
STATUS DEFAULT # Always draw
Use the dataset test.shp
oATA [
Start of a Class definition
CLASS
Start of the first Style
STYLE
Symbol to be used (reference)
SYMBOL "square"
Size of the symbol in pixels
SIZE 16
Colour (RGB)
COLOR 255 0 O
Outline colour (RGB)
OUTLINECOIOR 0O 0 O
END # end of STYLE
Start of the second Style

- red

- black

STYLE
Symbol to be used (reference)
SYMBOL "circle"
Size of the symbol in pixels
SIZE 10

Colour (RGB)
COLOR O 0 255
END # end of STYLE
END # end of CLASS
END # end of LAYER

- blue

Start of symbol definition
SYMBOL
Symbol name (referenced in STYLESsS)
NAME "square"
TYPE vector # Type of symbol
Start of the symbol geometry
POINTS
00

1
1
0

o~ BB O

0
END # end of POINTS
The symbol should be filled
FILLED true
Place the according to its center
ANCHORPOINT 0.5 0.5

END # end of SYMBOL

Start of symbol definition

SYMBOL
Symbol name (referenced in STYLES)
NAME "circle"

TYPE ellipse # Type of symbol
Start of the symbol geometry
POINTS
11
END # end of POINTS
The symbol should be filled
FILLED true
Place the according to its center
ANCHORPOINT 0.5 0.5
END # end of SYMBOL

Using Cartographical Symbols in MapServer

Vectors, truetype fonts and raster images are basic graphical elements that are defined by the TYPE parameter in the
STYLE element. This and the following sections explain how these elements can be combined to create complex
cartographical symbols, and they describes some other important aspects of map rendering in MapServer .

Output formats

MapServer support raster output formats (e.g. PNG, JPEG and GIF) and vector output formats (e.g. PDF, SVG). The
raster formats (except for GIF) use anti-aliasing. See OUTPUTFORMAT (and MAP IMAGETYPE) for more.

4.1. Mapfile

77

MapServer Documentation, Release 7.0.7

Symbol units

The units used for specifying dimensions is defined in the SIZEUNITS parameter of the LAYER. The available units
are listed there. The default unit is pixels.

The MAP element’s RESOLUTION and DEFRESOLUTION parameters will determine the resolution of the resulting
map and hence the size in pixels of the symbols on the map. DEFRESOLUTION is by default 72 dpi (dots per inch). If
RESOLUTION is set to 144 (and DEFRESOLUTION is 72), all dimensions specified in the map file will be multiplied
by 144/72 = 2. This can be used to produce higher resolution images.

Dimensions can be specified using decimals.

Scaling of Symbols

The SYMBOLSCALEDENOM parameter in the LAYER section specifies the scale at which the symbol or text label is
displayed in exactly the dimensions defined in the STYLEs (for instance using SIZE and WIDTH). Observe that all the
parameters concerned with the symbol dimensions (SIZE, WIDTH, ...) are tightly connected to the SYMBOLSCALE-
DENOM parameter. The MAXSIZE and MINSIZE parameters inside the STYLE element limit the scaling of symbols
to the maximum and minimum size specified here (but does not affect the size calculations).

When symbols are scaled as the scale changes, the elements (defined in STYLEs) of a composite cartographical symbol
may change their positions relative to each other. This is due to rounding effects when creating the image. The effect
is most noticeable at small scales (large scale denominators), when the symbols get small. Due to the same effects,
symbols can also slightly change their shape when they get small.

It is not possible to define the display intervals with MINSCALEDENOM and MAXSCALEDENOM in the STYLE-
section, so this kind of tuning has to be solved at the LAYER level. To do this, create several LAYERs with the same
geometries for different scale levels.

Always observe that cartographical symbols depend a lot on the scale! So be careful with the interaction of content,
symbols and scale. All three parameters heavily interact and have to be coordinated to produce a good map.

Construction of Point Symbols

In the figure below, point symbols of TYPE truetype, pixmap, ellipse and vector are demonstrated. The precise position
of the point for which the symbol is rendered is shown with a small red dot. A small blue dot is used to show an offset
position.

All point symbols can be rotated using the ANGLE parameter.

Since version 6.2, the anchor point / reference point of all point symbols can be set using the SYMBOL ANCHOR-
POINT parameter. The default anchorpoint is at the center of the boundingbox of the symbol (ANCHORPOINT 0.5
0.5).

Symbols of TYPE vector and ellipse

For symbols of TYPE vector and ellipse the shape of the symbol by setting X and Y values in a local two dimensional
coordinate system with X values increasing to the right and Y values increasing downwards. The coordinates defining
the symbol is listed in the POINTS parameter, which is explicitly ended using END. Negative values should not be
used.

» TYPE ellipse is used to create ellipses (and circles). The shape of the ellipse is defined in the POINTS parameter
(X - size in the horizontal direction, Y - size in the vertical direction). To create a circle, let X and Y have the
same value.

4.1. Mapfile 78

MapServer Documentation, Release 7.0.7

gize 30
offset 0 15
size 30

=angle 6O
offset 0 15
size 30
outlinecolar
gize 30

= gutlinecolar
width 4
size 30

»gutlinecolor
no color
size 30
width 10

Mo Size
sgize 30
-

pixmap » . .

o
28
=y
m.m
truetypes P Q P Q P P .

vector - polygons v v A v A v V
vector - lines W \/ A \/ A \/ v

ellipse» o

A4

Fig. 4.3: Basic point symbol TYPEs, showing effects of size, offset, angle and outlinecolor

» TYPE vector is used to define advanced vector symbols. The shape of the symbol is defined in the POINTS
parameter. A vector symbol can consist of several elements. The coordinates -99 -99 are used to separate the
elements.

To create a polygon vector symbol, the SYMBOL FILLED parameter must be set to frue. If the end point is not
equal to the start point of a polygon geometry, it will be closed automatically.

The maximum number of points is 100, but this can be increased by changing the parameter
MS_MAXVECTORPOINTS in the file mapsymbols.h before compilation.

When creating symbols of TYPE vector you should observe some style guidelines.
— Avoid downtilted lines in area symbols, as they will lead to heavy aliasing effects.
— Do not go below a useful minimum size. This is relevant for all types of symbols.

— Keep in mind that for pixel images, every symbol of TYPE vector has to be rendered using pixels.

Note: The bounding box of a vector symbol has (0,0) in the symbol coordinate system as its upper left corner.
This can be used to precisely control symbol placement. Since version 6.2 SYMBOL ANCHORPOINT should
be used instead.

Symbols of TYPE truetype

You can use symbols from truetype fonts. The symbol settings are defined in the SYMBOL element. Specify the
character or the ASCII number of the character to be used in the CHARACTER parameter. The FONT parameter is

4.1. Mapfile 79

MapServer Documentation, Release 7.0.7

used to specify the font to be used (the alias name from the font file - often “fonts.list”). The FONTSET parameter of
the MAP element must be set for fonts to work.

For gif output (GD renderer), you can define that you want to apply antialiasing to the characters by using the parameter
ANTIALIAS. 1t is recommended to do this especially with more complex symbols and whenever they don’t fit well into
the raster matrix or show a visible pixel structure.

Colours for truetype symbols can be specified in LAYER CLASS STYLE (as with symbols of the TYPE vector and
ellipse). You can specify both fill colour and outline colour.

To find out the character number of a symbol use one of the following options:
¢ Use the software FontMap (Shareware, with free trial version for download, thanks Till!).
e Use the MS Windows truetype map.
e Trial and Error. :-)

Please note that the numbering of the so-called “symbol fonts” starts at 61440! So if you want to use character T,
you have to use 61440 + 84 = . (ain’t that a pain!!)

You can also place truetype characters and strings on the map using LABEL. Then you can control the placing of the
text by using the POSITION parameter [ullucluriclicclerlllllcllr], that specifies the position relative to the geometric
origin of the geometry.

Symbols of TYPE pixmap

Symbols of the TYPE pixmap are simply small raster images. The file name of the raster image is specified in the
IMAGE parameter of the SYMBOL element. MapServer supports the raster formats GIF and PNG for pixmaps.

Observe the colour depth of the images and avoid using 24 bit PNG symbols displayed in 8 bit mode as this may cause
unexpected colour leaps.

When using raster images, the colour cannot be modified in the SYMBOL element subsequently.

You can specify a colour with the TRANSPARENT parameter which will not be displayed - i.e. it will be transparent.
As a result, underlying objects and colours are visible.

The SIZE parameter defines the height of pixmap symbols when rendered. The pixel structure will show when the
SIZE grows too large. If you are using symbol scaling (LAYER SYMBOLSCALEDENOM is set or LAYER SIZEUNITS
is not pixels) and want to prevent this from happening, you should set the STYLE MAXSIZE parameter.

Symbol definitions for the figure that demonstrates point symbols

This code was used to produce the symbols in the point symbol figure.

First, the symbol definitions:

SYMBOL

NAME "o-flag-trans"

TYPE pixmap

IMAGE "o-flag-trans.png"
END # SYMBOL

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS

4.1. Mapfile 80

MapServer Documentation, Release 7.0.7

10 10
END # POINTS
END # SYMBOL

SYMBOL
NAME "p"
TYPE truetype
FONT "arial"
CHARACTER "P"
END # SYMBOL

SYMBOL
NAME "v-1line"
TYPE vector
FILLED false
POINTS
0 0
5 10
10 O
END # POINTS
END # SYMBOL

SYMBOL
NAME "v-poly"
TYPE vector
FILLED true
POINTS
0 0

O W U J W
H O 00 01 N O !
ISy

END POINTS
END # SYMBOL

Then, the LAYERs and STYLEs used for producing the polygon V symbols in the point symbol figure:

LAYER # Vector v — polygon

STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
10 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COLOR 0O 0 O
END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 0
SIZE 4
END # STYLE
END # CLASS

4.1. Mapfile

81

MapServer Documentation, Release 7.0.7

END # LAYER

LAYER # Vector v - polygon,
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
20 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COLOR 0 0 0

SIZE 30
END # STYLE
STYLE

SYMBOL "circlef"
COLOR 255 0 0
SIZE 4
END # STYLE
END # CLASS
END # LAYER

LAYER # Vector v - polygon,
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
30 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COILOR O 0 O
SIZE 30
ANGLE 60
END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 O
SIZE 4
END # STYLE
END # CLASS
END # LAYER

LAYER # Vector v - polygon,
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
40 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"

size

size,

size,

angle

offset

4.1. Mapfile

82

MapServer Documentation, Release 7.0.7

COLOR 0 0 0
SIZE 30
OFFSET 0 15
END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 0
SIZE 4
END # STYLE
END # CLASS
END # LAYER

LAYER # Vector v — polygon,
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
50 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COILOR O 0 O
SIZE 30
ANGLE 60
OFFSET 0 15
END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 O
SIZE 4
END # STYLE
END # CLASS
END # LAYER

LAYER # Vector v - polygon,
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
60 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COILOR 0 0 O
SIZE 30
OUTLINECOLOR 0 255 0
END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 0
SIZE 4
END # STYLE
END # CLASS
END # LAYER

size, angle,

size outline

offset

4.1. Mapfile

83

MapServer Documentation, Release 7.0.7

LAYER # Vector v - polygon, size, outline, width
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
70 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COLOR O 0 O
SIZE 30
OUTLINECOLOR 0 255 0
WIDTH 4
END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 O
SIZE 4
END # STYLE
END # CLASS
END # LAYER

LAYER # Vector v - polygon, size, outline, no color
STATUS DEFAULT
TYPE POINT
FEATURE
POINTS
80 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "v-poly"
SIZE 30
OUTLINECOLOR 0 255 0
END # STYLE
STYLE
SYMBOL "circlef"
COLOR 255 0 O
SIZE 4
END # STYLE
END # CLASS
END # LAYER

Combining symbols

The following figure shows how to combine several basic symbols to create a complex point symbol. The combination
is achieved by adding several STYLEs within one LAYER. Each STYLE element references one SYMBOL element. All
the basic symbols are centered and overlaid when rendered.

Notice that the SIZE parameter in the STYLE element refers to the height of the symbol (extent in the Y direction).
A standing rectangle will thus display with a smaller area than a lying rectangle, although both have the same SIZE
parameter and the same maximum Y value in the SYMBOL element. When combining several basic point symbols on

4.1. Mapfile 84

MapServer Documentation, Release 7.0.7

top of each other, they will not always be centered correctly due to the integer mathematics required when rendering
raster images. It is recommended not to combine elements with even and odd numbered SIZE parameters, as this tends
to produce larger irregularities.

LAYER-Section in the Map-File: Symboldefinitions in the Symbolfile:
LAYER
NAME Signatur1 Point L SJmEEqua g
TYPEPOINT — Point Layer
STATUS ON ve TYPE VECTOR
DATA ... PgnuNTS

cuass Pl B]
10
STYLE 00

SYMBOL “quadrat"

SIZE 40 END
COLOR D 0 258 FILLED TRUE
OUTLINECOLOR D00 END
END
SYMBOL
STYLE NAME "punkt”
SYMBOL "punkt” # TYPE ELLIPSE —= which symbol type is used
SIZE 30 POINTS
COLOR 204 204 255 11 ~— Length of X and Y radius of the Ellipse
END END
FILLEDTRUE ——* @
STYLE END
SYMBOL "kreuz2"
SIZE 16 \‘ “NAME"
COLCRDOO NAME "kreuz2"
END TYPE VECTOR
POINTS
END 00 —_—
END 11
-89-99 _
01 — Negative values can be used
l 10 to separate singles vectorlines
END {also called pen-up command}

END

Visual appearance of the final result

Fig. 4.4: Construction of Point Symbols

Construction of Line Symbols

For displaying line geometries, you specify the width of the lines using the WIDTH parameter and the colour using the
COLOR parameter. If no colour is specified, the line will not be rendered. If no width is specified, a thin line (one unit
(pixel) wide) will be rendered. The LINECAP, LINEJOIN and LINEJOINMAXSIZE parameters are used to specify
how line ends and corners are to be rendered.

Overlaying lines

When combining several styles / symbols on a line, they will be positioned on the baseline which is defined by the
geometry of the object. In most cases MapServer correctly centers symbols. The combination of a line displayed in 16
units width and overlaid with a 10 unit width line, results in a line symbol with a 3 unit border. If the cartographical
symbol is to contain a centered line with a width of 1 pixel, then the widths should be reconfigured, for example to 11
and 17 units. As a rule of thumb don’t combine even numbered and odd numbered widths.

4.1. Mapfile 85

MapServer Documentation, Release 7.0.7

Use of the PATTERN and GAP parameters

The PATTERN and GAP parameters can be used to produce styled lines in MapServer.

To create line patterns, use the PATTERN parameter of the STYLE. Here you define dashes by specifying the length of
the first dash, followed by the length of the first gap, then the length of the second dash, followed by the second gap,
and so on. This pattern will be repeated as many times as that pattern will fit into the line. LINECAP can be used to
control how the ends of the dashes are rendered. LINEJOIN can be used to control how sharp bends are rendered. In
the left column of the figure, you will find three examples where PATTERN has been used. Number 2 from below uses
LINECAP butt, number 3 from below uses LINECAP round (and LINEJOIN miter) and number 4 from below uses
LINECAP butt (and is overlaid over a wider, dark grey line). To produce dots, use O for dash length with LINECAP
‘round’.

Styled lines can be specified using GAP and a symbol for styling. In the figure, you will find examples where GAP has
been used (in the right column). At the bottom a SYMBOL of TYPE ellipse has been used, then a SYMBOL of TYPE
vector, then a SYMBOL of TYPE font and then a SYMBOL of TYPE pixmap. To control the placement of the symbols
relative to the line (to get asymmetrical styling), use SYMBOL ANCHORPOINT (as explained later).

Note: Since version 6.2 it is possible to specify an offset (start gap) when creating asymmetrical patterns using the
STYLE INITIALGAP parameter. INITIALGAP can be used with GAP and with PATTERN.

The following figure shows how to use styles to define different kinds of line symbols.
* PATTERN usage is demonstrated in the 2nd, 3rd, 4th and 5th symbol from the bottom in the left column.

* GAP usage is demonstrated in the 2nd symbol from the bottom in the left column and all the symbols in the
right column.

* negative GAP value usage is demonstrated in the all the symbols in the right column, except for the one at the
bottom.

* INITIALGAP usage is demonstrated in the 2nd and 5th symbol from the bottom in the left column.
* STYLE OFFSET usage is demonstrated in the 5th symbol from the bottom in the right column

Below you will find the SYMBOLSs and STYLEs that were used to produce the line symbols in “Construction of Line
Symbols”. The LAYERs are ordered from bottom to top of the figure.

Styles and symbols for lines

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS
11
END # POINTS
END # SYMBOL

SYMBOL
NAME "p"
TYPE truetype
FONT "arial"
CHARACTER "P"
END # SYMBOL

SYMBOL
NAME "vertline"
TYPE vector

4.1. Mapfile 86

MapServer Documentation, Release 7.0.7

- - ‘-lr'
S _@\!"‘é’n %{:&M}p

T

Fig. 4.5: Construction of Line Symbols

4.1. Mapfile 87

MapServer Documentation, Release 7.0.7

FILLED true
POINTS
00
10
.8 10
.8 0
0
END # POINTS
ANCHORPOINT 0.5 O
END # SYMBOL

o NN O

SYMBOL

NAME "o-flag-trans"

TYPE pixmap

IMAGE "o-flag-trans.png"
END # SYMBOL

######## Left column ##########A###H

LAYER # Simple line
STATUS DEFAULT
TYPE LINE
FEATURE

POINTS
55
25 10
45 10
35 5
END # Points
END # Feature
CLASS
STYLE
COLOR O 0 O
WIDTH 6.5
END # STYLE
END # CLASS
END # LAYER

LAYER # Dashed line with symbol overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
5 15
25 20
45 20
35 15
END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 O
WIDTH 5.0
PATTERN 40 10 END
END # STYLE
STYLE
SYMBOL "circlef"
COILOR 0 0 O

4.1. Mapfile

88

MapServer Documentation, Release 7.0.7

SIZE 8
INITIALGAP 20
GAP 50
END
END # CLASS
END # LAYER

LAYER # Dashed line, varying
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
5 25
25 30
45 30
35 25
END # Points
END # Feature
CLASS
STYLE
COLOR O 0 O
WIDTH 5.0
LINECAP round #[butt|round|/square/triangle]
LINEJOIN miter #/[round/miter|bevel]
LINEJOINMAXSIZE 3
PATTERN 40 17 0 17 0 17 0 17 END
END # STYLE
END # CLASS
END # LAYER

LAYER # Line dash overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
5 35
25 40
45 40
35 35
END # Points
END # Feature
CLASS
STYLE
COLOR 102 102 102
WIDTH 4.0
END # STYLE
STYLE
COLOR 255 255 255
WIDTH 2.0
LINECAP BUTT
PATTERN 8 12 END
END # STYLE
END # CLASS
END # LAYER

LAYER # Line dashed with dashed overlay
STATUS DEFAULT
TYPE LINE

4.1. Mapfile 89

MapServer Documentation, Release 7.0.7

FEATURE
POINTS
5 45
25 50
45 50
35 45
END # Points
END # Feature
CLASS
STYLE
COLOR 0O 0 O
WIDTH 16.0
PATTERN 40 20 20 20 10 20 END
END # STYLE
STYLE
COLOR 209 66 O
WIDTH 12.0
INITIALGAP 2
PATTERN 36 24 16 24 6 24 END
END # STYLE
END # CLASS
END # LAYER

LAYER # Line overlay - 3
STATUS DEFAULT
TYPE LINE
FEATURE

POINTS
5 55
25 60
45 60
35 55
END # Points
END # Feature
CLASS
STYLE
COILOR O 0 O
WIDTH 17.0
END # STYLE
STYLE
COLOR 209 66 0
WIDTH 11.0
END # STYLE
STYLE
COILOR O 0 O
WIDTH 1.0
END # STYLE
END # CLASS
END # LAYER

######## right column #######H#####

LAYER # Line - ellipse overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
50 5

4.1. Mapfile 90

MapServer Documentation, Release 7.0.7

70 10
90 10
80 5
END # Points
END # Feature
CLASS
STYLE
COILOR 0 0 0
WIDTH 3.6
END # STYLE
STYLE
COLOR O 0 O
SYMBOL "circlef"
SIZE 10
GAP 42
END # STYLE
STYLE
COLOR 255 0 0
SYMBOL "circlef"
SIZE 3
GAP 42
END # STYLE
END # CLASS
END # LAYER

LAYER # Line - symbol overlay
STATUS DEFAULT
TYPE LINE
FEATURE

POINTS
50 15
70 20
90 20
80 15
END # Points
END # Feature
CLASS
STYLE
COILOR 0O 0 O
WIDTH 2.8
END # STYLE
STYLE
COLOR 0 0 0
SYMBOL "vertline"
SIZE 10.0
ANGLE 30
GAP -50
END # STYLE
STYLE
COLOR 255 0 0
SYMBOL "circlef"
SIZE 3
GAP 50
END # STYLE
END # CLASS
END # LAYER

LAYER # Line - font overlay

4.1. Mapfile 91

MapServer Documentation, Release 7.0.7

STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
50 25
70 30
90 30
80 25
END # Points
END # Feature
CLASS
STYLE
COLOR O 0 O
WIDTH ©
END # STYLE
STYLE
COLOR 102 0 O
SYMBOL "p"
SIZE 20
GAP -30
END # STYLE
STYLE
COLOR 255 0 O
SYMBOL "circlef"
SIZE 3
GAP 30
END # STYLE
END # CLASS
END # LAYER

LAYER # Line — pixmap overlay
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
50 35
70 40
90 40
80 35
END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 O
WIDTH 6
END # STYLE
STYLE
COLOR 102 0 O
SYMBOL "o-flag—-trans"

SIZE 20
GAP -30
END # STYLE

STYLE

COLOR 255 0 O
SYMBOL "circlef"
SIZE 3
GAP 30

END # STYLE

4.1. Mapfile 92

MapServer Documentation, Release 7.0.7

END # CLASS
END # LAYER

LAYER # Line — pixmap overlay
STATUS DEFAULT
TYPE LINE
FEATURE

POINTS
50 45
70 50
90 50
80 45
END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 0
WIDTH 6
END # STYLE
STYLE
COLOR 102 0 O
SYMBOL "o-flag-trans"
SIZE 20
GAP -30
OFFSET -10 -99
END # STYLE
STYLE
COLOR 255 0 0
SYMBOL "circlef"
SIZE 3
GAP 30
END # STYLE
END # CLASS
END # LAYER

LINECAP

By default, all lines (and patterns) will be drawn with rounded ends (extending the lines slightly beyond their ends).
This effect gets more obvious the larger the width of the line is. It is possible to alter this behaviour using the LINECAP
parameter of the STYLE. LINECAP butt will give butt ends (stops the line exactly at the end), with no extension of the
line. LINECAP square will give square ends, with an extension of the line. LINECAP round is the default.

LINEJOIN

The different values for the parameter LINEJOIN have the following visual effects. Default is round. miter will follow
line borders until they intersect and fill the resulting area. none will render each segment using linecap butt. The figure
below illustrates the different linejoins.

LINEJOINMAXSIZE (only relevant for LINEJOIN miter)

Specify the maximum length of miter linejoin factor m (see the figure below). The value is a multiplication factor
(default 3).

4.1. Mapfile 93

MapServer Documentation, Release 7.0.7

Fig. 4.6: Different kinds of linejoins

Fig. 4.7: Miter linejoin

4.1. Mapfile 94

MapServer Documentation, Release 7.0.7

The max length of the miter join is calculated as follows (d is the line width, specified with the WIDTH parameter of
the STYLE):

m_max = d x* LINEJOINMAXSIZE

If m > m_max, then the connection length will be set to m_max.

Use of the OFFSET parameter

In STYLE, an OFFSET parameter can be set to shift symbols in the X and Y direction. The displacement is not
influenced by the direction of the line geometry. Therefore the point symbols used for styling are all shifted in the
same direction, independent of the direction of the line (as defined in style number 2 in the map file example below -
red line in the map image). A positive X value shifts to the right. A positive Y value shifts downwards.

To generate lines that are shifted relative to the original lines, -99 has to be used for the Y value of the OFFSET. Then
the X value defines the distance to the line from the original geometry (perpendicular to the line). A positive X value
will shift to the right (when viewed in the direction of the line), a negative X value will shift to the left.

The example below shows how OFFSET works with the use of -99 (blue and green lines) and with-
out the use of -99 (red line). The thin black line shows the location of the line geometry.

Fig. 4.8: Use of the OFFSET parameter with lines - map image

4.1. Mapfile 95

MapServer Documentation, Release 7.0.7

Asymmetrical line styling with point symbols

Use of the OFFSET parameter
with lines - Map file excerpt

LAYER #
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
20 20
280 160
280 20
160 20
160 60
END # Points
END # Feature

CLASS
STYLE # no offset
COLOR 0O 0 O # bla
WIDTH 1

END # STYLE

STYLE # simple offset
COLOR 255 0 0 # red
WIDTH 2
OFFSET -8 12

END # STYLE

STYLE # left offset
COLOR 0 0 255 # blu
WIDTH 5
OFFSET -16 -99

END # STYLE

STYLE # right offset
COLOR 0 255 0 # gre
WIDTH 5
OFFSET 16 -99

END # STYLE

END # CLASS
END # LAYER

ck

Line number 2 and 5 from the bottom in
the right column of the “Construction of
Line Symbols” figure are examples of
asymmetrical line styling using a point
symbol. This can be achieved either
by using an OFFSET (with a Y value
of -99), or by using ANCHORPOINT,
as described in the tricks section below.
Line number 2 from the bottom can be
produced using ANCHORPOINT - this
is the best method for placing symbols
on lines. Line number 5 from the bot-

4.1. Mapfile

96

left and d
rel. to l1ine
S
rel. to 11ii
en

MapServer Documentation, Release 7.0.7

tom is produced using STYLE OFFSET.
As can be seen, the symbols are here
rendered on the offset line, meaning that
at sharp bends, some symbols will be
placed far away from the line.

Area Symbols
Areas (polygons) can be filled with full colour. Areas can also be filled with symbols to create for instance hatches
and graticules.

The symbols are by default used as tiles, and rendered (without spacing) one after the other in the x and y direction,
filling the whole polygon.

If the SIZE parameter is used in the STYLE, the symbols will be scaled to the specified height.
The GAP parameter of the STYLE can be used to increase the spacing of the symbols.

The AGG renderer uses anti-aliasing by default, so edge effects around the symbols can occur.

Hatch fill

Simple line hatches (e.g. horizontal, vertical and diagonal) can be created by filling the polygon with a hatch symbol.

!'

/: aza:rzzr;f
j W22
/fffffffff;/

7777777

yyyyyyyyyi 2

IV Y

Y ARl
A

\\\\\\\

\n
N

\'\\

ALY RSN NN

Y
/
/

Fig. 4.9: Hatch examples

The SIZE parameter in the STYLE that uses a SYMBOL of type hatch specifies the distance from center to center
between the lines (the default is 1). The WIDTH parameter specifies the width of the lines in the hatch pattern (default
is 1). The ANGLE parameter specifies the direction of the lines (default is O - horizontal lines). Since version 6.2, the
PATTERN parameter can be used to create hatches with dashed lines.

4.1. Mapfile 97

MapServer Documentation, Release 7.0.7

The figure demonstrates the use of SIZE (bottom left); WIDTH (bottom right); ANGLE, PATTERN and SIZE (top left);
and overlay (top right) of hatches.

The code below shows excerpts of the map file that was used to produce the figure.

First, the SYMBOL definition:

SYMBOL
NAME "hatchsymbol"
TYPE hatch

END

Then the CLASS definitions:

4.1. Mapfile 98

MapServer Documentation, Release 7.0.7

Table 4.2: Hatches

CLASS definitions

LAYER # hatch
CLASS
STYLE
SYMBOL "hatchsymbol"
COLOR 0 0 O
SIZE 10
END # STYLE

END # CLASS
END # LAYER

LAYER # hatch with angle and pattern
CLASS
STYLE
SYMBOL "hatchsymbol"
COLOR 0 0 O
SIZE 10
WIDTH 3
ANGLE 45
PATTERN 20 10 10 10 END
END # STYLE
END # CLASS
END # LAYER

LAYER # hatch with wide lines
CLASS

STYLE
SYMBOL "hatchsymbol"
COIOR 0 0 O
SIZE 10
WIDTH 5

END # STYLE

END # CLASS
END # LAYER

LAYER # cross hatch
CLASS
STYLE
SYMBOL "hatchsymbol"
COLOR 255 153 0
SIZE 10
WIDTH 4
END # STYLE
STYLE
SYMBOL "hatchsymbol"
COLOR 0 0 255

SIZE 20
ANGLE 90

NP4 Ty T 7o
IND—7 o1 L1715

4.1\ Mapfile. 1 s s
END # LAYER

99

MapServer Documentation, Release 7.0.7

Polygon fills with symbols of TYPE pixmap

Polygons can be filled with pixmaps.

Note: If the STYLE SIZE parameter is different from the image height of the pixmap, there can be rendering artifacts
around the pixmaps (visible as a grid with the “background” colour).

Pixmap symbols can be rotated using the ANGLE parameter, but for polygon fills, this produces strange effects, and is
not recommended.

To create complex area symbols, e.g. with defined distances between single characters or hatches with broad lines,
pixmap fill is probably the best option. Depending on the desired pattern you have to generate the raster image with
high precision using a graphical editor. The figure below is an example of how to obtain a regular allocation of symbols
with defined spacing.

i B=2x
y/2
y H=2y
g€
X2 X X2

Fig. 4.10: Raster image for a regular symbol fill

You can use other shapes than circles. B defines the width and H the height of the raster image. For a regular
arrangement of symbols in a 45 degree angle B = H. For symbols, which are regularly arranged in parallel and without
offset between each other one centered symbol with the same x and y distances to the imageborder is enough.

The following figure shows an example of how you can design a pixmap to produce a hatch with wide lines.

To create a 45 degree hatch use:

B =Hand x = vy

Note: When using the MapServer legend, observe that each raster pixmap is displayed only once in the original size
in the middle of the legend box.

The example below shows some pixmap symbols which can be used as area symbols with transparency. The raster
images were created using FreeHand, finished with Photoshop and exported to PNG with special attention to the colour

4.1. Mapfile 100

MapServer Documentation, Release 7.0.7

Fig. 4.11: Raster image for a hatched fill

palette.
Table 4.3: Construction of a horizontally arranged area symbol
CLASS section SYMBOL definition
CLASS SYMBOL
STYLE NAME "in the_ star"
COLOR 255 255 0 TYPE PIXMAP
END IMAGE "stern.png"
STYLE TRANSPARENT 8
SYMBOL "in_the_ star" END
END *
STYLE
OUTLINECOLOR 0O O O
WIDTH 1
END
END

Fig. 4.12: Polygon fill - regular grid pattern

4.1. Mapfile

101

MapServer Documentation, Release 7.0.7

Table 4.4: Construction of a diagonally arranged area symbol

CLASS section SYMBOL definition
CLASS SYMBOL
STYLE NAME "in_pointl"
SYMBOL "in_pointl" TYPE PIXMAP
END IMAGE "flaechel_1.png"
STYLE TRANSPARENT 13
OUTLINECOILOR 0 0 O END
WIDTH 1 L
END .
END
. . .
L L
. . .
L L
F F
Fig. 4.13: Polygon fill - diagonal pattern
Table 4.5: Construction of a hatch
CLASS section SYMBOL definition
CLASS SYMBOL
STYLE NAME "in_hatch"
COLOR 255 255 0 TYPE PIXMAP
END IMAGE "schraffur.png"
STYLE TRANSPARENT 2
SYMBOL "in_hatch" END
END
STYLE F
OUTLINECOLOR 0 0 O
WIDTH 1
END
END

/.

Fig. 4.14: Polygon fill - hatch

4.1. Mapfile

102

MapServer Documentation, Release 7.0.7

Polygon fills with symbols of TYPE vector

Polygons can be filled with symbols of TYPE vector. As for the other symbol fills, the pattern will be generated by
using the specified symbol for the tiles. The bounding box of the symbol is used when tiling.

Creating vector symbols for polygon fills is done in much the same way as for pixmap symbols. Precision is necessary
to get nice symmetrical symbols.

The upper left corner of the bounding box of a symbol of TYPE vector is always (0, 0) in the symbol’s coordinate
system. The lower right corner of the bounding box is determined by the maximum x and y values of the symbol
definition (POINTS parameter). The fact that the upper left corner always is at (0,0) makes it convenient to construct
symbols such as the dash signature found as number two from the bottom in the centre column of the example below.

Both polygon (FILLED true) and line (FILLED false) vector symbols can be used. For line symbols, the WIDTH
parameter of the STYLE will give the line width and the SIZE parameter will specify the height of the symbol.

Note: For vector line symbols (FILL off), if a width greater than 1 is specified, the lines will grow to extend outside
the original bounding box of the symbol. The parts that are outside of the bounding box will be cut away.

STYLE ANGLE can be used for polygon fills, but will only rotate each individual symbol, not the pattern as a whole.
It is therefore quite demanding to generate rotated patterns.

Below you will find some examples of vector symbols used for polygon fills. The polygon fill is accompanied by the
vector symbol used for the fill. The center of the vector symbol is indicated with a red dot.

0000000
v | 0000000

0000000
0000000

0. 0.0.0.0.0
Y P”:‘:‘:’:O:O‘

e $.9.0.0.6

KKK

Fig. 4.15: Polygon fills - vector

4.1. Mapfile 103

MapServer Documentation, Release 7.0.7

Excerpts from the map file for the polygon fill vector examples above

First, the LAYERSs

LAYER # chess board
STATUS DEFAULT
TYPE POLYGON
FEATURE

POINTS
55
5 25
45 25
45 5
55
END # Points
END # Feature
CLASS
STYLE
SYMBOL "chess"
COLOR 0 0 O
SIZE 35
END # STYLE
END # CLASS
END # LAYER

LAYER # x — line
STATUS DEFAULT
TYPE POLYGON
FEATURE

POINTS
5 30
5 50
45 50
45 30
5 30
END # Points
END # Feature
CLASS
STYLE
SYMBOL "x—-line"
COLOR 0O 0 O
WIDTH 5
SIZE 35
END # STYLE
END # CLASS
END # LAYER

LAYER # v polygon
STATUS DEFAULT
TYPE POLYGON
FEATURE

POINTS
5 55
5 75
45 75
45 55
5 55
END # Points

4.1. Mapfile 104

MapServer Documentation, Release 7.0.7

END # Feature
CLASS
STYLE
SYMBOL "v-poly"
COLOR 0 0 0
SIZE 35
END # STYLE
END # CLASS
END # LAYER

LAYER # Circles
STATUS DEFAULT
TYPE POLYGON
FEATURE

POINTS
5 80
5 100
45 100
45 80
5 80
END # Points
END # Feature
CLASS
STYLE
SYMBOL "circlef"
COLOR 0O 0 O
SIZE 20
GAP 25
END # STYLE
END # CLASS
END # LAYER

LAYER # x polygon
STATUS DEFAULT
TYPE POLYGON
FEATURE

POINTS
55 5
55 25
95 25
95 5
55 5
END # Points
END # Feature
CLASS
STYLE
COILOR 0O 0 O
SYMBOL "x-poly—fill™
SIZE 35
END # STYLE
END # CLASS
END # LAYER

LAYER # indistinct marsh
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS

4.1. Mapfile

105

MapServer Documentation, Release 7.0.7

55 30
55 50
95 50
95 30
55 30
END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 255
SYMBOL "ind_marsh_poly"
SIZE 25
END # STYLE
END # CLASS
END # LAYER

LAYER # diagonal circles
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS
55 55
55 75
95 75
95 55
55 55
END # Points
END # Feature
CLASS
STYLE
COLOR 255 230 51
SYMBOL "diag_dots"
SIZE 30
END # STYLE
END # CLASS
END # LAYER

LAYER # diagonal holes in yellow
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS
55 80
55 100
95 100
95 80
55 80
END # Points
END # Feature
CLASS
STYLE
SYMBOL "diag_holes"
SIZE 30
COLOR 250 220 102
END # STYLE
END # CLASS
END # LAYER

4.1. Mapfile 106

MapServer Documentation, Release 7.0.7

LAYER # v line + circle
STATUS DEFAULT
TYPE POLYGON
FEATURE

POINTS
100 5
100 25
140 25
140 5
100 5
END # Points
END # Feature
CLASS
STYLE
COLOR 255 0 0
SYMBOL "circlef"
SIZE 30
GAP 45
END # STYLE
STYLE
COILOR 0 0 0
SYMBOL "v-line"
LINEJOIN miter
LINECAP butt
SIZE 35
WIDTH 10
GAP 45
END # STYLE
END # CLASS
END # LAYER

LAYER # indistinct marsh + diagonal holes in yellow

STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS
100 30
100 50
140 50
140 30
100 30
END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 255
SYMBOL "ind_marsh_poly"
SIZE 25
END # STYLE
STYLE
SYMBOL "diag_holes"
SIZE 30
COLOR 250 220 0
OPACITY 75
END # STYLE
END # CLASS
END # LAYER

4.1. Mapfile

107

MapServer Documentation, Release 7.0.7

LAYER # x line + circle
STATUS DEFAULT
TYPE POLYGON
FEATURE
POINTS
100 55
100 75
140 75
140 55
100 55
END # Points
END # Feature
CLASS
STYLE
COLOR 0 0 255
SYMBOL "circle"
WIDTH 5
SIZE 20
GAP 30
END # STYLE
STYLE
COLOR 0 204 0
SYMBOL "x-1line"
SIZE 10
WIDTH 3
GAP 30
END # STYLE
END # CLASS
END # LAYER

Then the SYMBOLs:

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS
10 10
END # POINTS
END # SYMBOL

SYMBOL
NAME "circle"
TYPE ellipse
FILLED false
POINTS
10 10
END # POINTS
END # SYMBOL

SYMBOL
NAME "v-line"
TYPE vector
POINTS
0 0
5 10
10 0

4.1. Mapfile

108

MapServer Documentation, Release 7.0.7

END
END

SYMBOL
NAME "v-poly"
TYPE vector
FILLED false
FILLED true
POINTS
0 O

O W U J W
O 0 U N O W,

END
END

SYMBOL
NAME "x-line"
TYPE vector
POINTS
00
11
-99 -99
01
10
END
END

SYMBOL
NAME "chess"
TYPE vector
FILLED true
POINTS
00
10 O
10 10
0 10
00
-99 -99
10 10
20 10
20 20
10 20
10 10
END
END

SYMBOL
NAME "x-poly-fill"
TYPE vector
FILLED true

POINTS
0 1.131
0 0
1.131 0

4.1. Mapfile 109

MapServer Documentation, Release 7.0.7

4.566 3.434
8 0

9.131 0

9.131 1.131
5.697 4.566
9.131 8

9.131 9.131
8 9.131
4.566 5.697
1.131 9.131
0 9.131
0 8

3.434 4.566
0 1.131

END # POINTS
END # SYMBOL

SYMBOL
NAME "ind_marsh_poly"
TYPE vector
FILLED true
POINTS
Half line

O O b > O
w o1 o N
w N

2
-99 -99
Half line
72
11.5 2
11.5 3
7 3
72
-99 -99
Hole line
1.25 5
10.25 5
10.25 6
1.25 6
1.25 5

END
END

SYMBOL
NAME "diag_dots"
TYPE vector
FILLED true

POINTS
Central circle:
0.7450 0.4500
0.7365 0.5147
0.7115 0.5750
0.6718 0.6268
0.6200 0.6665
0.5597 0.6915
0.4950 0.7000

4.1. Mapfile

110

MapServer Documentation, Release 7.0.7

OO O0OO0OO0OO0OO0O0OOO0OO0 OO0 OO O
w
=
(o0
N

OO0 o000 00 OoOo
)
=
o
o

O O O O O O OO0 OO0 oo oo oo

O O O O O o O O O O O O o o o

= O O O O O

O R P O OOOoO OO

.6915
.6665
.6268
.5750
.5147
.4500
.3853
.3250
L2732
.2335
.2085
.2000
.2085
.2335
L2732
.3250
.3853
.4500

.0647
.1250
.1768
.2165
.2415
.25

.2415
.2165
.1768
.1250
.0647

.9252
.8649
.8132
L7734
.7485

.74

.7485
L7734
.8132
.8649
.9252

.74

4.1. Mapfile

111

MapServer Documentation, Release 7.0.7

END
END

SYMBOL

NAME "diag_holes"

TYPE vector
FILLED true
POINTS

.0 0.0
Left half

(@]

.0647
.1250
.1768
.2165
.2415
.25
.2415
.2165
.1768
.1250
.0647
.0

O O O O O O O O O O O O O FH
O O O O O OO o oo oo

.24 1
.2485
L2734
.3132
.3649
L4252
.5

.5647
.6250
.6768
.7165
.7415
.75

O O O O O O O OO OO O O H O

P O OO OO OoOOoOo oo o

.0 1.0

0.75
.9252
.8649
.8132
L7734
.7485
.74
. 7485
L7734
.8132
.8649
.9252

0.24

P O O O O O O O OO O O F % -
O O O O O O O oo o o

1.0 0.0

.0 0.
.2485
L2734
.3132
.3649
L4252

.0 1.
Bottom half circle

circle
24

.5647
.6250
.6768
L7165
.7415
.75

0

.9252
.8649
.8132
L7734
.7485
.74

.7485
L7734
.8132
.8649
.9252

Right half circle

.7415
.7165
.6768
.6250
.5647
.5

L4252
.3649
.3132
L2734
.2485

Top half circle

4.1. Mapfile

112

MapServer Documentation, Release 7.0.7

0.75 0.0
0.7415 0.0647
0.7165 0.1250
0.6768 0.1768
0.6250 0.2165
0.5647 0.2415
0.5 0.25
0.4252 0.2415
0.3649 0.2165
0.3132 0.1768
0.2734 0.1250
0.2485 0.0647
0.24 0.0
0.0 0.0

END

END

Polygon outlines

Polygon outlines can be created by using OUTLINECOLOR in the STYLE. WIDTH specifies the width of the outline.

STYLE
OUTLINECOLOR 0O 255 0
WIDTH 3

END # STYLE

Dashed polygon outlines can be achieved by using OUTLINECOLOR, WIDTH and PATTERN (together with
LINECAP, LINEJOIN and LINEJOINMAXSIZE). For more information on the use of PATTERN, see Use of the PAT-
TERN and GAP parameters.

STYLE
OUTLINECOLOR 0 255 0
WIDTH 3
PATTERN
10 5
END # PATTERN
LINECAP BUTT
END # STYLE

For some symbol types, it is even possible to style polygon outlines using OUTLINECOLOR, SYMBOL and GAP.

STYLE
OUTLINECOLOR 0 255 0
SYMBOL 'circle'
SIZE 5
GAP 15
END # STYLE

Examples (MapServer 4)

The examples in this section were made for MapServer 4.

4.1. Mapfile 113

MapServer Documentation, Release 7.0.7

Note: Many of these symbols will not work with later versions of MapServer , but they contain a lot of useful symbol
definitions and are therefore provided as reference.

The symbols were created with map files and symbol files (download_old_symbols). If you want to use these MAP
files please note, that your MapServer must at least be able to handle 50 symbols. Otherwise you will get an error
while loading the symbol files.

Basic Symbols

Graphic Primitives for Point-Symbolizers located in the defined Symbolfile symbols.sym

: O
punkt

kreis ellipze-flach

ellipse-hoch

dreieck dreieck-leer dreieck-kopf zelt

B " -

quadrat quadrat-quer rechteck-quer rechteck-hoch

+ X

kreuz1 kreuz2 kreuz3 kreuz4
haus sechseck achteck

stern

Synboldefinitions from TrueTypeFont-Files

U S T H 1t

u 3 T H sonne

4.1. Mapfile 114

http://www.mapmedia.de/fileadmin/user_upload/dokumente/umn_signaturen_howto/vortrag_demo.zip

MapServer Documentation, Release 7.0.7

Graphic Primitives for Line-Symbolizers located in the defined Synbolfile symbols.sym

linie-gestr2

linie-gestrs

linie-gestrd

Tinie-gepunkti

) li.nie.-ge.pun.kt2.

li.nie-ge.punkta.

rechteck-bahn

4.1. Mapfile 115

MapServer Documentation, Release 7.0.7

Graphical Primitives for Polygon-Symbolizers located in the defined Symbolfile symbols.sym

M

diagonal-auf

diagonal-ab

linie-vertikal

linie-horizontal inie—vertikal und kreuzi
linie-horizontal
R

e e ratasleletaistateleistatelatelatatats
S5 SRS 20000000C0A00C0CC0A0QNON0
Sfatetatatat tatatatatatatatetetets alalalalalatalalatalalalalelalalelslalalslalalela]
RS D0Q00OA0COAOOOCOOOOOOOCIT
Bseletet et e ettt e e tetetele’ 2000000000A000A00OA0ORA0E0
A DOOQOOOAOCIOCOOOCICHICCIOC0C
S S S 2000000000000000000000000
e o e e e 20A0OQACOOAQAAAAOOOAC
S e TaaleeTsistalelsistaterateltarate
RN atalalalalatalatalelalelatalalaletaTalatalatalata]

kreuz2 punkt kreis

dreiecl kreuz4 quadrat-quer

4.1. Mapfile

116

MapServer Documentation, Release 7.0.7

Complex Symbols

Examples of Point-Symbolizers varying some graphical Attributes

Varying Size and Color

= N s A A A

Variationen mit guadrat Variationen mit dreieck

e ® x x X X

Variationen mit punkt Variationen mit kreuz2

Variationen mit rechteck-guer Variationen mit rechteck-hoch

Exanples for combinations of several Basetypes

A +

Signaturla SignaturZa Signatur3a Signaturda SignaturSa Signaturéa Signatur?a
Sighaturdb Sighatur2h Sighatur3b Sighaturdh SighaturSh Sighaturél Sighatur7h

O
4
I

Signaturlc SignaturZc Signatur3c

Sinple Styles with Shape

) o
>
>

Stern Hauz

4.1. Mapfile

117

MapServer Documentation, Release 7.0.7

Examples of combined Line-Symbolizers varying some graphical Attributes

Grenzen

Strasse in Planung

Strasse

Autobahn
ﬂsgnnekrlc ELne-ggnEollzers T

Asynnetric Line-Synbolizers

1

4.1. Mapfile

118

MapServer Documentation, Release 7.0.7

Examples of Polygon-Symbolizers varying some graphical Attributes
Hatching with different Colors and Distances; this is replaced in 4,6 by the new HATCH Style

Layer Flaechel bis Flasched

Layer FlaecheS bis FlascheS

Polygon-Synbolizer based on VectorSynbols

~
~
~

Layer Flasched bis FlaechelZ

Polygon-Synbolizers based on TrueTypeFonts

IS AR R AR AR AR
AR AR R AR AR
LIS
IS AR R AR AR AR
IR AR R AR R RRRRRER

NRRRRNANS
)
N
SRR
)
AR
)
AR
)
SRR
)
RSN
)
)
AR
SRR

)

-

ayer Flaechel3 bis Flascheld

Polygon-5Synbolizers based on FIXHAF Synbols
e -

L e o o e s 0o o lfoo oo o0 o0 0 07 * * k *k k k * k * A
'i.l.i.l...i.i.i 000000000000000o *********“
* ® ® & ® o o #|loc o 0o 0 ©0 ©0 © © % % Kk Kk Kk ko k& A
et e e e e e’ e’el 006 %% %" A*********i

Layer Flaechel? bis FlascheZO

Layer FlaecheZl und FlascheZZ

Tricks

Changing the center of a point symbol

MapServer does all transformations (offset, rotation) with respect to the symbol anchor point. By default, the anchor
point is calculated from the symbol’s bounding box. In some cases it can be useful to change the anchor point of a
symbol. Since version 6.2, this can be done using the SYMBOL ANCHORPOINT.

Here are some examples of what can be achieved by using the ANCHORPOINT mechanisms for point symbols and
decorated lines. There are three examples in the illustration, and each example shows the result with and without the
use of ANCHORPOINT. At the top, arrows are added to lines using GEOMTRANSFORM start / end. In the middle,
tags are added to lines using GAP and ANGLE. At the bottom, a point symbol is shifted and rotated. The red dots
represent the center points, and the blue dots the offsets.

Below you will find three tables that contain the SYMBOLs and the STYLE mechanisms that were used to generate the
shifted symbols in the illustration.

4.1. Mapfile 119

MapServer Documentation, Release 7.0.7

VoS A
\/l\:/g

Fig. 4.16: Shifting trick

4.1. Mapfile 120

MapServer Documentation, Release 7.0.7

Table 4.6: Symbol tricks - shift - arrows

SYMBOLs

LAYER STYLEs

SYMBOL
NAME "arrow-start"
TYPE vector
FILLED true
POINTS
0 0.4

sy

O O W Ww U W Ww
O BB P OO O
SN oY

END # POINTS

ANCHORPOINT O 0.5
END # SYMBOL
SYMBOL

NAME "arrow—-end"

TYPE vector

FILLED true

POINTS

0 0.4

sy

O O W Ww U W Ww
O P P OO O
SN oY

END # POINTS
ANCHORPOINT 1 0.5
END # SYMBOL

LAYER # Line
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
20 80
40 85
60 85
70 80
END # Points
END # Feature
CLASS
STYLE
COLOR 0O 0 O
WIDTH 15
LINECAP butt
END # STYLE
STYLE
GEOMTRANSFORM "start"
COLOR 0 255 0
SYMBOL "arrow-start"
SIZE 15.0
ANGLE AUTO
END # STYLE
STYLE
GEOMTRANSFORM "start"
COLOR 255 0 O
SYMBOL "circlef"

SIZE 3
END # STYLE
STYLE

GEOMTRANSFORM "end"
COLOR 0 255 0
SYMBOL "arrow—end"
SIZE 15.0
ANGLE AUTO

END # STYLE

STYLE
GEOMTRANSFORM "end"
COLOR 255 0 O
SYMBOL "circlef"
SIZE 3

END # STYLE

END # CLASS
END # LAYER

4.1. Mapfile

121

MapServer Documentation, Release 7.0.7

Table 4.7: Symbol tricks - shift - asymmetrical tags

SYMBOLs LAYER STYLEs
SYMBOL LAYER # Line - symbol overlay
NAME "vert—-line-shift" STATUS DEFAULT
TYPE vector TYPE LINE
POINTS FEATURE
00 POINTS
0 10 20 50
END # POINTS 40 55
ANCHORPOINT 0.5 O 60 55
END # SYMBOL 70 50

SYMBOL
NAME "vert-line"
TYPE vector
POINTS
00
0 10
END # POINTS
END # SYMBOL

END # Points
END # Feature
CLASS
STYLE
COLOR 0O 0 O
WIDTH 4

END # SIYLE

STYLE
COLOR 0O 0 O
SYMBOL "vert-line-shift"
SIZE 20.0
WIDTH 3
ANGLE 30
GAP -50

END # STYLE

STYLE
COLOR 255 0 O
SYMBOL "circlef"
SIZE 3
GAP 50

END # STYLE
END # CLASS

END # LAYER

4.1. Mapfile

122

MapServer Documentation, Release 7.0.7

Table 4.8: Symbol tricks. Unshifted symbol (top) and shifted symbol

SYMBOLs

SYMBOL
NAME "v-line"
TYPE vector
POINTS
0 O
5 10
10 0
END # POINTS
END # SYMBOL

SYMBOL
NAME "v-line-shift"
TYPE vector
POINTS
0 0
5 10
10 O
END # POINTS
ANCHORPOINT 0.5 O
END # SYMBOL

Mapfile changes related to symbols

Version 6.2

The ANCHORPOINT SYMBOL parameter was added.
The INITIALGAP STYLE parameter was added.
The GAP STYLE parameter’s behaviour was modified to specify center to center spacing.

PATTERN support for symbols of TYPE hatch.

Version 6.0

Parameters related to styling was moved from the SYMBOL element to the STYLE element of CLASS (in LAYER):

PATTERN (introduced in 5.0, previously called STYLE), GAP, LINECAP, LINEJOIN, LINEJOINMAX-
SIZE

The SYMBOL TYPE cartoline is no longer needed, and therefore not available in version 6.0.
Current Problems / Open Issues
GAP - PATTERN incompatibility

Creating advanced line symbols involving dashed lines is difficult due to the incompatibility of the dashed line mecha-
nisms (PATTERN) and the symbol on line placement mechanisms (GAP). A solution could be to allow GAP to be a list

4.1. Mapfile 123

MapServer Documentation, Release 7.0.7

instead of a single number (perhaps renaming to GAPS or DISTANCES), but it would also be necessary to introduce
a new parameter to specify the distance to the first symbol on the line (INTIALGAP has been implemented in the
development version - 6.2).

GAP does not support two dimensions (relevant for polygon fills), so the same gap will have to be used for for the x
and the y directions. The introduction of new parameters - GAPX and GAPY could be a solution to this.

The End

We hope that this document will help you to present your data in a cartographically nice manner with MapServer and
explains some basics and possibilities of the concept of MapServer as well as some weaknesses. It would be great to
put together a cartographical symbols library for the profit of everyone. This especially concerns truetype fonts, which
have been developed for some projects and contain some typical signatures for cartographical needs.

You can also view the discussion paper for the improvement of the MapServer Graphic-Kernel (German only).

4.1.2 CLASS

BACKGROUNDCOLOR [r] [g] [b] | [hexadecimal string]
Deprecated since version 6.0: Use CLASS STYLEs.
COLOR [r] [g] [b] | [hexadecimal string]
Deprecated since version 6.0: Use CLASS STYLEs.

DEBUG [onloff] Enables debugging of the class object. Verbose output is generated and sent to the standard error
output (STDERR) or the MapServer logfile if one is set using the LOG parameter in the WEB object.

See also:
rfc28

EXPRESSION [string] Four types of expressions are now supported to define which class a feature belongs to:
String comparisons, regular expressions, logical expressions, and string functions (see Expressions). If no ex-
pression is given, then all features are said to belong to this class.

» String comparisons are case sensitive and are the fastest to evaluate. No special delimiters are neces-
sary although strings must be quoted if they contain special characters. (As a matter of good habit, it is
recommended that you quote all strings). The attribute to use for comparison is defined in the LAYER
CLASSITEM parameter.

¢ Regular expression are limited using slashes (/regex/). The attribute to use for comparison is defined in the
LAYER CLASSITEM parameter.

* Logical expressions allow the building of fairly complex tests based on one or more attributes and there-
fore are only available with shapefiles. Logical expressions are delimited by parentheses “(expression)”.
Attribute names are delimited by square brackets “[ATTRIBUTE]”. Attribute names are case sensitive and
must match the items in the shapefile. For example:

EXPRESSION ([[P[ojp[utjarlon] > 50000 AND ' [LANGUAGE]' eq 'FRENCH')

The following logical operators are supported: =, >, <, <=, >=, =, or, and, It, gt, ge, le, eq, ne, in, ~, ~*. As
one might expect, this level of complexity is slower to process.

— One string function exists: length(). It computes the length of a string:

EXPRESSION ([efnfoft]n](" (vaME_E] ') < 8)

4.1. Mapfile 124

http://www.mapmedia.de/fileadmin/user_upload/dokumente/umn_signaturen_howto/DiskussionsPaper-UMNGraphikKernel.pdf

MapServer Documentation, Release 7.0.7

String comparisons and regular expressions work from the classitem defined at the layer level. You may mix
expression types within the different classes of a layer.

GROUP [string] Allows for grouping of classes. It is only used when a CLASSGROUP at the LAYER level is set.
If the CLASSGROUP parameter is set, only classes that have the same group name would be considered at
rendering time. An example of a layer with grouped classes might contain:

LAYER
CLASSGROUP "groupl"
CLASS
NAME "namel"
GROUP "groupl"

END

CLASS
NAME "name2"
GROUP "group2"

END
CLASS
NAME "name3"
GROUP "groupl"
END

END # layer

KEYIMAGE [filename] Full filename of the legend image for the CLASS. This image is used when building a legend
(or requesting a legend icon via MapScript or the CGI application).

LABEL Signals the start of a LABEL object. A class can contain multiple labels (since MapServer 6.2).
LEADER Signals the start of a LEADER object. Use this along with a LABEL object to create label leader lines.
New in version 6.2.

MAXSCALEDENOM [double] Minimum scale at which this CLASS is drawn. Scale is given as the denominator
of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer
5.0, to replace the deprecated MAXSCALE parameter.

See also:
Map Scale
MAXSIZE [integer]
Deprecated since version 6.0: Use CLASS STYLEs.

MINSCALEDENOM [double] Maximum scale at which this CLASS is drawn. Scale is given as the denominator of
the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer
5.0, to replace the deprecated MINSCALE parameter.

See also:
Map Scale
MINSIZE [integer]
Deprecated since version 6.0: Use CLASS STYLEs.

NAME [string] Name to use in legends for this class. If not set class won’t show up in legend.

4.1. Mapfile 125

MapServer Documentation, Release 7.0.7

OUTLINECOLOR [1] [g] [b] | [hexadecimal string]
Deprecated since version 6.0: Use CLASS STYLEs.
SIZE [integer]
Deprecated since version 6.0: Use CLASS STYLEs.
STATUS [onloff] Sets the current display status of the class. Default turns the class on.

STYLE Signals the start of a STYLE object. A class can contain multiple styles. Multiple styles can be used create
complex symbols (by overlay/stacking). See Cartographical Symbol Construction with MapServer for more
information on advanced symbol construction.

SYMBOL [integerlstringlfilename]
Deprecated since version 6.0: Use CLASS STYLEs.

TEMPLATE [filename] Template file or URL to use in presenting query results to the user. See Templating for more
info.

TEXT [stringlexpression] Text to label features in this class with. This overrides values obtained from the LAYER
LABELITEM. The string can contain references to feature attributes. This allows you to concatenate multiple
attributes into a single label. You can for example concatenate the attributes FIRSTNAME and LASTNAME
like this:

’TEXT ' [FIRSTNAME] [LASTNAME]' ‘

More advanced Expressions can be used to specify the labels. Since version 6.0, there are functions available
for formatting numbers:

’TEXT ("Area i1s: " + tostring([area]," " ‘

VALIDATION Signals the start of a VALIDATION block.

As of MapServer 5.4.0, VALIDATION blocks are the preferred mechanism for specifying validation patterns for
CGI param runtime substitutions. See Run-time Substitution.

4.1.3 CLUSTER

Table of Contents

*» CLUSTER

Description

Supported Layer Types

Mapfile Parameters

Supported Processing Options

Mapfile Snippet

Feature attributes

Handling GetFeaturelnfo

PHP MapScript Usage

Example: Clustering Railway Stations

4.1. Mapfile 126

MapServer Documentation, Release 7.0.7

Description

Since version 6.0, MapServer has the ability to combine multiple features from a point layer into single (aggregated)
features based on their relative positions. Only POINT layers are supported. This feature was added through rfc69.

Supported Layer Types

Only layers of TYPE POINT are supported.

Mapfile Parameters

MAXDISTANCE [double] Specifies the distance of the search region (rectangle or ellipse) in pixel positions.

REGION [string] Defines the search region around a feature in which the neighbouring features are negotiated. Can
be ‘rectangle’ or ‘ellipse’.

BUFFER [double] Defines a buffer region around the map extent in pixels. Default is 0. Using a buffer allows that
the neighbouring shapes around the map are also considered during the cluster creation.

GROUP [string] This expression evaluates to a string and only the features that have the same group value are ne-
gotiated. This parameter can be omitted. The evaluated group value is available in the ‘Cluster_Group’ feature
attribute.

FILTER [string] We can define the FILTER expression filter some of the features from the final output. This expres-
sion evaluates to a boolean value and if this value is false the corresponding shape is filtered out. This expression
is evaluated after the the feature negotiation is completed, therefore the ‘Cluster_FeatureCount’ parameter can
also be used, which provides the option to filter the shapes having too many or to few neighbors within the
search region.

Supported Processing Options

The following processing options can be used with the cluster layers:

CLUSTER_GET_ALL_SHAPES=ON Return all shapes contained by a cluster instead of a single shape. This set-
ting affects both the drawing and the query processing (especially useful for GetFeatureInfo requests). Example
usage: PROCESSING “CLUSTER_GET_ALL_SHAPES=ON”

CLUSTER_KEEP_LOCATIONS=ON Set whether the location of the cluster shape should be preserved (setting
this will show all points in the cluster). Example usage: PROCESSING “CLUSTER_KEEP_LOCATIONS=ON"

CLUSTER_USE_MAP_UNITS=0ON Provide scale independent clustering (maxdistance and the buffer parameters
are specified in map units). Example usage: PROCESSING “CLUSTER_USE_MAP_UNITS=0ON"

ITEMS Specify the feature attributes in the cluster to expose during a query, separated by a comma. Example usage:
PROCESSING “ITEMS=attribute_x,attribute_y,attribute_z”

Mapfile Snippet

LAYER
NAME "my-cluster"
TYPE POINT
CLUSTER
MAXDISTANCE 20 # in pixels
REGION "ellipse" # can be rectangle or ellipse

4.1. Mapfile 127

MapServer Documentation, Release 7.0.7

GROUP (expression) # an expression to create separate groups for each value
FILTER (expression) # a logical expression to specify the grouping condition
END
LABELITEM "Cluster_ FeatureCount"
CLASS

LABEL
END
END

END

Feature attributes

The clustered layer itself provides the following aggregated attributes:
1. Cluster_FeatureCount - count of the features in the clustered shape

2. Cluster_Group - The group value of the cluster (to which the group expression is evaluated)

99,99

Note: If you are using MapServer version 6.x these attributes contain a ;" in their names instead, such
as Cluster:FeatureCount & Cluster:Group. The “_” was changed in MapServer 7.

These attributes (in addition to the attributes provided by the original data source) can be used to configure the labels
of the features and can also be used in expressions. The ITEMS processing option can be used to specify a subset of
the attributes from the original layer in the query operations according to the user’s preference.

We can use simple aggregate functions (Min, Max, Sum, Count) to specify how the clustered attribute should be
calculated from the original attributes. The aggregate function should be specified as a prefix separated by “:’ in the
attribute definition, like: [Max:itemname]. If we don’t specify aggregate functions for the source layer attributes, then
the actual value of the cluster attribute will be non-deterministic if the cluster contains multiple shapes with different

values. The Count aggregate function in fact provides the same value as Cluster_FeatureCount.

Handling GetFeaturelnfo

If you want to allow WMS GetFeaturelnfo on all features inside a cluster, you must 1) set the “wms_include_items”
metadata as usual, and 2) set the following PROCESSING parameters in the layer:

PROCESSING "CLUSTER_GET_ALL_SHAPES=O0ON"
PROCESSING "ITEMS=attribute_x,attribute_y,attribute_z"

So your layer might look like the following:

LAYER
NAME "my-cluster"
TYPE POINT

METADATA
"wms_title" "myttitle"
"wms_include_items" "all"
END
CLUSTER

4.1. Mapfile 128

MapServer Documentation, Release 7.0.7

END
LABELITEM "Cluster_FeatureCount"
CLASS

LABEL
END
END
PROCESSING "CLUSTER_GET_ALL_SHAPES=ON"

PROCESSING "ITEMS=name,description"
END

PHP MapScript Usage

The CLUSTER object is exposed through PHP MapScript. An example follows:

Smap = ms_newMapobj ("/var/www/vhosts/mysite/httpdocs/test.map");
Slayerl=$map->getLayerByName ("testl");
$layerl->cluster;

Example: Clustering Railway Stations

The following example uses a point datasource, in this case in KML format, to display clusters of railway stations.
Two classes are used: one to style and label the cluster, and one to style and label the single railway station.

Note: Since we can’t declare 2 labelitems, for the single railway class we use the TEXT parameter to label the station.

Mapfile Layer

####H AR AR AAAAAAS
Lightrail Stations
#H#AHAAA A AR AAAAA
SYMBOL
NAME "lightrail"
TYPE PIXMAP
IMAGE "../etc/lightrail.png"
END
LAYER
NAME "lightrail"
GROUP "default"
STATUS DEFAULT
TYPE POINT
CONNECTIONTYPE OGR
CONNECTION "lightrail-stations.kml"
DATA "lightrail-stations"
LABELITEM "Cluster_FeatureCount"
CLASSITEM "Cluster_FeatureCount"
#HAA#AA AR AAAA AR EAAFAHAAAA
Define the cluster object
[ZEZEZ AR A E AT AR ST L AR E LA S

4.1. Mapfile 129

MapServer Documentation, Release 7.0.7

CLUSTER
MAXDISTANCE 50
REGION "ellipse"
END
dddazdzdasaddasaddadaadasaddada
Classl: For the cluster symbol
FHAFHAHAFAAHAFAAHAFAAHAFAAHAFAAS
CLASS
NAME "Clustered Lightrail Stations"
EXPRESSION (" [Cluster_ FeatureCount]"
STYLE
SIZE 30
SYMBOL "citycircle"
COLOR 255 0 0
END
LABEL
FONT
TYPE TRUETYPE
SIZE 8
COLOR 255 255 255
ALIGN CENTER
PRIORITY 10
BUFFER 1
PARTIALS TRUE
POSITION cc
END
END
#HAFHAHAF AR F AR F A HAF A EAAAAE
Class2: For the single station
dadadasdasdadasdddaddadadaddadai
CLASS
NAME "Lightrail Stations”

EXPRESSION "1"
STYLE
SIZE 30
SYMBOL "lightrail"
END
TEXT " [Name]"
LABEL

FONT
TYPE TRUETYPE
SIZE 8
COLOR 0 O O
OUTLINECOLOR 255 255 255
ALIGN CENTER
PRIORITY 9
BUFFER 1
PARTIALS FALSE
POSITION ur
END
END
the following is used for a query
TOLERANCE 50
UNITS PIXELS

"1")

HEADER "../htdocs/templates/cluster_header.html"
FOOTER "../htdocs/templates/cluster_footer.html"
TEMPLATE "../htdocs/templates/cluster_query.html"
END
4.1. Mapfile 130

MapServer Documentation, Release 7.0.7

Map Image

58 e 2 i | B 1 |

| i e e |

1 tin ELa

“Baulevard—

+
h.
0.

ad

Ik

Cal

7

4.1.4 COMPOSITE

Background

The COMPOSITE block is used to achieve blending effects with MapServer.

Some cartographic renderings benefit from the addition of advanced blending modes, as explained in detail in Blend
Modes. This functionality is essential for more pleasant renderings of raster hillshadings over vector surfaces. It is
also useful for simulating different kinds of overprinting effects.

See also:
rfcl13

Performance is affected by advanced blending (all modes except src-over).

Parameters
OPACITY [integer] Sets the opacity level (or the inability to see through the layer) of all classed pixels for a given
layer. A value of 100 is opaque and O is fully transparent.

COMPOP [string] Name of the compositing operator to use when blending the temporary image onto the main map
image. See http://en.wikipedia.org/wiki/Blend_modes. The default compositing operator is “src-over”.

Available operators are:

e clear

4.1. Mapfile 131

http://en.wikipedia.org/wiki/Blend_modes
http://en.wikipedia.org/wiki/Blend_modes

MapServer Documentation, Release 7.0.7

color-burn
color-dodge
contrast*®
darken
difference
dst
dst-atop
dst-in
dst-out
dst-over
exclusion
hard-light
invert*
invert-rgb*
lighten
minus*
multiply
overlay
plus
screen
soft-light
src
src-atop
src-in
src-out
src-over

Xor

Operators marked with a star (*) will only be supported when using an AGG backends and when pixman support
is not enabled, and will fall back to “src-over” when this is not the case.

Usage

Simple transparency / opacity is achieved by only specifying the OPACITY parameter (this achieves the same effect as

the legacy LAYER OPACITY parameter):

LAYER

COMPOSITE
OPACITY 70
END # COMPOSITE

4.1. Mapfile

132

MapServer Documentation, Release 7.0.7

END # LAYER

The darkening effect is achieved by adding the COMPOP parameter with the value darken:

LAYER
COMPOSITE
OPACITY 100
COMPOP "darken"
END # COMPOSITE

END # LAYER

4.1.5 Display of International Characters in MapServer

Author Jeff McKenna
Contact jmckenna at gatewaygeomatics.com

Last Updated 2016-04-08

Table of Contents

* Display of International Characters in MapServer

Credit

Related Links

Requirements

How to Enable in Your Mapfile (MapServer >= 7.0)
x Step 1: Verify ICONV Support and MapServer Version
x Step 2: Verify That Your Files’ Encoding is Supported by ICONV
x Step 3: Add ENCODING Parameter to your LAYER Object

x Step 4: Test with the shp2img utility

How to Enable in Your Mapfile (MapServer < 7.0)
* Add ENCODING Parameter to your LABEL Object

— Notes

Example Using PHP MapScript

Credit

Initial functionality was added to MapServer 4.4.0 as a part of a project sponsored by the Information-technology
Promotion Agency (IPA), in Japan. Project members included: Venkatesh Raghavan, Masumoto Shinji, Nonogaki
Susumu, Nemoto Tatsuya, Hirai Naoki (Osaka City University, Japan), Mario Basa, Hagiwara Akira, Niwa Makoto,
Mori Toru (Orkney Inc., Japan), and Hattori Norihiro (E-Solution Service, Inc., Japan).

4.1. Mapfile 133

MapServer Documentation, Release 7.0.7

Related Links

* MapServer ticket:858 (original implementation)
e RFC 103: Layer Level Character Encoding changes in MapServer 7
* MapServer ticket:4758 (MapServer 7 updates)

Requirements

* MapServer >=4.4.0 (MapServer >= 7.0 for layer-level encoding)

* MapServer compiled with the libiconv library

How to Enable in Your Mapfile (MapServer >= 7.0)

The MapServer 7.0 release contained changes in how MapServer handles encoding; new in 7.0 is that encoding is
set at the LAYER level. This makes it much easier to manage having multiple layers in different encodings, in the
same mapfile. The reason for this change was that the encoding of a dataset affects the whole layer, not only the
labels. MapServer 7 will also convert any strings into UTF8 in the background, and any output (such as through OGC
GetCapabilities, GetFeature, or queries) will be returned in UTFS.

The mapfile LAYER object’s ENCODING parameter accepts the encoding name as its parameter.

MapServer uses GNU’s libiconv library to deal with encodings. The libiconv web site has a list of supported encodings.
One can also use the “iconv -1” command on a system with libiconv installed to get the complete list of supported
encodings on that specific system.

Note: The label object’s ENCODING parameter is deprecated, but some logic still exists to handle that use in that
scenario, in MapServer 7.

Step 1: Verify ICONV Support and MapServer Version

Execute “mapserv -v’ at the commandline, and verify that your MapServer version >= 7.0 and it includes ’SUP-
PORTS=ICONV’‘, such as:

> mapserv —-v

MapServer version 7.0.1 (MS4W 3.1.3) OUTPUT=PNG OUTPUT=JPEG

OUTPUT=KML SUPPORTS=PROJ SUPPORTS=AGG SUPPORTS=FREETYPE SUPPORTS=CAIRO
SUPPORTS=ICONV SUPPORTS=FRIBIDI SUPPORTS=WMS_SERVER SUPPORTS=WMS_CLIENT
SUPPORTS=WFS_SERVER SUPPORTS=WEFS_CLIENT SUPPORTS=WCS_SERVER
SUPPORTS=SOS_SERVER SUPPORTS=FASTCGI SUPPORTS=THREADS SUPPORTS=GEOS
INPUT=JPEG INPUT=POSTGIS INPUT=ORACLESPATIAL INPUT=0OGR INPUT=GDAL
INPUT=SHAPEFILE

Step 2: Verify That Your Files’ Encoding is Supported by ICONV

Since MapServer uses the libiconv library to handle encodings, you can check the list of supported encodings here:
http://www.gnu.org/software/libiconv/

Unix users can also use the iconv -/ command on a system with libiconv installed to get the complete list of supported
encodings on that specific system.

4.1. Mapfile 134

https://github.com/mapserver/mapserver/issues/858/
https://github.com/mapserver/mapserver/issues/4758/
http://www.gnu.org/software/libiconv/
http://www.gnu.org/software/libiconv/

MapServer Documentation, Release 7.0.7

Step 3: Add ENCODING Parameter to your LAYER Object

Now you can simply add the ENCODING parameter to your mapfile LAYER object, such as:

MAP
LAYER
ﬁﬁéODING "SHIFT_JIS"
CLASS
ENb.%class

END #layer
END #map

Note: Make sure you save your mapfile in the “UTF-8” encoding in your text editor.

LAYER
NAME "AIJr&Rm"
DATA "chimei.shp"
STATUS DEFAULT
TYPE POINT

ENCODING "SHIFT_JIS"
LABELITEM "NAMAE"

CLASS
NAME "&IJ7rarm"
STYLE
COLOR 10 100 100
END
LABEL
TYPE TRUETYPE
FONT "pgothic"
COLOR 220 20 20
SIZE 7
POSITION CL
PARTIALS FALSE
BUFFER 3
END
END
END

Step 4: Test with the shp2img utility

* see shp2img commandline utility

4.1. Mapfile

135

MapServer Documentation, Release 7.0.7

J 25

e

B

i ;ﬁ.-'.:.
{
- ‘ HANTTH
EiR=TH

How to Enable in Your Mapfile (MapServer < 7.0)

Older MapServer versions only allowed encoding to be set at the LABEL level in the mapfile.

Add ENCODING Parameter to your LABEL Object

Add the ENCODING parameter to your mapfile LABEL object, such as:

MAP
LAYER
cLass
I'.I;l:’;EL
E.II:IéODING "SHIFT_JIS"

END
END

4.1. Mapfile 136

MapServer Documentation, Release 7.0.7

END
END

Here is an example layer using the encoding set at the LABEL level:

LAYER
NAME "chimei"
DATA "chimei.shp"
STATUS DEFAULT
TYPE POINT
LABELITEM "NAMAE"
CLASS
NAME "CHIMEI"
STYLE
COLOR 10 100 100
END
LABEL
TYPE TRUETYPE
FONT "kochi-gothic"
COLOR 220 20 20
SIZE 10
POSITION CL
PARTIALS FALSE
BUFFER 0
ENCODING "SHIFT_ JIS"
END
END
END

Example Using PHP MapScript

For PHP Mapscript, the Encoding parameter is included in the LabelObj Class (for MapServer < 7), so that the
encoding parameter of a layer can be modified such as:

// Loading the php_mapscript library
dl ("php_mapscript.so");

// Loading the map file
Smap = ms_newMapObj ("example.map") ;

// get the desired layer
$layer = S$map->getLayerByName ("chimei");

// get the layer's class object
Sclass = $layer->getClass (0);

// get the class object's label object
Sclabel= S$class—->label;

// get encoding parameter
$Sencode_str = $clabel->encoding;
print "Encoding = ".S$encode_str."\n";

// set encoding parameter
$Sclabel->set ("encoding", "UTF-8") ;

4.1. Mapfile 137

MapServer Documentation, Release 7.0.7

Notes

Note: During initial implementation, this functionality was tested using the different Japanese encoding systems:
Shift-JIS, EUC-JP, UTF-8, as well as Thai’s TIS-620 encoding system.

Examples of encodings for the Latin alphabet supported by libiconv are: ISO-8859-1 (Latin alphabet No. 1 - also
known as LATIN-1 - western European languages), [ISO-8859-2 (Latin alphabet No. 2 - also known as LATIN-2 -
eastern European languages), CP1252 (Microsoft Windows Latin alphabet encoding - English and some other Western

languages).

4.1.6 Expressions

Author Dirk Tilger
Contact dirk at MIRIUP.DE

Author Umberto Nicoletti

Contact umberto.nicoletti at gmail.com

Last Updated 2016-11-26

Contents

*
*

*

*

*

*

*

*

*

* Expressions

— Introduction

String quotation
Quotes escaping in strings

Using attributes

Expression Types

String comparison (equality)
Regular expression comparison
List expressions

“MapServer expressions”

Typing

Logical expressions

String expressions that return a logical value
Arithmetic expressions that return a logical value
Spatial expressions that return a logical value (GEOS)
String operations that return a string

Functions that return a string

String functions that return a number

Arithmetic operations and functions that return a number

4.1. Mapfile

138

MapServer Documentation, Release 7.0.7

x Spatial functions that return a number (GEOS)
* Spatial functions that return a shape (GEOS)

* Temporal expressions

Introduction

As of version 6.0, expressions are used in four places:
» In LAYER FILTER to specify the features of the dataset that are to be included in the layer.
e In CLASS EXPRESSION to specify to which features of the dataset the CLASS applies to.
* In CLASS TEXT to specify text for labeling features.
e In STYLE GEOMTRANSFORM.

String quotation

Strings can be quoted using single or double quotes:

'This is a string'
"And this is also a string"

Quotes escaping in strings

Note: Quotes escaping is not supported in MapServer versions lower than 5.0.

Starting with MapServer 5.0, if your dataset contains double-quotes, you can use a C-like escape sequence:

"National \"hero\" statue" ‘

To escape a single quote use the following sequence instead:

"National \'hero\' statue" ‘

Starting with MapServer 6.0 you don’t need to escape single quotes within double quoted strings and you don’t need
to escape double quotes within single quoted strings. In 6.0 you can also write the string as follows:

'National "hero" statue'

To escape a single quote use the following sequence instead:

"National 'hero' statue"

Using attributes

Attribute values can be referenced in the Map file and used in expressions. Attribute references are case sensitive and
can be used in the following types of expressions:

4.1. Mapfile 139

MapServer Documentation, Release 7.0.7

e In LAYER FILTER
e In CLASS EXPRESSION
e In CLASS TEXT

Referencing an attribute is done by enclosing the attribute name in square brackets, like this: [ATTRIBUTENAME].
Then, every occurrence of “[ATTRIBUTENAME]” will be replaced by the actual value of the attribute “ATTRIBUTE-
NAME”.

Example: The data set of our layer has the attribute “BUILDING_NAME”. We want the value of this attribute to
appear inside a string. This can be accomplished as follows (single or double quotes):

'"The [BUILDING_NAME] building’

For the building which has its BUILDING_NAME attribute set to “Historical Museum”, the resulting string is:

'The Historical Museum building'

For Raster Data layers special attributes have been defined that can be used for classification, for example:
e [PIXEL] ... will become the pixel value as number

* [RED], [GREEN], [BLUE] ... will become the color value for the red, green and blue component in the pixel
value, respectively.

Expression Types
Expression are used to match attribute values with certain logical checks. There are three different types of expressions
you can use with MapServer:

 String comparisons: A single attribute is compared with a string value.

* Regular expressions: A single attribute is matched with a regular expression.

* List expressions: Compare a string attribute to a list of multiple possible values

» Logical “MapServer expressions”: One or more attributes are compared using logical expressions.

String comparison (equality)
String comparison means, as the name suggests, that attribute values are checked if they are equal to some value.
String comparisons are the simplest form of MapServer expressions and the fastest option.

To use a string comparison for filtering a LAYER, both FILTERITEM and FILTER must be set. FILTERITEM is set to
the attribute name. FILTER is set to the value for comparison. The same rule applies to CLASSITEM in the LAYER
object and EXPRESSION in the CLASS object.

Example for a simple string comparison filter

FILTER "2005"
FILTERITEM "year"

would match all records that have the attribute “year” set to “2005”. The rendered map would appear as if the dataset
would only contain those items that have the “year” set to “2005”.

Similarly, a classification for the items matched above would be done by setting the CLASSITEM in the LAYER and
the EXPRESSION in the CLASS:

4.1. Mapfile 140

MapServer Documentation, Release 7.0.7

LAYER
NAME "example"
CLASSITEM "year"
CLASS
NAME "year-2005"
EXPRESSION "2005"

END
END

For reasons explained later, the values for both CLASSITEM and FILTERITEM should start with neither a */’ nor a *(*
character.

Regular expression comparison

Regular expressions are a standard text pattern matching mechanism from the Unix world. The functionality of regular
expression matching is provided by the operating system on UNIX systems and therefore slightly operating system
dependent. However, their minimum set of features are those defined by the POSIX standard. The documentation of
the particular regular expression library is usually in the “regex” manual page (“man regex”) on Unix systems.

Regular expression with MapServer work similarly to string comparison, but allow more complex operation. They
are slower than pure string comparisons, but might be still faster than logical expression. As for string comparison,
when using a regular expressions, FILTERITEM (LAYER FILTER) or CLASSITEM (CLASS EXPRESSION) has to be
defined if the items are not included in the LAYER FILTER or CLASS EXPRESSION.

A regular expression typically consists of characters with special meanings and characters that are interpreted as they
are. Alphanumeric characters (A-Z, a-z and 0-9) are taken as they are. Characters with special meanings are:

* . will match a single character.

¢ [and] are used for grouping. For example [A-Z] would match the characters A,B,C,....X,Y,Z.

* {, }, and * are used to specify how often something should match.

+ A matches the beginning, $ matches the end of the value.

* The backslash \ is used to take away the special meaning. For example \$ would match the dollar sign.
MapServer supports two regex operators:

* ~ case sensitive regular expression

* ~* case insensitive regular expression

The following LAYER configuration would have all records rendered on the map that have “hotel” in the attribute
named “placename”

LAYER
NAME 'regexp-example'
FILTERITEM 'placename'
FILTER /hotel/

END

Note: For FILTER, the regular expression is case-sensitive, thus records having “Hotel” in them would not have
matched.

4.1. Mapfile 141

MapServer Documentation, Release 7.0.7

Example: Match records that have a value from 2000 to 2010 in the attribute “year’:

FILTERITEM "year"
FILTER /720[0-9][0-9]/

Example: Match all the records that are either purely numerical or empty

’FILTER /N [0-9]1xS/

Example: Match all the features where the name attribute ends with “by”, “BY”, “By” or “bY” (case insensitive
matching):

’EXPRESSION (" [name]' ~x 'by$')

Example: Match all the features where the rdname attribute starts with “Main”.

LAYER

CLASSITEM 'rdname'
CLASS

EXPRESSION /“Main.x$/

Note: If you experience frequently segmentation faults when working with MapServer and regular expressions, it
might be that your current working environment is linked against more than one regular expression library. This can
happen when MapServer is linked with components that bring their own copy, like the Apache httpd or PHP. In these
cases the author has made best experiences with making all those components using the regular expression library of
the operating system (i.e. the one in libc). That involved editing the build files of some of the components, however.

List expressions

New in version 6.4.

List expressions (see rfc95) are a performant way to compare a string attribute to a list of multiple possible values.
Their behavior duplicates the existing regex or mapserver expressions, however they are significantly more performant.
To activate them enclose a comma separated list of values between { }, without adding quotes or extra spaces.

LAYER
NAME 'list-example'
CLASSITEM 'roadtype'
CLASS
EXPRESSION {motorway,trunk}

#equivalent to regex EXPRESSION /motorway|trunk/
#equivalent to mapserver EXPRESSION ("[roadtype]" IN "motorway, trunk")

END
CLASS
EXPRESSION {primary, secondary}

END
END

4.1. Mapfile 142

MapServer Documentation, Release 7.0.7

Warning: List expressions do not support quote escaping, or attribute values that contain a comma in them.

“MapServer expressions”

MapServer expressions are the most complex and depending how they are written can become quite slow. They can
match any of the attributes and thus allow filtering and classification depending on more than one attribute. Besides
pure logical operations there are also expressions that allow certain arithmetic, string and time operations.

To be able to use a MapServer expression for a FILTER or EXPRESSION value, the expression has to finally become
a logical value.

Typing

The type of attributes and literals is determined as followed :

 Strings: enclosed in quote or single quote characters

"[string_attribute]" or '[string_attribute]

’"stringiliteral" or 'string_literal’

* Numbers: no quoting

’[numeric_attribute}

’numeric_value

* Date-time: enclosed in backquote characters

"[date_time_attribute]‘

"date_time_literal‘

Logical expressions

Syntactically, a logical expression is everything encapsulated in round brackets. Logical expressions take logical
values as their input and return logical values. A logical expression is either ‘true’ or ‘false’.

e ((Expressionl) AND (Expression2))

((Expressionl) && (Expression2))

returns true when both of the logical expressions (Expressionl and Expression2) are true.
* ((Expressionl) OR (Expression2))

((Expressionl) Il (Expression2))

returns true when at least one of the logical expressions (Expressionl or Expression2) is true.
* NOT (Expressionl)

! (Expressionl)

returns true when Expressionl is false.

4.1. Mapfile 143

MapServer Documentation, Release 7.0.7

String expressions that return a logical value

Syntactically, a string is something encapsulated in single or double quotes.
e (“Stringl” eq “String2”)
(“String1” == “String2”) - deprecated since 6.0
(“String1” = “String2”)
returns true when the strings are equal. Case sensitive.

(“String1” =* “String2”)

returns true when the strings are equal. Case insensitive.

(“String1” != “String2”")
(“String1” ne “String2”)

returns true when the strings are not equal.

(“String1” < “String2”)
(“String1” 1t “String2”)

returns true when “String1” is lexicographically smaller than “String2”

(“String1” > “String2”)
(“String1” gt “String2”)

returns true when “String1” is lexicographically larger than “String2”.

(“String1” <= “String2”)
(“String1” le “String2”)

returns true when “String1” is lexicographically smaller than or equal to “String2”

(“String1” >= “String2”)
(“String1” ge “String2”)
returns true when “String1” is lexicographically larger than or equal to “String2”.

(“String1” IN “token]1,token2,...,tokenN")

returns true when “String1” is equal to one of the given tokens.

Note: The separator for the tokens is the comma. That means that there can not be unnecessary white space in
the list and that tokens that have commas in them cannot be compared.

(“Stringl” ~ “regexp”)

returns true when “String1” matches the regular expression “regexp”. This operation is identical to the regular
expression matching described earlier.

(“String1” ~* “regexp”)

returns true when “String1” matches the regular expression “regexp” (case insensitive). This operation is iden-
tical to the regular expression matching described earlier.

4.1. Mapfile 144

MapServer Documentation, Release 7.0.7

Arithmetic expressions that return a logical value

The basic element for arithmetic operations is the number. Arithmetic operations that return numbers will be covered
in the next section.

* (nleqn2)
(nl ==n2) - deprecated since 6.0
(nl=n2)
returns true when the numbers are equal.
e (nl!=n2)
(nlnen2)
returns true when the numbers are not equal.
e (nl<n2)
(nlltn2)
returns true when nl is smaller than n2.
e (nl>n2)
(nl gtn2)
returns true when nl is larger than n2.
* (nl<=n2)
(nllen2)
returns true when nl is smaller than or equal to n2.
e (nl>=n2)
(nl gen2)
returns true when nl is larger than or equal to n2.
¢ (nl IN “numberl,number2,...,numberN”)

returns true when nl is equal to one of the given numbers.

Spatial expressions that return a logical value (GEOS)

* (shapel eq shape2)
returns true if shapel and shape2 are equal
* (shapel intersects shape?2)
returns true if shapel and shape2 intersect
New in version 6.0.
* (shapel disjoint shape?2)
returns true if shapel and shape2 are disjoint

New in version 6.0.

4.1. Mapfile 145

MapServer Documentation, Release 7.0.7

* (shapel touches shape2)
returns true if shapel and shape2 touch
New in version 6.0.
* (shapel overlaps shape2)
returns true if shapel and shape2 overlap
New in version 6.0.
* (shapel crosses shape2)
returns true if shapel and shape2 cross
New in version 6.0.
* (. shapel within shape2)
returns true if shapel is within shape2
New in version 6.0.
* (shapel contains shape2)
returns true if shapel contains shape2
New in version 6.0.
* (shapel dwithin shape2)
returns true if the distance between shapel and shape?2 is equal to 0
New in version 6.0.
* (shapel beyond shape?2)
returns true if the distance between shapel and shape2 is greater than 0

New in version 6.0.

String operations that return a string

e “Stringl” + “String2’

returns “String1String2”, that is, the two strings concatenated to each other.

Functions that return a string

* tostring (nl, “Format1”)
uses “Format1” to format the number nl (C style formatting - sprintf).
New in version 6.0.
e commify (“Stringl”)
adds thousands separators (commas) to a long number to make it more readable

New in version 6.0.

4.1. Mapfile 146

MapServer Documentation, Release 7.0.7

* upper (“Stringl”)
force all characters to uppercase
New in version 7.0.
* lower (“Stringl”)
force all characters to lowercase
New in version 7.0.
e initcap (“Stringl”)
force the first character to uppercase and the rest of the characters to lower case for EACH word in the string.
New in version 7.0.
* firstcap (“Stringl”)
force the first character to uppercase and the rest of the characters to lower case in the first word in the string.

New in version 7.0.

String functions that return a number

e length (“Stringl™)

returns the number of characters of “String1”

Arithmetic operations and functions that return a number

e round (nl,n2)
returns nl rounded to a multiple of n2: n2 * round(n1/n2)
New in version 6.0.
* nl +n2
returns the sum of nl and n2
* nl -n2
returns n2 subtracted from nl
* nl *n2
returns nl multiplicated with n2
* nl/n2>
returns nl divided by n2
e -nl
returns nl negated
* nl *n2

returns nl to the power of n2

Note: When the numerical operations above are used like logical operations, the following rule applies: values equal
to zero will be taken as ‘false’ and everything else will be ‘true’. That means the expression

4.1. Mapfile 147

MapServer Documentation, Release 7.0.7

’(6 + 5)

would return true, but

’(5*5)

would return false.

Spatial functions that return a number (GEOS)

area (shapel)
returns the area of shapel

New in version 6.0.

Spatial functions that return a shape (GEOS)

fromtext (“String1”)

returns the shape corresponding to Stringl (WKT - well known text)

fromText ('"POINT (500000 5000000) ")

New in version 6.0.

buffer (shapel , nl)

returns the shape that results when shapel is buffered with bufferdistance nl

New in version 6.0.

difference (shapel , shape2)

returns the shape that results when the common area of shapel and shape?2 is subtracted from shapel

New in version 6.0.

Temporal expressions

MapServer uses an internal time type to do comparison. To convert a string into this time type it will check the list
below from the top and down to check if the specified time matches, and if so, it will do the conversion. The following
are integer values: YYYY - year, MM - month, DD - date, hh - hours, mm - minutes, ss - seconds. The following
are character elements of the format: - (dash) - date separator, : (colon) - time separator, T - marks the start of the
time component (ISO 8601), space - marks the end of the date and start of the time component, Z - zulu time (0 UTC
offset).

‘YYYY-MM-DDThh:mm:ssZ*
‘YYYY-MM-DDThh:mm:ss*
‘YYYY-MM-DD hh:mm:ss*
‘YYYY-MM-DDThh:mm*
‘YYYY-MM-DD hh:mm*
‘YYYY-MM-DDThh*

4.1. Mapfile 148

MapServer Documentation, Release 7.0.7

For temporal values obtained this way, the following operations are supported:

‘YYYY-MM-DD hh*
‘YYYY-MM-DD*
YYYY-MM*
YYYY®
‘Thh:mm:ssZ°

‘Thh:mm:ss*

(tleqt2)

(tl ==12) - deprecated since 6.0
(tl=t2)

returns true when the times are equal.
(t1!=12)

(tlnet2)

returns true when the times are not equal.
(tl<t2)

(t11tt2)

returns true when tl is earlier than t2
(tl>t2)

(tl gtt2)

returns true when tl is later than t2.
(tl<=1t2)

(tllet2)

returns true when tl is earlier than or equal to t2
(t1>=12)

(tlget2)

returns true when tl is later than or equal to t2.

4.1.7 FEATURE

POINTS A set of xy pairs terminated with an END, for example:

POINTS 1 1 50 50 1 50 1 1 END

Note: POLYGON/POLYLINE layers POINTS must start and end with the same point (i.e. close the feature).

Multipart features can be created by adding further sets of points, for example:

4.1. Mapfile

149

MapServer Documentation, Release 7.0.7

FEATURE

POINTS 1 1 50 50 1 50 1 1 END

POINTS 100 100 50 50 100 50 100 100 END
END

ITEMS Semicolon separated list of the feature attributes:

ITEMS "valuel;value2;value3"

Note: Specifying the same number of items is recommended for each feature of the same layer. The item
names should be specified as a PROCESSING option of the layer.

TEXT [string] String to use for labeling this feature.

WKT [string] A geometry expressed in OpenGIS Well Known Text geometry format. This feature is only supported
if MapServer is built with OGR or GEOS support.

WKT "POLYGON((500 500, 3500 500, 3500 2500, 500 2500, 500 500))"
WKT "POINT (2000 2500)™"

Note: Inline features should be defined as their own layers in the mapfile. If another CONNECTIONTYPE is
specified in the same layer, MapServer will always use the inline features to draw the layer and ignore the other
CONNECTIONTYPE:s.

4.1.8 FONTSET

Author Kari Guerts
Author Jeff McKenna
Contact jmckenna at gatewaygeomatics.com

Last Updated 2008/10/08

Contents

*» FONTSET

— Format of the fontset file

FONTSET is a MAP parameter. The syntax is:

FONTSET [filename]

Where filename gives the location of the fontset file of the system. The location of the system fontset file could for
instance be /ust/share/fonts/truetype/font.list (Debian). The location can be specified using a relative or absolute path.

Format of the fontset file

The format of the fontset file is very simple. Each line contains 2 items: An alias and the name/path of the font
separated by white space. The alias is simply the name you refer to the font as in your Mapfile (eg. times-bold). The

4.1. Mapfile 150

MapServer Documentation, Release 7.0.7

name is the actual name of the TrueType file. If not full path then it is interpreted as relative to the location of the
fontset. Here’s the fontset I use (the font.list file and all .ttf files are stored in the same sub-directory).

Note: Aliases are case sensitive. Excellent reference information about the TrueType format and online font resources

is available from the FreeType.

arial arial.ttf
arial-bold arialbd.ttf
arial-italic ariali.ttf
arial-bold-italic arialbi.ttf
arial_black ariblk.ttf

comic_sans
comic_sans-bold
courier
courier-bold
courier—italic
courier-bold-italic
georgia
georgia-bold
georgia-italic
georgia-bold-italic
impact

monotype.com
recreation_symbols
times

times-bold
times-italic
times-bold-italic
trebuchet_ms
trebuchet_ms-bold
trebuchet_ms—-italic
trebuchet_ms-bold-italic
verdana
verdana-bold
verdana—-italic
verdana-bold-italic

comic.ttf
comicbd.ttf
cour.ttf
courbd.ttf
couri.ttf
courbi.ttf
georgia.ttf
georgiab.ttf
georgiai.ttf
georgiaz.ttf
impact.ttf
monotype.ttf
recreate.ttf
times.ttf
timesbd.ttf
timesi.ttf
timesbi.ttf
trebuc.ttf
trebucbd.ttf
trebucit.ttf
trebucbi.ttf
verdana.ttf
verdanab.ttf
verdanai.ttf
verdanaz.ttf

4.1.9 GEOMTRANSFORM - Geometry Transformations

Author HAg&vard Tveite

Contact havard.tveite @nmbu.no

Table of Contents

— bbox

centroid

end and start

vertices

* Transformations for simple styling (CLASS STYLE only)

4.1. Mapfile

151

http://www.freetype.org/
mailto:havard.tveite@nmbu.no

MapServer Documentation, Release 7.0.7

* Labels (LABEL STYLE only)
— labelpnt and labelpoly
* Expressions and advanced transformations (LAYER and CLASS STYLE)

Combining / chaining expressions

x buffer

generalize ([shape], tolerance)

simplify([shape], tolerance)

simplifypt([shape], tolerance)

smoothsia ([shape], smoothing_size, smoothing_iterations, preprocessing)
+ Tuning the behaviour of smoothsia
* Dataset resolution is too high
* Dataset resolution is too low
* Curves
* Javascript transformation
— Introduction
— Usage
* Example 1. Simple Geomtransform
* Example 2. Printing logs in MapServer logs
— Basic API
* pointObj
- Constructor
- Members
- Methods
* lineObj
- Constructor
- Members
- Methods
x shapeObj

- Constructor

- Members

- Methods

Geometry transformations return a new geometry. The purpose of a geometry transformation can be to achieve special
effects for symbol rendering and labeling.

Geometry transformation is available at the LAYER level and the STYLE level. At the LAYER level (since 6.4), the
original vector geometry (“real world” coordinates) is used. At the STYLE level, pixel coordinates are used.

It may be useful to apply pixel values also at the LAYER level, and that is possible. If UNITS is defined in the LAYER,

4.1. Mapfile 152

MapServer Documentation, Release 7.0.7

the [map_cellsize] variable can be used to convert to pixel values at the LAYER level:

GEOMTRANSFORM (simplify ([shape], [map_cellsize]*10))

Transformations for simple styling (CLASS STYLE only)

The following simple geometry transformations are available at the CLASS STYLE level:
* bbox
* centroid
e end
¢ start

e vertices

bbox

* GEOMTRANSFORM bbox returns the bounding box of the geometry.
— GEOMTRANSFORM “bbox”

Note: Only available for STYLE in the CLASS context.

Fig. 4.17: Geomtransform bbox

Class definitions for the example:

CLASS
STYLE
COLOR 0 0 O
WIDTH 6
END # STYLE
STYLE
GEOMTRANSFORM "bbox"
OUTLINECOLOR 255 0 O
WIDTH 1
PATTERN 1 2 END
END # STYLE
END # CLASS

4.1. Mapfile 153

MapServer Documentation, Release 7.0.7

centroid

* GEOMTRANSFORM centroid returns the centroid of the geometry.
— GEOMTRANSFORM *“centroid”

Note: Only available for STYLE in the CLASS context.

Fig. 4.18: Geomtransform centroid

Style definitions for the example.:

STYLE
GEOMTRANSFORM "centroid"
COLOR 255 0 0
SYMBOL circlef
SIZE 5
END # STYLE

Symbol definition for the circlef symbol:

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true
POINTS
11
END # POINTS
END # SYMBOL

end and start

* GEOMTRANSFORM end returns the end point of a line.
* GEOMTRANSFORM start returns the start point of a line.
— GEOMTRANSFORM “start”

— GEOMTRANSFORM *“end” (since END is used to end objects in the map file, end must be embedded in
quotes)

The direction of the line at the start / end point is available for rendering effects.

Note: Only available for STYLE in the CLASS context.

4.1. Mapfile 154

MapServer Documentation, Release 7.0.7

Fig. 4.19: Geomtransform start and end usage

Class definitions for the example.

Lower part of the figure:

CLASS
STYLE
GEOMTRANSFORM "start"
SYMBOL "circlef"
COLOR 255 0 0
SIZE 20
END # STYLE
STYLE
COLOR 0 0 O
WIDTH 4
END # STYLE
STYLE
GEOMTRANSFORM "end"
SYMBOL "circlef"
COLOR 0 255 0
SIZE 20
END # STYLE
END # CLASS

Upper part of the figure:

CLASS

STYLE
COLOR 0O 0 O
WIDTH 4

END # STYLE

STYLE
GEOMTRANSFORM "start"
SYMBOL "startarrow"
COLOR 255 0 0
SIZE 20
ANGLE auto

END # STYLE

4.1. Mapfile 155

MapServer Documentation, Release 7.0.7

STYLE
GEOMTRANSFORM "start"
SYMBOL "circlef"
COLOR 0 0 255

SIZE 5
END # STYLE
STYLE

GEOMTRANSFORM "end"
SYMBOL "endarrow"
COLOR 0 255 0
SIZE 20
ANGLE auto

END # STYLE

STYLE
GEOMTRANSFORM "end"
SYMBOL "circlef"
COLOR 0 0 255
SIZE 5

END # STYLE

END # CLASS

The startarrow symbol definition (endarrow is the same, except for ANCHORPOINT (value for endarrow: 1 0.5):

SYMBOL
NAME "startarrow"
TYPE vector
FILLED true
POINTS
0 0.4
.4

O O W WU W Ww
O R P P OO O
SN N oy o

END # POINTS
ANCHORPOINT O 0.5
END # SYMBOL

vertices

* GEOMTRANSFORM vertices produces the set of vertices of a line (with direction information).
— GEOMTRANSFORM “vertices”

Note: Only available for STYLE in the CLASS context.

Class definitions for the example:

CLASS
STYLE
COLOR 0 0 O
WIDTH 4
END # STYLE

4.1. Mapfile 156

MapServer Documentation, Release 7.0.7

Fig. 4.20: Geomtransform vertices

STYLE
GEOMTRANSFORM "vertices"
SYMBOL "vertline"
COLOR 0O 0 O
WIDTH 2
SIZE 20
ANGLE AUTO

END # STYLE

END # CLASS

The vertline symbol definition:

SYMBOL
NAME "vertline"
TYPE vector
POINTS
00
01
END # POINTS
END # SYMBOL

Labels (LABEL STYLE only)

The following simple geometry transformations are available at the LABEL STYLE level:

* labelpnt
* labelpoly

These are used for label styling (background colour, background shadow, background frame).

Note: The result of using labelpnt is affected by the LAYER LABELCACHE setting. If LABELCACHE is ON (the

default), the label will be shifted when a non-zero sized symbol is added using labelpnt.

labelpnt and labelpoly

* GEOMTRANSFORM labelpnt produces the geographic position the label is attached to. This corresponds to the
center of the label text only if the label is in position CC.

— GEOMTRANSFORM *“labelpnt”

* GEOMTRANSFORM labelpoly produces a polygon that covers the label plus a 1 pixel padding.

4.1. Mapfile

157

MapServer Documentation, Release 7.0.7

— GEOMTRANSFORM *“labelpoly”

Note: Only available for STYLE in the LABEL context.

These transformations can be used to make background rectangles for labels and add symbols to the label points.

NnNa

Fig. 4.21: Geomtransform labelpnt and labelpoly

Class definitions for the example:

CLASS
STYLE
OUTLINECOLOR 255 255 204
END # STYLE
LABEL
SIZE giant
POSITION UC
STYLE # shadow
GEOMTRANSFORM "labelpoly"
COLOR 153 153 153
OFFSET 3 3
END # Style
STYLE # background
GEOMTRANSFORM "labelpoly"
COLOR 204 255 204
END # Style
STYLE # outline
GEOMTRANSFORM "labelpoly"
OUTLINECOLOR 0 0 255
WIDTH 1
END # Style
STYLE
GEOMTRANSFORM "labelpnt"
SYMBOL 'circlef'
COLOR 255 0 0
SIZE 15
END # Style
END # Label
END # Class

Symbol definition for the circlef symbol:

SYMBOL
NAME "circlef"
TYPE ellipse
FILLED true

4.1. Mapfile

158

MapServer Documentation, Release 7.0.7

POINTS
11
END # POINTS
END # SYMBOL

Expressions and advanced transformations (LAYER and CLASS STYLE)

Combining / chaining expressions

A geometry transformation produces a geometry, and that geometry can be used as input to another geometry transfor-
mation. There are (at least) two ways to accomplish this. One is to combine basic geometry transformation expressions
into more complex geometry transformation expressions, and another is to combine a geometry transformation expres-
sion at the LAYER level with a geometry transformation expressions or a simple geometry transformation at the CLASS
STYLE level.

Combining geometry transformation expressions A geometry transformation expression contains a [shape] part. The
[shape] part can be replaced by a geometry transformation expression.

For example:

GEOMTRANSFORM (simplify (buffer ([shape], 20),10))

In this transformation, buffer is first applied on the geometry ([shape]). The resulting geometry is then used as input
to simplify.

A style that demonstrates this:

STYLE
GEOMTRANSFORM (simplify (buffer ([shape], 20),10))
OUTLINECOLOR 255 0 0
WIDTH 2

END # STYLE

The result of this transformation is shown at the top of the following figure (red line). The original polygon is shown
with a full black line and the buffer with a dashed black line.

Combining expressions with simple geometry transformations Simple geometry transformations are only available for
CLASS STYLE, but can be combined with geometry transformation expressions at the LAYER level.

Excerpts from a layer definitions that does this kind of combination:

LAYER

GEOMTRANSFORM (simplify (buffer ([shape], 10),5))
CLASS
STYLE
GEOMTRANSFORM "vertices"
COLOR 255 102 102
SYMBOL vertline
SIZE 20
WIDTH 2
ANGLE auto
END # STYLE
END # CLASS
END # LAYER

4.1. Mapfile 159

MapServer Documentation, Release 7.0.7

The result of this transformation is shown at the bottom of the following figure (the red lines). The result of the LAYER
level geomtransform is shown with a full black line. The original polygon is the same as the one used at the top of the
figure.

Fig. 4.22: Combining geomtransform expressions

buffer

* GEOMTRANSFORM buffer returns the buffer of the original geometry. The result is always a polygon geometry.
— GEOMTRANSFORM (buffer ([shape], buffersize))

Note: Negative values for buffersize (setback) is not supported.

Note: Can be used at the LAYER level and for STYLE in the CLASS context.

Note: Buffer does not seem to work for point geometries.

Some class definitions for the example.

Lower part (polygon with buffers):

CLASS

STYLE
OUTLINECOLOR 0 255 0
GEOMTRANSFORM (buffer ([shape], 20))
WIDTH 1

END # STYLE

STYLE
OUTLINECOLOR O 0O 255
GEOMTRANSFORM (buffer ([shape], 10)) #
WIDTH 1

4.1. Mapfile 160

MapServer Documentation, Release 7.0.7

Fig. 4.23: Geomtransform buffer

END # STYLE
STYLE
COLOR 255 0 0
GEOMTRANSFORM (buffer ([shape], 5)) #
END # STYLE
STYLE
COLOR 0 0 O
END # STYLE
END # CLASS

Upper right part (layer level geomtransform):

LAYER # line buffer layer
STATUS DEFAULT
TYPE LINE
FEATURE
POINTS
80 70
80 75
END # Points
END # Feature
GEOMTRANSFORM (buffer ([shape], 10))
CLASS
STYLE
COLOR 0 0 255
END # STYLE
END # CLASS
END # LAYER

generalize ([shape], tolerance)

o GEOMTRANSFORM generalize simplifies a geometry ([shape]) in a way comparable to FME4AZs ThinNo-
Point algorithm. See http://trac.osgeo.org/gdal/ticket/966 for more information.

4.1. Mapfile 161

http://trac.osgeo.org/gdal/ticket/966

MapServer Documentation, Release 7.0.7

— GEOMTRANSFORM (generalize([shape], tolerance))

tolerance is mandatory, and is a specification of the maximum deviation allowed for the generalized line com-
pared to the original line. A higher value for tolerance will give a more generalised / simplified line.

Note: Can be used at the LAYER level and for STYLE in the CLASS context.

Note: Depends on GEOS.

The figure below shows the result of applying generalize at the STYLE level with increasing values for tolerance (10 -
green, 20 - blue and 40 - red).

AT
y “:':. f"}\/‘{\”; ri{'f
¢

; ""1.
N I
r‘;;;"’ :
g
P4
L
Vi i
I.' :_" i
i 5
P LS

Fig. 4.24: Geomtransform generalize

One of the STYLE definitions for the example (tolerance 40):

STYLE
GEOMTRANSFORM (generalize ([shape], 40))
COLOR 255 0 0O
WIDTH 1
PATTERN 3 3 END
END # STYLE

simplify([shape], tolerance)

* GEOMTRANSFORM simplify simplifies a geometry ([shape]) using the standard Douglas-Peucker algorithm.
— GEOMTRANSFORM (simplify([shape], tolerance))

tolerance is mandatory, and is a specification of the maximum deviation allowed for the generalized line com-
pared to the original line. A higher value for tolerance will give a more generalised / simplified line.

Note: Can be used at the LAYER level and for STYLE in the CLASS context.

4.1. Mapfile 162

MapServer Documentation, Release 7.0.7

The figure below shows the result of applying simplify at the STYLE level with increasing values for tolerance (10 -
green, 20 - blue and 40 - red).

.-"_i?:]
e - I
iy 1 o
‘\ﬁf;hﬁqu ! ;
P
K '
1 "
14
g 3
4 3
L - :F
I i, !
1 Zh)
i o o
o kL LY
iy P b
¥ =
bl

Fig. 4.25: Geomtransform simplify

One of the STYLE definitions for the example (tolerance 40):

STYLE
GEOMTRANSFORM (simplify ([shape], 40))
COLOR 255 0 0
WIDTH 1
PATTERN 3 3 END

END # STYLE

simplifypt([shape], tolerance)

* GEOMTRANSFORM simplifypt simplifies a geometry ([shape]), ensuring that the result is a valid geometry
having the same dimension and number of components as the input. folerance must be non-negative.
— GEOMTRANSFORM (simplifypt([shape], tolerance))

tolerance is mandatory, and is a specification of the maximum deviation allowed for the generalized line com-
pared to the original line. A higher value for tolerance will give a more generalised / simplified line.

Note: Can be used at the LAYER level and for STYLE in the CLASS context.

The figure below shows the result of applying simplifypt at the STYLE level with increasing values for tolerance (10 -
green, 20 - blue and 40 - red).
One of the STYLE definitions for the example (tolerance 40):

STYLE
GEOMTRANSFORM (simplifypt ([shape], 40))

COLOR 255 0 0
WIDTH 1

4.1. Mapfile 163

MapServer Documentation, Release 7.0.7

. 'r":b"!- (]
e - I
e
X
-:-,I_/-*"‘:I' o j,-'r ;r
£
\/
“.ﬂ"‘ : JJ-
< f
£
] ol
" 7 i
i 7.
7 T4
i —1
¥ o L.

Fig. 4.26: Geomtransform simplifypt

PATTERN 3 3 END
END # STYLE

smoothsia ([shape], smoothing_size, smoothing_iterations, preprocessing)

e GEOMTRANSFORM smoothsia returns a smoothed version of a line.

— GEOMTRANSFORM (smoothsia ([shape], smoothing_size, smoothing_iterations, preprocessing))

The following parameters are used:

shape (mandatory). Specify the geometry to be used

smoothing_size (optional). The window size (number of points) used by the algorithm. The default is 3.

smoothing_iterations (optional). The number of iterations of the algorithm. The default is 1.

described below. There are two possible preprocessing methods:

preprocessing (optional). Preprocessing method to add more vertices to the geometry prior to smoothing,

all Adds two intermediate vertices on each side of each original vertex. This is useful to preserve the
general shape of the line with low resolution data.

+ angle Add vertices at some specific places based on angle detection.

Note: Can be used at the LAYER level and for STYLE in the CLASS context.

Example of a simple layer definition:

LAYER NAME "my_layer"
TYPE LINE

STATUS DEFAULT

DATA roads.shp

CLASS

GEOMTRANSFORM (smoothsia([shape], 3, 1, 'angle'))

4.1. Mapfile

164

MapServer Documentation, Release 7.0.7

STYLE
WIDTH 2
COLOR 255 0 O
END
END

Here are some examples showing results with different parameter values.

No Smoothing SMOOTHING_SIZE=3, ITERATION=1

& g

/\/\

Fig. 4.27: Original geometry (left) and smoothsia with default parameters (right)

Tuning the behaviour of smoothsia

smoothsia has several parameters that can be used to tune its behaviour. The following sections describe some cases /
possibilities.

Dataset resolution is too high

If you are trying to smooth a line that has a very high resolution (high density of vertices at the current view scale),
you may not get the expected result because the vertices are too dense for the smoothing window size. In this case
you might want to simplify the geometries before the smoothing. You can combine smoothing and simplification in a
single geomtransform for that:

GEOMTRANSFORM (smoothsia (simplifypt ([shape], 10)))

See RFC 89: Layer Geomtransform for more info. Here’s a visualization of the issue:

4.1. Mapfile 165

MapServer Documentation, Release 7.0.7

SMOOTHING_STZFE=5, ITERATION=1 SMOOTHING_SIZE=5, ITERATION=5

T

Fig. 4.28: Smoothsia - Larger window size (left) and larger window size with more iterations (right)

(No Smoothing INormal Sinoothing with a hish resolution geometry Georntransform + Normal Smoothing with a high resolution geometry]
(: (
\ 1
I\ G \ g '\\o
5 ? N S > >
¢ \
! % X
= —

Qg
u\f

o
L7

&
\\/1

Fig. 4.29: High resolution geometry, smoothing and simplification

4.1. Mapfile 166

MapServer Documentation, Release 7.0.7

Dataset resolution is too low

If you are trying to smooth a long line that has a low density of vertices, you may not get the expected result in
some situations. You may lose some important parts of the geometry during the smoothing, for instance around acute
angles. You can improve the result by enabling a preprocessing step to add intermediate vertices along the line prior
to smoothing.

This behavior is controlled using the all value in the preprocessing argument of the smoothsia geomtransform:

GEOMTRANSFORM (smoothsia([shape], 3, 1, 'all'))

This preprocessing will be performed before the smoothing. It adds 2 intermediate vertices on each side of each
original vertex. This is useful if we really need to preserve the general shape of the low resolution line. Note that this
might have an impact on the rendering since there will be more vertices in the output.

Here’s a visualization of the issue:

Na Smoothing Normal Smoothing Preprocessing + Smoothing

Fig. 4.30: Effects of normal smoothing and preprocessing

Curves

The preprocessing step might not be appropriate for all cases since it can impact the smoothing result significantly.
However, without it, you might notice bad smoothing for curved lines with large distances between the line vertices.
See this example:

You can improve that by enabling another type of preprocessing: angle. This one will add points at some specific
places based on angle detection to recognize the curves. Here’s how you can enable it:

GEOMTRANSFORM (smoothsia ([shape], 3, 1, 'angle'))

Javascript transformation

Author Alan Boudreault
Contact aboudreault at mapgears.com

Last Updated 2013/16/12

Introduction

Using GEOMTRANSFORM this way makes it possible to modify the geometry programmatically in addition to the
built-in geomtransform functions.

4.1. Mapfile 167

MapServer Documentation, Release 7.0.7

No Smoothing
L
Fig. 4.31: Effects of normal smoothing (without preprocessing)
No Smoothing Angle preprocessing + Normal Smoothing

b

Fig. 4.32: The use of angle with smoothsia

4.1. Mapfile 168

MapServer Documentation, Release 7.0.7

Usage

Simply declare the javascript plugin this way:

MAP
LAYER
GEOMTRANSFORM "‘javascript://transform.js" # relative path
CLASS
END

END
END

The path can also be absolute.

MAP
LAYER
GEOMTRANSFORM "‘javascript:///home/user/transform.js" # absolute path
CLASS
END

END
END

The javascript plugin has to implement a function named geomtransform that will be automatically called. This
function has to return a new shape. Note that only the geometry of this new shape will be used, so your original shape
attributes will be preserved.

Access to the feature attributes is made through the shape.attributes javascript object.
The following javascript functions are available:

* alert(strl, str2, ..., str) print some text in MapServer logs

* print(strl, str2, ..., str) print some text in MapServer logs

* require(path_to_lib1l, path_to_lib2, ..., path_to_lib) include one or more javascript lib

Example 1. Simple Geomtransform

This example does a simple vertical translation ...

function geomtransform() {
new_shape = new shapeObij();
new_shape.add (new 1lineObj());
new_point = new pointObij();
new_point.x = shape.line(0) .point (0).x;

new_point.y = shape.line(0) .point (0).y+30000;
new_shape.line (0) .add (new_point) ;
return new_shape;

Example 2. Printing logs in MapServer logs

Extends example 1 by printing information to the MapServer log.

4.1. Mapfile 169

MapServer Documentation, Release 7.0.7

MAP
CONFIG "MS_ERRORFILE" "/tmp/mapserver.log"
DEBUG 1
LAYER
GEOMTRANSFORM "javascript://transform.js"
END
END

function geomtransform() {
new_shape = new shapeObj();
new_shape.add (new 1ineObj());
new_point = new pointObj();
new_point.x = shape.line(0) .point (0) .x;
new_point.y = shape.line(0) .point (0).y+30000;

print ('Modified y value from: ' + shape.line(0).point(0).y + ' to:

new_shape.line (0) .add (new_point);
return new_shape;

'+new_point.y);

Basic API

A minimal API is currently available to create a new shape.

pointObj

Constructor

new pointObj ()

Members

Type Name | Note
double | x
double | y
double | z

double | m

Methods

void setXY(double x, double y[, double m]) Set the x,y[,m] values.
void setXYZ(double x, double y, double Z[, double m]) Set the x,y,z[,m] values.

lineObj

4.1. Mapfile

MapServer Documentation, Release 7.0.7

Constructor

new lineObj ()

Members

Type | Name Note

int numpoints | read-only
Methods

pointObj point(int index) Returns the point at the index position.

void add(pointObj point) Add a point to the line.

void addXY (double x, double y[, double m]) Add point to the line from an x,y[,m] values.

void addX'YZ(double x, double y, double Z[, double m]) Add point to the line from an x,y,z[,m] values.

shapeObj

Constructor

new shapeObj (int type)

‘type’ is one of shapeObj.Point, shapeObj.Line, shapeObj.Polygon or shapeObj.Null

Members
Type | Name Note
int numvalues | read-only
int numlines read-only
int index read-only
int type read-only
int tileindex read-only
int classindex | read-only
text text
object | attributes

Methods

shapeObj clone() Returns a clone of the shape.

lineObj line(int index) Returns the line at the index position.

void add(lineObj line) Add a line to the shape.

void setGeometry(shapeObj shape) Replace the geometry of the object with the shape geometry.

4.1. Mapfile 171

MapServer Documentation, Release 7.0.7

4.1.10 GRID

Description

The GRID object can be used to add labeled graticule lines to your map. Initially developed in 2003 by John Novak, the
GRID object is designed to be used inside a LAYER object to allow multiple GRID objects for a single map (allowing
for example: a lat/long GRID, a State Plane GRID, and a UTM GRID to be displayed on the same map image).

Mapfile Parameters:

LABELFORMAT [DDIDDMMIDDMMSSIC format string] Format of the label. “DD” for degrees, “DDMM” for
degrees minutes, and “DDMMSS” for degrees, minutes, seconds. A C-style formatting string is also allowed,
such as “%gA¥” to show decimal degrees with a degree symbol. The default is decimal display of whatever SRS
you’re rendering the GRID with.

MINARCS [double] The minimum number of arcs to draw. Increase this parameter to get more lines. Optional.
MAXARCS [double] The maximum number of arcs to draw. Decrease this parameter to get fewer lines. Optional.

MININTERVAL [double] The minimum number of intervals to try to use. The distance between the grid lines, in
the units of the grid’s coordinate system. Optional.

MAXINTERVAL [double] The maximum number of intervals to try to use. The distance between the grid lines, in
the units of the grid’s coordinate system. Optional.

MINSUBDIVIDE [double] The minimum number of segments to use when rendering an arc. If the lines should be
very curved, use this to smooth the lines by adding more segments. Optional.

MAXSUBDIVIDE [double] The maximum number of segments to use when rendering an arc. If the graticule should
be very straight, use this to minimize the number of points for faster rendering. Optional, default 256.

Examplei: Grid Displaying Degrees

LAYER
NAME "grid"
METADATA
"DESCRIPTION" "Grid"
END
TYPE LINE
STATUS ON
CLASS
NAME "Graticule"
COLOR 0 0 O
LABEL
COLOR 255 0 0
FONT "sans"
TYPE truetype
SIZE 8
POSITION AUTO
PARTIALS FALSE
BUFFER 2
OUTLINECOLOR 255 255 255
END
END
PROJECTION
"init=epsg:4326"
END

4.1. Mapfile 172

MapServer Documentation, Release 7.0.7

GRID
LABELFORMAT "DD"
END
END # Layer

Example2: Grid Displaying Degrees with Symbol

LAYER
NAME "grid"
METADATA
"DESCRIPTION" "Grid"
END
TYPE LINE
STATUS ON
CLASS
NAME "Graticule"
COLOR 0 0 0
LABEL
COLOR 255 0 0
FONT "sans"
TYPE truetype
SIZE 8
POSITION AUTO
PARTIALS FALSE
BUFFER 2
OUTLINECOLOR 255 255 255
END

4.1. Mapfile 173

MapServer Documentation, Release 7.0.7

END
PROJECTION
"init=epsg:4326"
END
GRID
LABELFORMAT '2gAt'
END
END # Layer

£,
)

P

Lr
L]

I | I
—1?0' g - et b ¢ T -EF“ -25° 3 5?“ ?f” il i 1%5“ 1587

Example3: Grid Displayed in Other Projection (Google Mercator)

LAYER
NAME "grid"
METADATA
"DESCRIPTION" "Grid"
END
TYPE LINE
STATUS ON
CLASS
NAME "Graticule"
COLOR 0 0 O
LABEL
COLOR 255 0 0
FONT "sans"
TYPE truetype
SIZE 8
POSITION AUTO

4.1. Mapfile 174

MapServer Documentation, Release 7.0.7

PARTIALS FALSE
BUFFER 2
OUTLINECOLOR 255 255 255
END
END
PROJECTION
"init=epsg:3857"
END
GRID
LABELFORMAT '?3.(0fm'
MININTERVAL 5000000
END
END # Layer

| !
-15000000m -100000

15000000m

EDDUIJUDm 1000G000m 15000000m

e

150@0000m

-5000000m

-ISDUIIIIUUUm -IUUU?UUUW-SHU a0m am

BUUUI]UUm ‘IUUUEDUUm 15000000m

Note: Pay attention to the values you use for the INTERVAL parameter; it is possible to confuse/overload MapServer
by telling it to draw a graticule line every meter (MININTERVAL 1).

4.1.11 INCLUDE

When this directive is encountered parsing switches to the included file immediately. As a result the included file can

be comprised of any valid mapfile syntax. For example:

INCLUDE 'myLayer.map'

Performance does not seem to be seriously impacted with limited use, however in high performance instances you

4.1. Mapfile

175

MapServer Documentation, Release 7.0.7

may want to use includes in a pre-processing step to build a production mapfile. The C pre-processor can also be used

(albeit with a different syntax) and is far more powerful.

Notes

* Supported in versions 4.10 and higher.

* The name of the file to be included MUST be quoted (single or double quotes).

* Includes may be nested, up to 5 deep.

* File location can be given as a full path to the file, or (in MapServer >= 4.10.1) as a path relative to the mapfile.

* Debugging can be problematic because:

1. the file an error occurs in does not get output to the user

2. the line number counter is not reset for each file. Here is one possible error that is thrown when the include

file cannot be found:

—map"

msyylex () : Unable to access file.

Error opening included file "parks_include.

Example

MAP
NAME "include_mapfile"
EXTENT O O 500 500
SIZE 250 250

INCLUDE "test_include_symbols.map"
INCLUDE "test_include_layer.map"
END

where test_include_symbols.map contains:

SYMBOL

NAME 'square'

TYPE VECTOR

FILLED TRUE

POINTS 0 0 0 1 1 1 1 0 0 O END
END

and test_include_layer.map contains:

LAYER
TYPE POINT
STATUS DEFAULT
FEATURE

POINTS 10 10 40 20 300 300 400 10 10 400 END

END

CLASS
NAME 'Church'
COLOR 0 0 0
SYMBOL 'square'
SIZE 7
STYLE

4.1. Mapfile

176

MapServer Documentation, Release 7.0.7

SYMBOL "square"
SIZE 5
COLOR 255 255 255

END

STYLE
SYMBOL "square"
SIZE 3
COLOR 0 0 255

END

END
END

4.1.12 JOIN

Description

Joins are defined within a LAYER object. It is important to understand that JOINs are ONLY available once a query
has been processed. You cannot use joins to affect the look of a map. The primary purpose is to enable lookup tables
for coded data (e.g. 1 => Forest) but there are other possible uses.

Supported Formats

* DBF/XBase files

¢ CSV (comma delimited text file)
* PostgreSQL tables

MySQL tables

Mapfile Parameters:

CONNECTION [string] Parameters required for the join table’s database connection (not required for DBF or CSV
joins). The following is an example connection for PostgreSQL:

CONNECTION "host=127.0.0.1 port=5432 user=pg password=pg dbname=somename"
CONNECTIONTYPE POSTGRESQL

CONNECTIONTYPE [csvimysqllpostgresql] Type of connection (not required for DBF joins). For PostgreSQL
use postgresql, for CSV use csv, for MySQL use mysql.

FOOTER [filename] Template to use after a layer’s set of results have been sent. In other words, this header HTML
will be displayed after the contents of the TEMPLATE HTML.

FROM [column] Join column in the dataset. This is case sensitive.

HEADER [filename] Template to use before a layer’s set of results have been sent. In other words, this header HTML
will be displayed before the contents of the TEMPLATE HTML.

NAME [string] Unique name for this join. Required.

TABLE [filenameltablename] For file-based joins this is the name of XBase or comma delimited file (relative to the
location of the mapfile) to join TO. For PostgreSQL support this is the name of the PostgreSQL table to join
TO.

4.1. Mapfile 177

MapServer Documentation, Release 7.0.7

TEMPLATE [filename] Template to use with one-to-many joins. The template is processed once for each record
and can only contain substitutions for columns in the joined table. Refer to the column in the joined table in
your template like [joinname_columnname], where joinname is the NAME specified for the JOIN object.

TO [column] Join column in the table to be joined. This is case sensitive.
TYPE [ONE-TO-ONEIONE-TO-MANY] The type of join. Default is one-to-one.

Example 1: Join from Shape dataset to DBF file

Mapfile Layer

LAYER

NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS

NAME "Province"

STYLE

OUTLINECOLOR 120 120 120
COLOR 255 255 0

END
END
TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"
JOIN

NAME "test"

TABLE "../data/lookup.dbf"

FROM "ID"

TO "IDENT"

TYPE ONE-TO-ONE
END

END # layer

Ogrinfo

>ogrinfo lookup.dbf lookup -summary
INFO: Open of "lookup.dbf'
using driver “ESRI Shapefile' successful.

Layer name: lookup
Geometry: None
Feature Count: 12
Layer SRS WKT:
(unknown)

IDENT: Integer (2.0)
VAL: Integer (2.0)

>ogrinfo prov.shp prov —-summary
INFO: Open of “prov.shp'
using driver “ESRI Shapefile' successful.

Layer name: prov

4.1. Mapfile 178

MapServer Documentation, Release 7.0.7

Geometry: Polygon
Feature Count: 12

Extent: (-2340603.750000, -719746.062500) - (3009430.500000, 3836605.250000)
Layer SRS WKT:
(unknown)

NAME: String (30.0)
ID: Integer (2.0)

Template

<tr bgcolor="#EFEFEF">

<td align="left">[NAME]</td>

<td align="left">[test_VAL]</td>
</tr>

Example 2: Join from Shape dataset to PostgreSQL table

Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE
OUTLINECOLOR 120 120 120
COLOR 255 255 0
END
END
TOLERANCE 20
TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"
JOIN
NAME "test"
CONNECTION "host=127.0.0.1 port=5432 user=pg password=pg dbname=join"
CONNECTIONTYPE postgresqgl
TABLE "lookup"
FROM "ID"
TO "ident"
TYPE ONE-TO-ONE
END
END # layer

Ogrinfo

>ogrinfo -ro PG:"host=127.0.0.1 port=5432 user=pg password=pg dbname=join"
lookup —-summary
INFO: Open of "PG:host=127.0.0.1 port=5432 user=pg password=pg dbname=join'

4.1. Mapfile 179

MapServer Documentation, Release 7.0.7

using driver "PostgreSQL' successful.

Layer name: lookup
Geometry: Unknown (any)
Feature Count: 12
Layer SRS WKT:
(unknown)

ident: Integer (0.0)
val: Integer (0.0)

Template

<tr bgcolor="#EFEFEEF">

<td align="left">[NAME]</td>

<td align="left">[test_val]l</td>
</tr>

Example 3: Join from Shape dataset to CSV file

Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE
OUTLINECOLOR 120 120 120
COLOR 255 255 0
END
END
TOLERANCE 20

TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"

JOIN
NAME "test"
CONNECTIONTYPE CSV

TABLE "../data/lookup.csv"
FROM "ID"
#TO "IDENT" # see note below
TO "1" # see note below
TYPE ONE-TO-ONE

END

END # layer

4.1. Mapfile

180

MapServer Documentation, Release 7.0.7

CSV File Structure

"TDENT" , "YAT"
1,12

Note: The CSV driver currently doesn’t read column names from the first row. It just uses indexes (1, 2, ... n) to
reference the columns. It’s ok to leave column names as the first row since they likely won’t match anything but they
aren’t used. Typically you’d see something like TO “1” in the JOIN block. Then in the template you’d use [name_1],
[name_2], etc...

Ogrinfo

>ogrinfo lookup.csv lookup —-summary
INFO: Open of " lookup.csv'
using driver “CSV' successful.

Layer name: lookup
Geometry: None
Feature Count: 12
Layer SRS WKT:
(unknown)

IDENT: String (0.0)
VAL: String (0.0)

Template (prov.html)

Ideally this the template should look like this:

<!-- MapServer Template ——>
<tr bgcolor="#EFEFEF">
<td align="left">[NAME]</td>
<td align="left">[test_VAL]</td>
</tr>

But since attribute names are not supported for CSV files (see note above), the following will have to be used:

<!-- MapServer Template ——>
<tr bgcolor="#EFEFEF">
<td align="left">[NAME]</td>
<td align="left">[test_2]</td>
</tr>

4.1. Mapfile 181

MapServer Documentation, Release 7.0.7

Example 4: Join from Shape dataset to MySQL

Mapfile Layer

LAYER
NAME "prov_bound"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE
OUTLINECOLOR 120 120 120
COLOR 255 255 0
END # style
END # class
TOLERANCE 20

TEMPLATE "../htdocs/cgi-query-templates/prov.html"
HEADER "../htdocs/cgi-query-templates/prov-header.html"
FOOTER "../htdocs/cgi-query-templates/footer.html"

JOIN

NAME "mysgl-join"
CONNECTIONTYPE MYSQL
CONNECTION 'server:user:password:database’
TABLE "mysgl-tablename"
FROM "ID"
TO "mysgl-column"
TYPE ONE-TO-ONE

END # join

END # layer

Example 5: One-to-many join

In a join of type ONE-TO-MANY, the JOIN object needs to contain a TEMPLATE. This TEMPLATE is used for each
matching record in the join table. Columns in the join table are referenced using <join_name>_<join_column_name>.
Columns in the layer table are referenced using <column_name>.

For a one-to-many join, the LAYER TEMPLATE file has to contain a reference to the the JOIN object, as follows:
[join_<join_name>].

In this example, it is assumed that the join table many.dbf contains the columns MANYFIELD1 and MANYFIELD2
in addition to the join column (IDENT).

Layer object:

LAYER
NAME "Jjoinonetomany"
TYPE POLYGON
STATUS DEFAULT
DATA "prov.shp"
CLASS
NAME "Province"
STYLE
OUTLINECOLOR 120 120 120

4.1. Mapfile 182

MapServer Documentation, Release 7.0.7

COLOR 255 255 0
END # style
END # class
TEMPLATE "oneToMany.html"
HEADER "oneToMany_header.html"
FOOTER "oneToMany_footer.html"
JOIN
NAME "onetomanytest"
TABLE "many.dbf"
FROM "ID"
TO "IDENT"
TYPE ONE-TO-MANY
TEMPLATE "oneToMany_join.html"
END # join
END # layer

Template oneToMany_header.html:

<!-- MapServer Template ——>
<html>
<head><title>One to Many Join</title></head>
<body>
<hl>MapServer output</hl>
<table>

Template oneToMany.html:

<!-- MapServer Template ——>
<tr>
<td>[ID]</td>
<td><table>
[join_onetomanytest]
</table></td>
</tr>

Template oneToMany_join.html:

<!-- MapServer Template ——>
<tr>
<td>[NAME]</td>
<td>[onetomanytest_MANYFIELD1]</td>
<td>[onetomanytest_MANYFIELD2]</td>
</tr>

Template oneToMany_footer.html:

<!-- MapServer Template —->
</table>
</body>
<html>

4.1.13 LABEL

ALIGN [lefticenterlright] Specifies text alignment for multiline labels (see WRAP) Note that the alignment algorithm
is far from precise, so don’t expect fabulous results (especially for right alignment) if you’re not using a fixed
width font.

4.1. Mapfile 183

MapServer Documentation, Release 7.0.7

New in version 5.4.
ANGLE [doublelautolauto2lfollowlattribute]
* Angle, counterclockwise, given in degrees, to draw the label. Default is 0.
e AUTO allows MapServer to compute the angle. Valid for LINE layers only.

¢ AUTO?2 same as AUTO, except no logic is applied to try to keep the text from being rendered in reading
orientation (i.e. the text may be rendered upside down). Useful when adding text arrows indicating the
line direction.

* FOLLOW was introduced in version 4.10 and tells MapServer to compute a curved label for appropriate
linear features (see RFC11 for specifics). See also MAXOVERLAPANGLE.

* [Attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for an-
gle values. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named
“MYANGLE” that holds angle values for each record, your LABEL object might contain:

LABEL
COLOR 150 150 150
OUTLINECOLOR 255 255 255
FONT "sans"
TYPE truetype
SIZE 6
ANGLE [MYANGLE]
POSITION AUTO
PARTIALS FALSE
END

The associated RFC document for this feature is RFC19.

ANTIALIAS [truelfalse] Should text be antialiased? Note that this requires more available colors, decreases drawing
performance, and results in slightly larger output images. Only useful for GD (gif) rendering. Default is false.
Has no effect for the other renderers (where anti-aliasing can not be turned off).

BACKGROUNDCOLOR [r] [g] [b] | [hexadecimal string] Color to draw a background rectangle (i.e. billboard).
Off by default.

Note: Removed in 6.0. Use a LABEL STYLE object with GEOMTRANSFORM labelpoly and COLOR.

BACKGROUNDSHADOWCOLOR [r] [g] [b] | [hexadecimal string] Color to draw a background rectangle (i.e.
billboard) shadow. Off by default.

Note: Removed in 6.0. Use a LABEL STYLE object with GEOMTRANSFORM labelpoly, COLOR and OFF-
SET.

BACKGROUNDSHADOWSIZE [x][y] How far should the background rectangle be offset? Default is 1.

Note: Removed in 6.0. Use a LABEL STYLE object with GEOMTRANSFORM labelpoly, COLOR and OFF-
SET.

BUFFER [integer] Padding, in pixels, around labels. Useful for maintaining spacing around text to enhance read-
ability. Available only for cached labels. Default is 0.

COLOR [r] [g] [b] | [hexadecimal string] | [attribute]

4.1. Mapfile 184

MapServer Documentation, Release 7.0.7

¢ Color to draw text with.

* r, g and b shall be integers [0..255]. To specify green, the following is used:

’COLOR 0 255 0

* hexadecimal string can be

— RGB value: “#rrggbb”. To specify magenta, the following is used:

’COLOR "#FFOOFE"

— RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

’COLOR "#FFOOFFCC"

* [Artribute] was introduced in version 5.0, to specify the item name in the attribute table to use for color
values. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named “MY-
COLOR?” that holds color values for each record, your LABEL object might contain:

LABEL
COLOR [MYCOLOR]
OUTLINECOLOR 255 255 255
FONT "sans"
TYPE truetype
SIZE 6
POSITION AUTO
PARTIALS FALSE
END

The associated RFC document for this feature is RFC19.

ENCODING [string] Supported encoding format to be used for labels. If the format is not supported, the label will
not be drawn. Requires the iconv library (present on most systems). The library is always detected if present on
the system, but if not, the label will not be drawn.

Required for displaying international characters in MapServer. More information can be found in the Label
Encoding document.

Deprecated since version 7.0: Removed. UTF-8 is now the encoding used by MapServer, and data set encodings
are handled using LAYER ENCODING.

EXPRESSION [string] Expression that determines when the LABEL is to be applied. See EXPRESSION in CLASS.
New in version 6.2.
FONT [namelattribute]
 Font alias (as defined in the FONTSET) to use for labeling.
e [Artribute] was introduced in version 5.6 to specfify the font alias.

* May contain a comma-separated list of up to MS_MAX_LABEL_FONTS (usually 5) font aliases used as
fallback fonts in renderers supporting it, if a glyph is not available in a font. If specified directly, be sure
to enclose the list with quotes. See RFC80.

* Since version 7, Mapserver supports language specific fonts. See RFC98.

FORCE [truelfalse] Forces labels for a particular class on, regardless of collisions. Available only for cached labels.
Default is false. If FORCE is true and PARTIALS is false, FORCE takes precedence, and partial labels are
drawn.

4.1. Mapfile 185

MapServer Documentation, Release 7.0.7

MAXLENGTH [integer] This keyword interacts with the WRAP keyword so that line breaks only occur after the
defined number of characters.

Table 4.9: Interaction with WRAP keyword

maxlength =0 maxlength > 0
wrap = always wrap at the WRAP newline at the first WRAP character after
AAYcharaAZ character MAXLENGTH characters
no wrap no processing skip label if it contains more than MAXLENGTH
characters

The associated RFC document for this feature is RFC40.
New in version 5.4.

Support for negative MAXLENGTH that implied forced linebreaks is not supported since version 7, a
workaround implies pre-processing such labels to include linebreaks or wrap characters.

MAXOVERLAPANGLE [double] Angle threshold to use in filtering out ANGLE FOLLOW labels in which char-
acters overlap (floating point value in degrees). This filtering will be enabled by default starting with MapServer
6.0. The default MAXOVERLAPANGLE value will be 22.5 degrees, which also matches the default in
GeoServer. Users will be free to tune the value up or down depending on the type of data they are dealing
with and their tolerance to bad overlap in labels. As per RFC 60, if MAXOVERLAPANGLE is set to 0, then we
fall back on pre-6.0 behavior which was to use maxoverlapangle = 0.4*MS_PI (40% of 180 degrees = 72degree).

The associated RFC document for this feature is RFC60.

MAXSCALEDENOM [double] Minimum scale at which this LABEL is drawn. Scale is given as the denominator
of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.

New in version 5.4.
See also:
Map Scale

MAXSIZE [double] Maximum font size to use when scaling text (pixels). Default is 256. Starting from version 5.4,
the value can also be a fractional value (and not only integer). See LAYER SYMBOLSCALEDENOM.

MINDISTANCE [integer] Minimum distance between duplicate labels. Given in pixels. Starting from version 7.2,
the distance is calculated from the label boundary. Prior versions used the label center.

MINFEATURESIZE [integerlauto] Minimum size a feature must be to be labeled. Given in pixels. For line data
the overall length of the displayed line is used, for polygons features the smallest dimension of the bounding box
is used. “Auto” keyword tells MapServer to only label features that are larger than their corresponding label.
Auvailable for cached labels only.

MINSCALEDENOM [double] Maximum scale at which this LABEL is drawn. Scale is given as the denominator of
the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.

New in version 5.4.
See also:
Map Scale

MINSIZE [double] Minimum font size to use when scaling text (pixels). Default is 4. Starting from version 5.4, the
value can also be a fractional value (and not only integer). See LAYER SYMBOLSCALEDENOM.

OFFSET [x][y] Offset values for labels, relative to the lower left hand corner of the label and the label point. Given
in pixels. In the case of rotated text specify the values as if all labels are horizontal and any rotation will be
compensated for.

4.1. Mapfile 186

MapServer Documentation, Release 7.0.7

When used with FOLLOW angle, two additional options are available to render the label parallel to the original
feature:

* OFFSET x -99 : will render the label to the left or to the right of the feature, depending on the sign of {x}.
* OFFSET x 99 : will render the label above or below the feature, depending on the sign of {x}.
See LAYER SYMBOLSCALEDENOM.
OUTLINECOLOR [r] [g] [b] | [hexadecimal string] | [attribute]
* Color to draw a one pixel outline around the characters in the text.

* 1, g and b shall be integers [0..255]. To specify green, the following is used:

’OUTLINECOLOR 0 255 0 ‘

* hexadecimal string can be

— RGB value: “#rrggbb”. To specify magenta, the following is used:

’0UTLINECOLOR "#FFOOFE"

— RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

’OUTLINECOLOR "#FFOOFEFCC"

e [attribute] was introduced in version 5.0, to specify the item name in the attribute table to use for color
values. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named “MY-
OUTCOLOR?” that holds color values for each record, your LABEL object might contain:

LABEL
COLOR 150 150 150
OUTLINECOLOR [MYOUTCOLOR]
FONT "sans"
TYPE truetype
SIZE ©
POSITION AUTO
PARTIALS FALSE
END

The associated RFC document for this feature is RFC19.

OUTLINEWIDTH [integer] Width of the outline if OUTLINECOLOR has been set. Defaults to 1. Currently only
the AGG renderer supports values greater than 1, and renders these as a ‘halo’ effect: recommended values are
3 or 5. If the renderer supports it and the text size is variable, the outline will be scaled proportionally to the
text and the value specified as OUTLINEWIDTH is therefore the width at the same scale at which the SIZE is
specified.

PARTIALS [truelfalse] Can text run off the edge of the map? Default is true. If FORCE is true and PARTIALS is
false, FORCE takes precedence, and partial labels are drawn.

POSITION [ulluclurlellcclerillilclirlauto] Position of the label relative to the labeling point (layers only). First letter
is “Y” position, second letter is “X” position. “Auto” tells MapServer to calculate a label position that will not
interfere with other labels. With points, MapServer selects from the 8 outer positions (i.e. excluding cc). With
polygons, MapServer selects from cc (added in MapServer 5.4), uc, Ic, cl and cr as possible positions. With
lines, it only uses Ic or uc, until it finds a position that doesn’t collide with labels that have already been drawn.
If all positions cause a conflict, then the label is not drawn (Unless the label’s FORCE a parameter is set to
“true”). “Auto” placement is only available with cached labels.

4.1. Mapfile 187

MapServer Documentation, Release 7.0.7

PRIORITY [integer]i[item_name]l[attribute] The priority parameter takes an integer value between 1 (lowest) and
10 (highest). The default value is 1. It is also possible to bind the priority to an attribute (item_name) using
square brackets around the [item_name]. e.g. “PRIORITY [someattribute]”

Labels are stored in the label cache and rendered in order of priority, with the highest priority levels rendered
first. Specifying an out of range PRIORITY value inside a map file will result in a parsing error. An out of range
value set via MapScript or coming from a shape attribute will be clamped to the min/max values at rendering
time. There is no expected impact on performance for using label priorities.

[Attribute] was introduced in version 5.6.
New in version 5.0.

REPEATDISTANCE [integer] The label will be repeated on every line of a multiline shape and will be repeated
multiple times along a given line at an interval of REPEATDISTANCE pixels.

The associated RFC document for this feature is RFC57.
New in version 5.6.

SHADOWCOLOR [r] [g] [b] | [hexadecimal string] Color of drop shadow. A label with the same text will be
rendered in this color before the main label is drawn, resulting in a shadow effect on the the label characters.
The offset of the renderered shadow is set with SHADOWSIZE.

* r, g and b shall be integers [0..255]. To specify green, the following is used:

’SHADOWCOLOR 0 255 0 ‘

* hexadecimal string can be

— RGB value: “#rrggbb”. To specify magenta, the following is used:

’SHADOWCOLOR "#FFOOFE"

— RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

’SHADOWCOLOR "#FFOOFFCC"

SHADOWSIZE [x][y]l[attribute][attribute]l[x][attribute]l[attribute][y] Shadow offset in pixels, see SHADOW-
COLOR.

[Attribute] was introduced in version 6.0, and can be used like:

SHADOWSIZE 2 2

SHADOWSIZE [shadowsizeX] 2
SHADOWSIZE 2 [shadowsizeY]
SHADOWSIZE [shadowsize] [shadowsize]

SIZE [integer]|[tinylsmalllmediumllargelgiant]i[attribute]

 Text size. Use a number to give the size in pixels of your TrueType font based label, or any of the other 5
listed keywords for bitmap fonts.

When scaling is in effect (SYMBOLSCALEDENOM is specified for the LAYER), SIZE gives the size of the
font to be used at the map scale 1:SYMBOLSCALEDENOM.

* [Artribute] was introduced in version 5.0, to specify the item name in the attribute table to use for size val-
ues. The hard brackets [] are required. For example, if your shapefile’s DBF has a field named “MYSIZE”
that holds size values for each record, your LABEL object might contain:

4.1. Mapfile 188

MapServer Documentation, Release 7.0.7

LABEL
COLOR 150 150 150
OUTLINECOLOR 255 255 255
FONT "sans"
TYPE truetype
SIZE [MYSIZE]
POSITION AUTO
PARTIALS FALSE
END

The associated RFC document for this feature is RFC19.

Note: The SIZE value can only be an integer (not a fractional value), because the renderer Freetype only
accepts integers.

STYLE The start of a STYLE object.
Label specific mechanisms of the STYLE object are the GEOMTRANSFORM options:

GEOMTRANSFORM [labelpntllabelpoly] Creates a geometry that can be used for styling the label. Does
not apply to ANGLE FOLLOW labels.

* labelpnt draws a marker on the geographic position the label is attached to. This corresponds to the
center of the label text only if the label is in position CC.

* labelpoly generates the bounding rectangle for the text, with 1 pixel of padding added in all directions.
The resulting geometries can be styled using the mechanisms available in the STYLE object.

Example - draw a red background rectangle for the labels (i.e. billboard) with a “shadow” in
gray:

STYLE
GEOMTRANSFORM 'labelpoly'
COLOR 153 153 153
OFFSET 3 2

END # STYLE

STYLE
GEOMTRANSFORM 'labelpoly'
COLOR 255 0 0

END # STYLE

New in version 6.0.

TEXT [stringlexpression] Text to label features with (useful when multiple labels are used). Overrides values ob-
tained from the LAYER LABELITEM and the CLASS TEXT. See TEXT in CLASS.

New in version 6.2.

TYPE [bitmapltruetype] Type of font to use. Generally bitmap fonts are faster to draw then TrueType fonts. How-
ever, TrueType fonts are scalable and available in a variety of faces. Be sure to set the FONT parameter if you
select TrueType.

Note: Bitmap fonts are only supported with the AGG and GD renderers.

WRAP [character] Character that represents an end-of-line condition in label text, thus resulting in a multi-line label.
Interacts with MAXLENGTH for conditional line wrapping after a given number of characters

4.1. Mapfile 189

MapServer Documentation, Release 7.0.7

4.1.14 LAYER

VALUES ‘VALIDATIDN ‘ ‘ LEADER ‘ LABEL POINTS

o

Inside a layer, only a single class will be used for the rendering of a feature. Each feature is tested against each
class in the order in which they are defined in the mapfile. The first class that matches the its min/max scale
constraints and its EXPRESSION check for the current feature will be used for rendering.

CLASS Signals the start of a CLASS object.

CLASSGROUP [string] Specify the class’s group that would be considered at rendering time. The CLASS object’s
GROUP parameter must be used in combination with CLASSGROUP.

CLASSITEM [attribute] Item name in attribute table to use for class lookups.
CLUSTER Signals the start of a CLUSTER object.

The CLUSTER configuration option provides to combine multiple features from the layer into single (aggre-
gated) features based on their relative positions. Supported only for POINT layers.

See also:
rfc69
COMPOSITE Signals the start of a COMPOSITE object.

One or more COMPOSITE blocks can be used to signal that rendering should be done in a temporary image
and merged onto the final map image in a final step. The options defined inside the COMPOSITE block will
determine how this merging should be done (e.g. by appying opacity, composition operator, or pixel filters)

See also:
rfcl113
CONNECTION [string] Database connection string to retrieve remote data.

An SDE connection string consists of a hostname, instance name, database name, username and password
separated by commas.

Warning: MapServer’s native SDE driver was removed for the MapServer 7.0 release (see discussion).
SDE support can still be accessed through the OGR driver.

A PostGIS connection string is basically a regular PostgreSQL connection string, it takes the form of
“user=nobody password=****** dbname=dbname host=localhost port=5432"

An Oracle connection string: user/pass[@db]
See also:
Vector Data for specific connection information for various data sources.

See also:

4.1. Mapfile 190

http://lists.osgeo.org/pipermail/mapserver-dev/2015-February/014349.html
http://www.gdal.org/drv_sde.html

MapServer Documentation, Release 7.0.7

See Kernel Density Estimation (Dynamic Heatmap) for specific connection information for kernel density esti-
mation.

CONNECTIONTYPE [contourlkerneldensityllocallogrloraclespatiallpluginlpostgisisdelunionluvrasterIwfslwms]
Type of connection. Default is local. See additional documentation for any other type.

See also:

Vector Data for specific connection information for various data sources. See Union Layer for combining layers,
added in MapServer 6.0

See also:

See Kernel Density Estimation (Dynamic Heatmap) for specific connection information for kernel density esti-
mation.

Note: mygis is another connectiontype, but it is deprecated; please see the MySQOL section of the Vector Data
document for connection details.

DATA [filename]l[sde parameters][postgis table/column][oracle table/column] Full filename of the spatial data to
process. No file extension is necessary for shapefiles. Can be specified relative to the SHAPEPATH option from
the Map Object.

If this is an SDE layer, the parameter should include the name of the layer as well as the geometry column, i.e.
“mylayer,shape,myversion”.

If this is a PostGIS layer, the parameter should be in the form of “<columnname> from <tablename>", where
“columnname” is the name of the column containing the geometry objects and “tablename” is the name of the
table from which the geometry data will be read.

For Oracle, use “shape FROM table” or “shape FROM (SELECT statement)” or even more complex Oracle
compliant queries! Note that there are important performance impacts when using spatial subqueries however.
Try using MapServer’s FILTER whenever possible instead. You can also see the SQL submitted by forcing an
error, for instance by submitting a DATA parameter you know won’t work, using for example a bad column
name.

See also:

Vector Data for specific connection information for various data sources.
DEBUG [offlonl011121314I5] Enables debugging of a layer in the current map.

Debugging with MapServer versions >= 5.0:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer errorfile if one
is set using the “MS_ERRORFILE” environment variable. You can set the environment variable by using the
CONFIG parameter at the MAP level of the mapfile, such as:

’CONFIG "MS_ERRORFILE" "/msd4w/tmp/ms_error.txt" ‘

You can also set the environment variable in Apache by adding the following to your httpd.conf:

’SetEnv MS_ERRORFILE "/msdw/tmp/ms_error.txt" ‘

Once the environment variable is set, the DEBUG mapfile parameter can be used to control the level of debug-
ging output. Here is a description of the possible DEBUG values:

* DEBUG O or OFF - only msSetError() calls are logged to MS_ERRORFILE. No msDebug() output at
all. This is the default and corresponds to the original behavior of MS_ERRORFILE in MapServer 4.x

4.1. Mapfile 191

MapServer Documentation, Release 7.0.7

* DEBUG 1 or ON - includes all output from DEBUG 0 plus msDebug() warnings about common pitfalls,
failed assertions or non-fatal error situations (e.g. missing or invalid values for some parameters, missing
shapefiles in tileindex, timeout error from remote WMS/WES servers, etc.)

* DEBUG 2 - includes all output from DEBUG 1 plus notices and timing information useful for tuning
mapfiles and applications

* DEBUG 3 - all of DEBUG 2 plus some debug output useful in troubleshooting problems such as WMS
connection URLSs being called, database connection calls, etc. This is the recommended level for debug-
ging mapfiles.

* DEBUG 4 - DEBUG 3 plus even more details...

* DEBUG 5 - DEBUG 4 plus any msDebug() output that might be more useful to the developers than to the
users.

You can also set the debug level by using the “MS_DEBUGLEVEL” environment variable.

The DEBUG setting can also be specified for the entire map, by setting the DEBUG parameter in the MAP
object.

For more details on this debugging mechanism, please see RFC28.
Debugging with MapServer versions < 5:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer logfile if one is
set using the LOG parameter in the WEB object. Apache users will see timing details for drawing in Apache’s
error_log file. Requires MapServer to be built with the DEBUG=MSDEBUG option (—with-debug configure
option).

DUMP [truelfalse] Since 6.0, DUMP is not used anymore. LAYER METADATA is used instead.

Switch to allow MapServer to return data in GML format. Useful when used with WMS GetFeaturelnfo opera-
tions. “false” by default.

Deprecated since version 6.0: LAYER METADATA is used instead.
See also:

WMS Server

ENCODING [string] The encoding used for text in the layer data source. The value must be supported by I[CONV

(for example “LATIN1”). When ENCODING is set (and not equal to “UTF-8"), the data source text attributes
will be converted to UTF-8.

New in version 7.0.

EXTENT [minx] [miny] [maxx] [maxy] The spatial extent of the data. In most cases you will not need to specify

this, but it can be used to avoid the speed cost of having MapServer compute the extents of the data. An
application can also possibly use this value to override the extents of the map.

FEATURE Signals the start of a FEATURE object.

FILTER ([string]

This parameter allows for data specific attribute filtering that is done at the same time spatial filtering is
done, but before any CLASS expressions are evaluated. The string is simply a MapServer expression:

’FILTER ("[type]"="'road' and [size]<2)

Native filters are supported through the NATIVE_FILTER PROCESSING key:

’PROCESSING 'NATIVE_FILTER=1id=234"' ‘

4.1. Mapfile 192

MapServer Documentation, Release 7.0.7

Note: Until MapServer 6, native filters could be specified as:

FILTER 'where id=234"'.

But this is no longer supported.

FILTERITEM [attribute] Item to use with simple F/LTER expressions. OGR and shapefiles only.
FOOTER [filename] Template to use after a layer’s set of results have been sent. Multiresult query modes only.

GEOMTRANSFORM [<expression>l<Javascript file>] Used to indicate that the current feature will be trans-
formed. Introduced in version 6.4.

* <expression>: Applies the given expression to the geometry.
Supported expressions:

— (buffer([shape],dist)): Buffer the geometry ([shape]) using dist pixels as buffer distance. For poly-
gons, a negative dist will produce a setback.

— (simplify([shape],tolerance)): simplifies a geometry ([shape]) using the standard Douglas-Peucker
algorithm.

— (simplifypt([shape], tolerance)): simplifies a geometry ([shape]), ensuring that the result is a valid
geometry having the same dimension and number of components as the input. folerance must be
non-negative.

— (generalize([shape],tolerance)): simplifies a geometry ([shape]) in way comparable to FME’s
ThinNoPoint algorithm. See http://trac.osgeo.org/gdal/ticket/966 for more information.

— (smoothsia([shape], smoothing_size, smoothing_iteration, preprocessing)): will smooth a geometry
([shape]) using the STA algorithm

See also:
GEOMTRANSFORM - Geometry Transformations and shape_smoothing

There is a difference between STYLE and LAYER GEOMTRANSFORM. LAYER-level will receive
ground coordinates (meters, degress, etc) and STYLE-level will receive pixel coordinates. The argument
to methods such as simplify() must be in the same units as the coordinates of the shapes at that point of the
rendering workflow, i.e. pixels at the STYLE-level and in ground units at the LAYER-level.

LAYER NAME "my_layer"
TYPE LINE
STATUS DEFAULT
DATA "lines.shp"
GEOMTRANSFORM ([s[imp[1]iff]y| ([[spplelpleli, 10)) ## 10 ground units

CLASS
STYLE
GEOMTRANSFORM (buffer ([[shlafple]l, 5) ## 5 pixels
WIDTH 2
COLOR 255 0 0
END
END
END

The [map_cellsize] variable is available if you need to pass a pixel value at the LAYER-level.

LAYER N. "my_layer"
TYPE LINE

4.1. Mapfile 193

http://trac.osgeo.org/gdal/ticket/966

MapServer Documentation, Release 7.0.7

STATUS DEFAULT
DATA "lines.shp"
UNITS meters

10 * [map_cellsize] == 10 pixels converted to ground units
GEOMTRANSFORM ([s[ijmlp[1]i]f]y|([[s|r[alple

], [map_cellsize]x10))

To get this variable working in the math expression parser, the [map_cellsize] has to be converted into the
layer ground unit. If you choose to use [map_cellsize] in your GEOMTRANSFORM expression, you must
explicitly set the UNITS option in the layer.

* <Javascript file>: A Javascript file that returns a new geometry. See Javascript transformation.

LAYER

GEOMTRANSFORM "javascript://transform.js" # relative path
END

or

LAYER

GEOMTRANSFORM "javascript:///home/user/transform.js" # absolute path
END

New in version 7.0.

Note: Requires V8 MapScript Support.

See also:
GEOMTRANSFORM - Geometry Transformations
GRID Signals the start of a GRID object.

GROUP [name] Name of a group that this layer belongs to. The group name can then be reference as a regular layer
name in the template files, allowing to do things like turning on and off a group of layers at once.

If a group name is present in the LAYERS parameter of a CGI request, all the layers of the group are returned
(the STATUS of the LAYERSs have no effect).

HEADER [filename] Template to use before a layer’s set of results have been sent. Multiresult query modes only.
JOIN Signals the start of a JOIN object.

LABELANGLEITEM [attribute] (As of MapServer 5.0 this parameter is no longer available. Please see the LABEL
object’s ANGLE parameter) For MapServer versions < 5.0, this is the item name in attribute table to use for
class annotation angles. Values should be in degrees.

Deprecated since version 5.0.

LABELCACHE [onloff] Specifies whether labels should be drawn as the features for this layer are drawn, or whether
they should be cached and drawn after all layers have been drawn. Default is on. Label overlap removal, auto
placement etc... are only available when the label cache is active.

LABELITEM [attribute] Item name in attribute table to use for class annotation (i.e. labeling).

LABELMAXSCALEDENOM [double] Minimum scale at which this LAYER is labeled. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented
in MapServer 5.0, to replace the deprecated LABELMAXSCALE parameter.

4.1. Mapfile 194

MapServer Documentation, Release 7.0.7

See also:
Map Scale

LABELMINSCALEDENOM [double] Maximum scale at which this LAYER is labeled. Scale is given as the de-
nominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in
MapServer 5.0, to replace the deprecated LABELMINSCALE parameter.

See also:
Map Scale
LABELREQUIRES [expression] Sets context for labeling this layer, for example:

LABELREQUIRES "! [orthoquads]"

means that this layer would NOT be labeled if a layer named “orthoquads” is on. The expression consists of
a boolean expression based on the status of other layers, each [layer name] substring is replaced by a 0 or a 1
depending on that layer’s STATUS and then evaluated as normal. Logical operators AND and OR can be used.

LABELSIZEITEM [attribute] (As of MapServer 5.0 this parameter is no longer available. Please see the LABEL
object’s SIZE parameter) For MapServer versions < 5.0, this is the item name in attribute table to use for class
annotation sizes. Values should be in pixels.

Deprecated since version 5.0.

MASK [layername] The data from the current layer will only be rendered where it intersects features from the
[layername] layer. [layername] must reference the NAME of another LAYER defined in the current mapfile. can
be any kind of mapserver layer, i.e. vector or raster. If the current layer has labelling configured, then only
labels who’s label-point fall inside the unmasked area will be added to the labelcache (the actual glyphs for the
label may be rendered ontop of the masked-out area.

Note: Unless you want the features of [layername] to actually appear on the generated map, [layername] should
usually be set to STATUS OFF.

See also:
rfc79

MAXFEATURES [integer] Specifies the number of features that should be drawn for this layer in the CURRENT
window. Has some interesting uses with annotation and with sorted data (i.e. lakes by area).

MAXGEOWIDTH [double] Maximum width, in the map’s geographic units, at which this LAYER is drawn. If
MAXSCALEDENOM is also specified then MAXSCALEDENOM will be used instead.

The width of a map in geographic units can be found by calculating the following from the extents:

[maxx] - [minx]

New in version 5.4.0.

MAXSCALEDENOM [double] Minimum scale at which this LAYER is drawn. Scale is given as the denominator
of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.

New in version 5.0.0: Replaced MAXSCALE.
See also:

Map Scale

4.1. Mapfile 195

MapServer Documentation, Release 7.0.7

METADATA This keyword allows for arbitrary data to be stored as name value pairs. This is used with OGC WMS
to define things such as layer title. It can also allow more flexibility in creating templates, as anything you put
in here will be accessible via template tags.

Example:

METADATA
"title" "My layer title"
"author" "Me!"

END

MINGEOWIDTH [double] Minimum width, in the map’s geographic units, at which this LAYER is drawn. If
MINSCALEDENOM is also specified then MINSCALEDENOM will be used instead.

The width of a map in geographic units can be found by calculating the following from the extents:

[maxx] - [minx]

New in version 5.4.0.

MINSCALEDENOM [double] Maximum scale at which this LAYER is drawn. Scale is given as the denominator
of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented in MapServer
5.0, to replace the deprecated MINSCALE parameter.

See also:
Map Scale

NAME [string] Short name for this layer. This name is the link between the mapfile and web interfaces that refer to
this name. They must be identical. The name should be unique, unless one layer replaces another at different
scales. Use the GROUP option to associate layers with each other. It is recommended that the name not contain
spaces, special characters, or begin with a number (which could cause problems through interfaces such as OGC
services).

OFFSITE [r] [g] [b] | [hexadecimal string] Sets the color index to treat as transparent for raster layers.

* r, g and b shall be integers [0..255]. To specify black pixels, the following is used:

’OFFSITE 00O

e hexadecimal string can be

— RGB value: “#rrggbb”. To specify magenta, the following is used:

’OFFSITE "#FFOOFE"

— RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

IOFFSITE "#FFOOFFCC"

OPACITY [integerlalpha]
Deprecated since version 7.0: Use a COMPOSITE block instead.

PLUGIN [filename] Additional library to load by MapServer, for this layer. This is commonly used to load specific
support for SDE and Microsoft SQL Server layers, such as:

CONNECTIONTYPE PLUGIN

CONNECTION "hostname, port:xxx,database,username, password"
PLUGIN "C:/msd4w/Apache/specialplugins/msplugin_sde_92.d11"
DATA "layername, geometrycolumn, SDE.DEFAULT"

4.1. Mapfile 196

MapServer Documentation, Release 7.0.7

[J

POSTLABELCACHE [truelfalse] Tells MapServer to render this layer after all labels in the cache have been drawn.
Useful for adding neatlines and similar elements. Default is false.

PROCESSING [string] Passes a processing directive to be used with this layer. The supported processing directives
vary by layer type, and the underlying driver that processes them.

* ArcSDE Directives - All ArcSDE processing options are described in ArcSDE. Here are two examples.

PROCESSING "QUERYORDER=ATTRIBUTE"
PROCESSING "OBJECTID=OBJECTID"

¢ Attributes Directive - The ITEMS processing option allows to specify the name of attributes for inline
layers or specify the subset of the attributes to be used by the layer, such as:

PROCESSING "ITEMS=itemnamel, itemname2, itemname3"

* Clustering - cluster object directives are described in CLUSTER

PROCESSING "CLUSTER_GET_ALL_SHAPES=ON"
PROCESSING "CLUSTER_KEEP_LOCATIONS=ON"
PROCESSING "CLUSTER_USE_MAP_UNITS=O0ON"
PROCESSING "ITEMS=attributel,attribute2,attribute3"

* Connection Pooling Directive - This is where you can enable connection pooling for certain layer layer
types. Connection pooling will allow MapServer to share the handle to an open database or layer con-
nection throughout a single map draw process. Additionally, if you have FastCGI enabled, the connection
handle will stay open indefinitely, or according to the options specified in the FastCGI configuration. Or-
acle Spatial, ArcSDE, OGR and PostGIS/PostgreSQOL currently support this approach. “DEFER” enables
connection pooling; “ALWAYS” will always close the connection after use, and will also not try to reuse
a shared connection from the pool that might come from another layer.

’PROCESSING "CLOSE_CONNECTION=DEFER"

or

’PROCESSING "CLOSE_CONNECTION=ALWAYS"

¢ Contour Directives - contour directives are described in Contour.

PROCESSING "BANDS=1"

PROCESSING "CONTOUR_INTERVAL=5"
PROCESSING "CONTOUR_LEVELS=100,500,1000"
PROCESSING "CONTOUR_ITEM=elevation"

» Kernel density radius - Radius in pixels of the gaussian filter to apply to the bitmap array once all features
have been accumulated. Higher values result in increased cpu time needed to compute the filtered data.

PROCESSING "KERNELDENSITY RADIUS=10"

New in version 7.0.

[T [T

* Kernel density compute borders - A kernel of radius “r”” cannot be applied to “r” pixels along the borders
of the image. The default is to extend the search rectangle of the input datasource to include features “r”
pixels outside of the current map extent so that the computed heatmap extends to the full extent of the
resulting image. This can be deactivated when tiling if the tiling software applies a metabuffer of “r”

pixels to its requests, to avoid the performance overhead of computing this extra information.

4.1. Mapfile 197

MapServer Documentation, Release 7.0.7

PROCESSING "KERNELDENSITY_ COMPUTE_BORDERS=ON|OFE"

New in version 7.0.

¢ Kernel density normalization- If set to “AUTO”, the created raster band will be scaled such that its
intensities range from 0 to 255, in order to fully span the configured color ramp. Such behavior may not be
desirable (typically for tiling) as the resulting intensity of a pixel at a given location will vary depending
on the extent of the current map request. If set to a numeric value, the samples will be multiplied by the
given value. It is up to the user to determine which scaling value to use to make the resulting pixels span
the full 0-255 range; determining that value is mostly a process of trial and error. Pixels that fall outside
the 0-255 range will be clipped to 0 or 255.

PROCESSING "KERNELDENSITY NORMALIZATION=AUTO |numeric"

New in version 7.0.

* Raster colour ramping - RANGE_COLORSPACE=RGBIHSL - The default RANGE support interpolates
colors between stops in RGB space, which usually results in washed out colors. The interpolation can be
done in HSL space which usually results in wanted output for heatmaps.

PROCESSING "RANGE_COLORSPACE=HSL"

New in version 7.0.

* Label Directive - The LABEL_NO_CLIP processing option can be used to skip clipping of shapes when
determining associated label anchor points. This avoids changes in label position as extents change be-
tween map draws. It also avoids duplicate labels where features appear in multiple adjacent tiles when
creating tiled maps.

PROCESSING "LABEL_NO_CLIP=True"

¢ Line Rendering Directive - The POLYLINE_NO_CLIP processing option can be used to skip clipping
of shapes when rendering styled lines (dashed or styled with symbols). This avoids changes in the line
styling as extents change between map draws. It also avoids edge effects where features appear in multiple
adjacent tiles when creating tiled maps.

’PROCESSING "POLYLINE_NO_CLIP=True"

* OGR Styles Directive - This directive can be used for obtaining label styles through MapScript. For more
information see the MapServer’s OGR document.

’PROCESSING "GETSHAPE_STYLE_ITEMS=all"

* MSSQL specific options - MSSQL_READ_WKB=TRUE - Uses WKB (Well Known Binary) format
instead of native format when fetching geometries.

’PROCESSING "MSSQL_READ_WKB=TRUE"

¢ Native filter Directive - This directive can be used to do driver specific filtering. For database connections
the string is a SQL WHERE clause that is valid with respect to the underlying database.

’PROCESSING "NATIVE_FILTER=1d=234"

New in version 7.0.

* PostGIS specific options - FORCE2D=YES can be used to force 2D only geometries to be retrieved from
PostGIS.

4.1. Mapfile 198

MapServer Documentation, Release 7.0.7

’PROCESSING "FORCE2D=YES"

¢ Vector field specific rendering options - UV_SPACING: The spacing is the distance, in pixels, between

arrows to be displayed in the vector field. Default is 32. UV_SIZE_SCALE: Used to convert the vector
lengths (magnitude) of the raster to pixels for a better rendering. Default is 1.

PROCESSING "UV_SPACING=40"
PROCESSING "UV_SIZE_SCALE=0.2"

* AGG renderer tweaking - This directive can be used for setting the linear gamma to be used when

rendering polygon features. The default value of 0.75 (that can be overridden at the OUTPUTFORMAT
level) can be set to a lower value to limit/remove the faint outlines that appear between adjacent polygons.
A value of 0.5 is usually good enough.

PROCESSING "GAMMA=0.5"

* Raster Directives - All raster processing options are described in Raster Data. Here we see the SCALE

and BANDs directives used to autoscale raster data and alter the band mapping.

PROCESSING "SCALE=AUTO"

PROCESSING "BANDS=3,2,1"

Union layer Directives - The following processing options can be used with the union layers:
UNION_STATUS_CHECK (TRUE or FALSE) - controls whether the status of the source layes should
be checked and the invisible layers (STATUS=OFF) should be skipped. Default value is FALSE.
UNION_SCALE_CHECK (TRUE or FALSE) - controls whether the scale range of the source layes should
be checked and the invisible layers (falling outside of the scale range and zoom range) should be skipped.
Default value is TRUE. UNION_SRCLAYER_CLOSE_CONNECTION - override the connection pool
setting of the source layers. By introducing this setting we alter the current behaviour which is equivalent

to: “UNION_SRCLAYER_CLOSE_CONNECTION=ALWAYS”

PROCESSING "UNION_STATUS_CHECK=FALSE"
PROCESSING "UNION_SCALE_CHECK=TRUE"
PROCESSING "UNION_SRCLAYER_CLOSE_CONNECTION=ALWAYS"

PROJECTION Signals the start of a PROJECTION object.
REQUIRES [expression] Sets context for displaying this layer (see LABELREQUIRES).
SCALETOKEN Signals the start of a SCALETOKEN object. Allows scale dependent string substitutions. See rfc86.

LAYER

SCALETOKEN
NAME "S$pri%"
VALUES
"OH Hl"
"1000" "2"
"10000" "3"
END # VALUES
END # SCALETOKEN
data from a specific table:
DATA "geom from mytable_S$pri%"
data from a specific Shapefile
DATA "/path/to/roads_%pri%.shp"
data from a specific column in

format dataset:

the table:

4.1.

Mapfile

199

MapServer Documentation, Release 7.0.7

DATA "geom_S%pri
filtering:
DATA "geom_5%pri
CLASS

END # CLASS
END # LAYER

rom roads"

rom (select * from roads where pri > %pri%) as foo"

In the previous example, %pri% would be replaced by:

» “1” for scale denominators smaller than 1,000, giving:

DATA "geom from mytable_ 1"
DATA "/path/to/roads_1.shp"
DATA "geom_1 from roads"
DATA "geom_1 from

(select » from roads where pri > 1) as foo"

e “2” for scale denominators between 1,000 and 10,000:

DATA "geom from mytable_ 2"
DATA "/path/to/roads_2.shp"
DATA "geom_2 from roads"
DATA "geom_2 from

(select » from roads where pri > 2) as foo"

* “3” for scale denominators larger than 10,000:

DATA "geom from mytable_ 3"
DATA "/path/to/roads_3.shp"
DATA "geom_3 from roads"
DATA "geom_ 3 from

(select = from roads where pri > 3) as foo"

New in version 6.4.

SIZEUNITS [feetlincheslkilometersimetersimilesinauticalmileslpixels] Sets the unit of STYLE object SIZE values
(default is pixels). Useful for simulating buffering. nauticalmiles was added in MapServer 5.6.

STATUS [onloffldefault] Sets the current status of the layer. Often modified by MapServer itself. Default turns the

layer on permanently.

Note: In CGI mode, layers with STATUS DEFAULT cannot be turned off using normal mechanisms. It is
recommended to set layers to STATUS DEFAULT while debugging a problem, but set them back to ON/OFF in

normal use.

Note: For WMS, layers in the server mapfile with STATUS DEFAULT are always sent to the client.

Note: The STATUS of the individual layers of a GROUP has no effect when the group name is present in the
LAYERS parameter of a CGI request - all the layers of the group will be returned.

STYLEITEM [<attribute>lautol<javascript file>] Styling based on attributes or generated with Javascript

» <attribute>: Item to use for feature specific styling. The style information may be represented by a
separate attribute (style string) attached to the feature. MapServer supports the following style string

representati ons:

4.1. Mapfile

200

MapServer Documentation, Release 7.0.7

— MapServer STYLE definition - The style string can be represented as a MapServer STYLE block
according to the following example:

STYLE BACKGROUNDCOLOR 128 0 0 COLOR 0 0 208 END

— MapServer CLASS definition - By specifying the entire CLASS instead of a single style allows to
use further options (like setting expressions, label attributes, multiple styles) on a per feature basis.

— OGR Style String - MapServer support rendering the OGR style string format according to the OGR
- Feature Style Specification documentation. Currently only a few data sources support storing the
styles along with the features (like MapInfo, AutoCAD DXF, Microstation DGN), however those
styles can easily be transferred to many other data sources as a separate attribute by using the ogr2ogr
command line tool as follows:

ogr2ogr —-sgl "select *, OGR_STYLE from srclayer" "dstlayer" "srclayer"

* AUTO: The value: AUTO can be used for automatic styling.

— Automatic styling can be provided by the driver. Currently, only the OGR driver supports automatic
styling.

— When used for a Union Layer, the styles from the source layers will be used.

* <Javascript file>: A Javascript file that returns a new string containing either a STYLE definition or a
CLASS definition with one or multiple styles. See STYLEITEM Javascript.

LAYER

STYLEITEM "Jjavascript://myscript.js" # relative path
CLASS
END

END

or

LAYER

STYLEITEM "Jjavascript:///home/user/myscript.js" # absolute path
CLASS
END

END

New in version 6.6.

Note: Requires V8 MapScript Support.

SYMBOLSCALEDENOM [double] The scale at which symbols and/or text appear full size. This allows for dy-
namic scaling of objects based on the scale of the map. If not set then this layer will always appear at the
same size. Scaling only takes place within the limits of MINSIZE and MAXSIZE as described above. Scale is
given as the denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.
Implemented in MapServer 5.0, to replace the deprecated SYMBOLSCALE parameter.

See also:
Map Scale
TEMPLATE [filelurl] Used as a global alternative to CLASS TEMPLATE. See Templating for more info.

4.1. Mapfile 201

http://www.gdal.org/ogr/ogr_feature_style.html
http://www.gdal.org/ogr/ogr_feature_style.html
http://www.gdal.org/ogr2ogr.html

MapServer Documentation, Release 7.0.7

TILEINDEX [filenamellayername] Name of the tileindex file or layer. A tileindex is similar to an ArcInfo library
index. The tileindex contains polygon features for each tile. The item that contains the location of the tiled data
is given using the TILEITEM parameter. When a file is used as the tileindex for shapefile or raster layers, the
tileindex should be a shapefile. For CONNECTIONTYPE OGR layers, any OGR supported datasource can be
a tileindex. Normally the location should contain the path to the tile file relative to the shapepath, not relative to
the tileindex itself. If the DATA parameter contains a value then it is added to the end of the location. When a
tileindex layer is used, it works similarly to directly referring to a file, but any supported feature source can be
used (ie. postgres, oracle).

Note: All files in the tileindex should have the same coordinate system, and for vector files the same set of
attributes in the same order.

Note: Starting with MapServer 6.4, raster layers can use a tileindex with tiles of different projections. For that,
the TILESRS parameter must be specified.

TILEITEM [attribute] Item that contains the location of an individual tile, default is “location”.

TILESRS [attribute] Name of the attribute that contains the SRS of an individual tile. That SRS can be expressed
in WKT format, as an EPSG:XXXX code or as a PROJ.4 string. If the tileindex contains rasters in different
projections, this option must be specified. If the tileindex has been generated with gdaltindex (GDAL >= 2.0),
the value of TILESRS is the value of the -src_srs_name option of gdaltindex. See Tileindexes with tiles in
different projections

Note: This option is currently available only on raster layers.

TOLERANCE [double] Sensitivity for point based queries (i.e. via mouse and/or map coordinates). Given in TOL-
ERANCEUNITS. If the layer is a POINT or a LINE, the default is 3. For all other layer types, the default is O.
To restrict polygon searches so that the point must occur in the polygon set the tolerance to zero. This setting
does not apply to WFS GetFeature operations.

TOLERANCEUNITS [pixelsifeetlincheslkilometersimetersimilesinauticalmilesldd] Units of the TOLERANCE
value. Default is pixels. Nauticalmiles was added in MapServer 5.6.

TRANSPARENCY [integerlalpha] - deprecated
Deprecated since version 5.0: Use OPACITY instead.
Deprecated since version 7.0: Use COMPOSITE instead.

TRANSFORM [truelfalse] | [ulluclurlclicclerillilcllr] Tells MapServer whether or not a particular layer needs to be
transformed from some coordinate system to image coordinates. Default is true. This allows you to create
shapefiles in image/graphics coordinates and therefore have features that will always be displayed in the same
location on every map. Ideal for placing logos or text in maps. Remember that the graphics coordinate system
has an origin in the upper left hand corner of the image, contrary to most map coordinate systems.

Version 4.10 introduces the ability to define features with coordinates given in pixels (or percentages, see
UNITS), most often inline features, relative to something other than the UL corner of an image. That is what
‘TRANSFORM FALSE’ means. By setting an alternative origin it allows you to anchor something like a copy-
right statement to another portion of the image in a way that is independent of image size.

TYPE [chartlcirclellinelpointipolygonlirasteriquery] Specifies how the data should be drawn. Need not be the same
as the shapefile type. For example, a polygon shapefile may be drawn as a point layer, but a point shapefile may
not be drawn as a polygon layer. Common sense rules.

4.1. Mapfile 202

MapServer Documentation, Release 7.0.7

In order to differentiate between POLY GONs and POLYLINEs (which do not exist as a type), simply respec-
tively use or omit the COLOR keyword when classifying. If you use it, it’s a polygon with a fill color, otherwise
it’s a polyline with only an OUTLINECOLOR.

A circle must be defined by a a minimum bounding rectangle. That is, two points that define the smallest square
that can contain it. These two points are the two opposite corners of said box. The following is an example
using inline points to draw a circle:

LAYER
NAME 'inline_circles'
TYPE CIRCLE
STATUS ON
FEATURE
POINTS
74.01 -53.8
110.7 =-22.16
END
END
CLASS
STYLE
COLOR 0 0 255
END
END
END

TYPE query means the layer can be queried but not drawn.

Note: TYPE annotation has been deprecated since version 6.2. Identical functionality can be obtained by
adding LABEL level STYLE blocks, and do not require loading the datasets twice in two different layers as was
the case with layers of TYPE annotation.

See also:

The Dynamic Charting HowTo for TYPE chart.

UNITS [ddlIfeetlincheslkilometersimetersimilesinauticalmileslpercentagesipixels] Units of the layer. percentages

(in this case a value between 0 and 1) was added in MapServer 4.10 and is mostly geared for inline features.
nauticalmiles was added in MapServer 5.6.

UTFDATA [string] A UTFGrid JSON template. MapServer expression syntax (expressionObj). If no UTFDATA is

provided, no data beyond the UTFITEM values will be exposed. If UTFITEM is set, the UTFDATA expose those
so that keys and data can be connected. See rfc93 and UTFGrid Output.

UTFDATA " {\"id\":\"[£fid]\", \"name\":\"[namel\", \"area\":\"[area]\"}"

New in version 7.0.

UTFITEM ([string] The attribute to use as the ID for the UTFGrid. If a UTFITEM is not set, the sequential id (based

on rendering order) is being used. If UTFITEM is set, the UTFDATA expose those so that keys and data can be
connected. See 1fc93 and UTFGrid Output.

UTFITEM "fid"

New in version 7.0.

VALIDATION Signals the start of a VALIDATION block.

As of MapServer 5.4.0, VALIDATION blocks are the preferred mechanism for specifying validation patterns for
CGI param runtime substitutions. See Run-time Substitution.

4.1. Mapfile 203

MapServer Documentation, Release 7.0.7

4.1.15 LEADER

Table of Contents

* LEADER

Description

Supported Layer Types

Mapfile Parameters

Mapfile Snippet

Example: World Countries Labels

Description

Since version 6.2, MapServer has the ability to draw label lines to features where space is an issue for the label (often
when the label text is larger than the polygon being labelled). This feature was added through rfc81.

Supported Layer Types

POLYGON

Mapfile Parameters
GRIDSTEP [integer] Specifies the number of pixels between positions that are tested for a label line. You might
start with a value of 5, and increase depending on performance (see example below).

MAXDISTANCE [integer] Specifies the maximum distance in pixels from the normal label location that a leader
line can be drawn. You might start with a value of 30, and increase depending on the resulting placement (see
example below).

STYLE Signals the start of a STYLE object. Use this to style the leader line.

Mapfile Snippet

LAYER
NAME "my-labels"
TYPE POLYGON

CLASS
LABEL
END
LEADER
GRIDSTEP 5 # number of pixels between positions that are tested
MAXDISTANCE 30 # distance in pixels that leader text can be drawn
STYLE # normal line styles are supported

COLOR 255 0 O
WIDTH 1

4.1. Mapfile 204

MapSer

ver Documentation, Release 7.0.7

END
END
END
END

Example: World Countries Labels

The following example uses a polygon layer to display country labels.

Note: The data and mapfile for this example are available for download at
tickets/label-leader.zip (11MB).

: http://download.osgeo.org/mapserver/

Mapfile Example #1

MAP

NAME "leader-test"

STATUS ON

SIZE 800 600

SYMBOLSET "../etc/symbols.txt"
EXTENT -43 10 83 83

UNITS DD

SHAPEPATH "../data"

IMAGECOLOR 255 255 255

FONTSET "../etc/fonts.txt"

WEB

IMAGEPATH "/ms4w/tmp/ms_tmp/"
IMAGEURL "/ms_tmp/"
END

#
Start of layer definitions
#

LAYER
NAME "continents"
TYPE POLYGON
STATUS ON
DATA "world countries—-dissolve"
LABELITEM "NA2DESC"
CLASS
NAME "World Countries"
STYLE
COLOR 200 200 200
OUTLINECOLOR 120 120 120
END
LABEL
COLOR 0 0 O
rot RS
TYPE truetype
SIZE 8

4.1. Mapfile

205

http://download.osgeo.org/mapserver/tickets/label-leader.zip
http://download.osgeo.org/mapserver/tickets/label-leader.zip

MapServer Documentation, Release 7.0.7

POSITION AUTO
PARTIALS FALSE
OUTLINECOLOR 255 255 255
MINFEATURESIZE 2
MINDISTANCE 1000
BUFFER 5
END
#HEHAFRARFRAAFRAAFRAAFEAAFRAFFAA
Leader Object
#H#ARARARFRARARAAFRAA A AR SRR FAS
LEADER
GRIDSTEP 40
MAXDISTANCE 1000
STYLE
COLOR 200 100 100
WIDTH 2
END
END
END
END

END # Map File

4.1. Mapfile

206

MapServer Documentation, Release 7.0.7

Map Image

Faroe Islands
)

Cape verde

Sao Tome and.Principe

Mapfile Example #2

This time use a shorter maximum leader line (MAXDISTANCE) and increase the number of tests (GRIDSTEP).

MAP
LAYER
cLass
I...Zz\éEL
END
#HEAAFRAFFHARFRAAFRAFFHAFFRAFHAA

Leader Object
dddsasdddadasaadaddddsaadadadad
LEADER
GRIDSTEP 10
MAXDISTANCE 100
STYLE
COLOR 200 100 100

4.1. Mapfile 207

MapServer Documentation, Release 7.0.7

WIDTH 2
END
END
END
END

END # Map File

Map Image

Cape verde

sri I-_k&
Ma‘l}livus
Sao Tome arhd.F.’_;i_n_c“i_p_s- %

4.1.16 LEGEND

The size of the legend image is NOT known prior to creation so be careful not to hard-code width and height in the
 tag in the template file.

IMAGECOLOR [r] [g] [b] | [hexadecimal string] Color to initialize the legend with (i.e. the background).
* r, g and b shall be integers [0..255]. To specify green, the following is used:

IMAGECOLOR 0O 255 0

4.1. Mapfile 208

MapServer Documentation, Release 7.0.7

* hexadecimal string can be

— RGB value: “#rrggbb”. To specify magenta, the following is used:

’IMAGECOLOR "#FFOOFE"

— RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

’IMAGECOLOR "#FFOOFEFCC"

INTERLACE [onloff] Default is [on]. This keyword is now deprecated in favor of using the FORMATOPTION
“INTERLACE=ON" line in the OUTPUTFORMAT declaration.

Deprecated since version 4.6.
KEYSIZE [x][y] Size of symbol key boxes in pixels. Default is 20 by 10.
KEYSPACING [x][y] Spacing between symbol key boxes ([y]) and labels ([x]) in pixels. Default is 5 by 5.
LABEL Signals the start of a LABEL object
OUTLINECOLOR [r] [g] [b] | [hexadecimal string] Color to use for outlining symbol key boxes.
* r, g and b shall be integers [0..255]. To specify green, the following is used:

’OUTLINECOLOR 0 255 0 ‘

* hexadecimal string can be

— RGB value: “#rrggbb”. To specify magenta, the following is used:

’0UTLINECOLOR "#FFOOFE"

— RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

’OUTLINECOLOR "#FFOOFFCC"

POSITION [ulluclarillilcllr] Where to place an embedded legend in the map. Default is Ir.

POSTLABELCACHE [truelfalse] Tells MapServer to render this legend after all labels in the cache have been
drawn. Useful for adding neatlines and similar elements. Default is false.

STATUS [onlofflembed] Is the legend image to be created.
TEMPLATE [filename] HTML legend template file.

See also:

HTML Legends with MapServer

TRANSPARENT [onloff] Should the background color for the legend be transparent. This flag is now deprecated in
favor of declaring transparency within OUTPUTFORMAT declarations. Default is off.

Deprecated since version 4.6.

4.1.17 MAP

Note: The map object is started with the word MAP, and ended with the word END.

4.1. Mapfile 209

MapServer Documentation, Release 7.0.7

Tk — ==
o e TR — .
_— _— _—
| VALIDATICM | METADATA | CLUSTER |—| VALIDATION r GRID | PROJECT]

A e — —
| SCALETOKEN | | COMPOSITE | | 01N -| METADATBB CLASS | _| FEATURE ‘ | LABEL | | LABEL |

o

10N

ANGLE [double] Angle, given in degrees, to rotate the map. Default is 0. The rendered map will rotate in a clockwise
direction. The following are important notes:

* Requires a PROJECTION object specified at the MAP level and for each LAYER object (even if all layers
are in the same projection).

* Requires MapScript (SWIG, PHP MapScript). Does not work with CGI mode.

e Ifusing the LABEL object’s ANGLE or the LAYER object’s LABELANGLEITEM parameters as well, these
parameters are relative to the map’s orientation (i.e. they are computed after the MAP object’s ANGLE).
For example, if you have specified an ANGLE for the map of 45, and then have a layer LABELANGLEITEM
value of 45, the resulting label will not appear rotated (because the resulting map is rotated clockwise 45
degrees and the label is rotated counter-clockwise 45 degrees).

* More information can be found on the MapRotation Wiki Page.

CONFIG [key] [value] This can be used to specify several values at run-time, for both MapServer and GDAL/OGR
libraries. Developers: values will be passed on to CPLSetConfigOption(). Details on GDAL/OGR options
are found in their associated driver documentation pages (GDAL/OGR). The following options are available
specifically for MapServer:

CGI_CONTEXT_URL [value] This CONFIG parameter can be used to enable loading a map context from a
URL. See the Map Context HowTo for more info.

MS_ENCRYPTION_KEY [filename] This CONFIG parameter can be used to specify an encryption key that
is used with MapServer’s msencypt utility.

MS_ERRORFILE [filename] This CONFIG parameter can be used to write MapServer errors to a file (as of
MapServer 5.0). With MapServer 5.x, a full path (absolute reference) is required, including the filename.
Starting with MapServer 6.0, a filename with relative path can be passed via this CONFIG directive, in
which case the filename is relative to the mapfile location. Note that setting MS_ERRORFILE via an
environment variable always requires an absolute path since there would be no mapfile to make the path
relative to. For more on this see the DEBUG parameter below.

MS_NONSQUARE [yeslno] This CONFIG parameter can be used to allow non-square pixels (meaning that
the pixels represent non-square regions). For “MS_NONSQUARE” “yes” to work, the MAP, and each
LAYER will have to have a PROJECTION object.

Note: Has no effect for WMS.

ON_MISSING_DATA [FAILILOGIIGNORE] This CONFIG parameter can be used to tell MapServer how
to handle missing data in tile indexes (as of MapServer 5.3-dev, r8015). Previous MapServer versions
required a compile-time switch (“IGNORE_MISSING_DATA”), but this is no longer required.

FAIL This will cause MapServer to throw an error and exit (to crash, in other words) on a missing file in
a tile index. This is the default.

4.1. Mapfile 210

https://github.com/mapserver/mapserver/wiki/MapRotation
http://www.gdal.org/formats_list.html
http://www.gdal.org/ogr/ogr_formats.html

MapServer Documentation, Release 7.0.7

CONFIG "ON_MISSING_DATA"™ "FAIL"

LOG This will cause MapServer to log the error message for a missing file in a tile index, and continue
with the map creation. Note: DEBUG parameter and CONFIG “MS_ERRORFILE” need to be set for
logging to occur, so please see the DEBUG parameter below for more information.

’CONFIG "ON_MISSING_DATA" "LOG"

IGNORE This will cause MapServer to not report or log any errors for missing files, and map creation
will occur normally.

’CONFIG "ON_MISSING_DATA" "IGNORE"

PROJ_LIB [path] This CONFIG parameter can be used to define the location of your EPSG files for the
PROJ.4 library. Setting the [key] to PROJ_LIB and the [value] to the location of your EPSG files will
force PROJ.4 to use this value. Using CONFIG allows you to avoid setting environment variables to point
to your PROJ_LIB directory. Here are some examples:

1. Unix

’CONFIG "PROJ_LIB" "/usr/local/share/proj/"

2. Windows

’CONFIG "PROJ_LIB" "C:/somedir/proj/nad/"

PROJ_DEBUG [ONIOFF] Turn on PROJ debugging. See Debugging MapServer for more details.

DATAPATTERN [regular expression] This defines a regular expression to be applied to requests to change DATA
parameters via URL requests (i.e. map.layer[layername]=DATA+...). If a pattern doesn’t exist then web users
can’t monkey with support files via URLs. This allows you to isolate one application from another if you desire,
with the default operation being very conservative. See also TEMPLATEPATTERN.

DEBUG [offlonl0I1112I3I14I5] Enables debugging of all of the layers in the current map.
Debugging with MapServer versions >= 5.0:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer errorfile if one
is set using the “MS_ERRORFILE” environment variable. You can set the environment variable by using the
CONFIG parameter at the MAP level of the mapfile, such as:

’CONFIG "MS_ERRORFILE" "/ms4w/tmp/ms_error.txt"

You can also set the environment variable in Apache by adding the following to your httpd.conf:

’SetEnv MS_ERRORFILE "/msdw/tmp/ms_error.txt"

Once the environment variable is set, the DEBUG mapfile parameter can be used to control the level of debug-
ging output. Here is a description of the possible DEBUG values:

* DEBUG O or OFF - only msSetError() calls are logged to MS_ERRORFILE. No msDebug() output at
all. This is the default and corresponds to the original behavior of MS_ERRORFILE in MapServer 4.x.

* DEBUG 1 or ON - includes all output from DEBUG 0 plus msDebug() warnings about common pitfalls,
failed assertions or non-fatal error situations (e.g. missing or invalid values for some parameters, missing
shapefiles in tileindex, timeout error from remote WMS/WES servers, etc.).

* DEBUG 2 - includes all output from DEBUG 1 plus notices and timing information useful for tuning
mapfiles and applications.

4.1. Mapfile 211

MapServer Documentation, Release 7.0.7

* DEBUG 3 - all of DEBUG 2 plus some debug output useful in troubleshooting problems such as WMS
connection URLSs being called, database connection calls, etc. This is the recommended level for debug-
ging mapfiles.

* DEBUG 4 - DEBUG 3 plus even more details...

* DEBUG 5 - DEBUG 4 plus any msDebug() output that might be more useful to the developers than to the
users.

You can also set the debug level by using the “MS_DEBUGLEVEL” environment variable.

The DEBUG setting can also be specified for a layer, by setting the DEBUG parameter in the LAYER object.
For more details on this debugging mechanism, please see the Debugging MapServer document.
Debugging with MapServer versions < 5:

Verbose output is generated and sent to the standard error output (STDERR) or the MapServer logfile if one is
set using the LOG parameter in the WEB object. Apache users will see timing details for drawing in Apache’s
error_log file. Requires MapServer to be built with the DEBUG=MSDEBUG option (-with-debug configure
option).

DEFRESOLUTION [int] Sets the reference resolution (pixels per inch) used for symbology. Default is 72.

Used to automatically scale the symbology when RESOLUTION is changed, so the map maintains the same
look at each resolution. The scale factor is RESOLUTION /| DEFRESOLUTION.

New in version 5.6.

EXTENT [minx] [miny] [maxx] [maxy] The spatial extent of the map to be created. In most cases you will need to
specify this, although MapServer can sometimes (expensively) calculate one if it is not specified.

FONTSET [filename] Filename of fontset file to use. Can be a path relative to the mapfile, or a full path.

IMAGECOLOR [r] [g] [b] | [hexadecimal string] Color to initialize the map with (i.e. background color). When
transparency is enabled (TRANSPARENT ON in OUTPUTFORMAT) for the typical case of 8-bit pseudocolored
map generation, this color will be marked as transparent in the output file palette. Any other map components
drawn in this color will also be transparent, so for map generation with transparency it is best to use an otherwise
unused color as the background color.

* r, g and b shall be integers [0..255]. To specify green, the following is used:

’IMAGECOLOR 0 255 0

* hexadecimal string can be

— RGB value: “#rrggbb”. To specify magenta, the following is used:

’IMAGECOLOR "#FFOOFE"

— RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

’IMAGECOLOR "#FFOOFFCC"

IMAGEQUALITY [int] Deprecated Use FORMATOPTION “QUALITY=n" in the OUTPUTFORMAT declara-
tion to specify compression quality for JPEG output.

Deprecated since version 4.6.

IMAGETYPE [jpeglpdfipnglsvgl...luserdefined] Output format (raster or vector) to generate. The name used here
must match the ‘NAME’ of a user defined or internally available OUTPUTFORMAT . For a complete list of
available IMAGEFORMATS, see the OUTPUTFORMAT section.

4.1. Mapfile 212

MapServer Documentation, Release 7.0.7

INTERLACE [onloff] Deprecated Use FORMATOPTION “INTERLACE=0ON” in the OUTPUTFORMAT dec-
laration to specify if the output images should be interlaced.

Deprecated since version 4.6.
LAYER Signals the start of a LAYER object.
LEGEND Signals the start of a LEGEND object.

MAXSIZE [integer] Sets the maximum size of the map image. This will override the default value. For example,
setting this to 4096 means that you can have up to 4096 pixels in both dimensions (i.e. max of 4096x4096).
Default is 4096 for MapServer version >= 7.0.3 (for earlier versions the default was 2048).

NAME [name] Prefix attached to map, scalebar and legend GIF filenames created using this mapfile. It should be
kept short.

OUTPUTFORMAT Signals the start of a OUTPUTFORMAT object.

PROJECTION Signals the start of a PROJECTION object.

QUERYMAP Signals the start of a QUERYMAP object.

REFERENCE Signals the start of a REFERENCE MAP object.

RESOLUTION [int] Sets the pixels per inch for output, only affects scale computations. Default is 72.

SCALEDENOM [double] Computed scale of the map. Set most often by the application. Scale is given as the
denominator of the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000. Implemented
in MapServer 5.0, to replace the deprecated SCALE parameter.

See also:
Map Scale
SCALEBAR Signals the start of a SCALEBAR object.

SHAPEPATH [filename] Path to the directory holding the shapefiles or tiles. There can be further subdirectories
under SHAPEPATH.

SIZE [x][y] Size in pixels of the output image (i.e. the map).

STATUS [onloff] Is the map active? Sometimes you may wish to turn this off to use only the reference map or scale
bar.

SYMBOLSET [filename] Filename of the symbolset to use. Can be a path relative to the mapfile, or a full path.

Note: The SYMBOLSET file must start with the word SYMBOLSET and end with the word END.

SYMBOL Signals the start of a SYMBOL object.

TEMPLATEPATTERN [regular expression] This defines a regular expression to be applied to requests to change
the TEMPLATE parameters via URL requests (i.e. map.layer[layername].template=...). If a pattern doesn’t exist
then web users can’t monkey with support files via URLs. This allows you to isolate one application from
another if you desire, with the default operation being very conservative. See also DATAPATTERN.

TRANSPARENT [onloff]
Deprecated since version 4.6.

Use TRANSPARENT ON in the OUTPUTFORMAT declaration to specify if the output images should be
transparent.

UNITS [ddlIfeetlincheslkilometersimetersimilesinauticalmiles] Units of the map coordinates. Used for scalebar and
scale computations. Nauticalmiles was added in MapServer 5.6.

4.1. Mapfile 213

MapServer Documentation, Release 7.0.7

WEB Signals the start of a WEB object.

4.1.18 OUTPUTFORMAT

A map file may have zero, one or more OUTPUTFORMAT object declarations, defining available output formats
supported including formats like PNG, GIF, JPEG, GeoTIFF, SVG, PDF and KML.

If OUTPUTFORMAT sections declarations are not found in the map file, the following implicit declarations will be
made. Only those for which support is compiled in will actually be available. The GeoTIFF depends on building with
GDAL support, and the PDF and SVG depend on building with cairo support.

OUTPUTFORMAT
NAME "png"
DRIVER AGG/PNG
MIMETYPE "image/png"
IMAGEMODE RGB
EXTENSION "png"
FORMATOPTION "GAMMA=0.75"

END
OUTPUTFORMAT
NAME "gif"

DRIVER GD/GIF
MIMETYPE "image/gif"
IMAGEMODE PC256
EXTENSION "gif"
END
OUTPUTFORMAT
NAME "png8"
DRIVER AGG/PNGS
MIMETYPE "image/png; mode=8bit"
IMAGEMODE RGB
EXTENSION "png"
FORMATOPTION "QUANTIZE_FORCE=on"
FORMATOPTION "QUANTIZE_COLORS=256"
FORMATOPTION "GAMMA=0.75"

END
OUTPUTFORMAT
NAME "jpeg"

DRIVER AGG/JPEG

MIMETYPE "image/jpeg"
IMAGEMODE RGB

EXTENSION " jpg"
FORMATOPTION "GAMMA=0.75"

END
OUTPUTFORMAT
NAME "svg"

DRIVER CAIRO/SVG
MIMETYPE "image/svg+xml"
IMAGEMODE RGB

EXTENSION "svg"

END
OUTPUTFORMAT
NAME "pdf"

DRIVER CAIRO/PDF

MIMETYPE "application/x-pdf"
IMAGEMODE RGB

EXTENSION "pdf"

4.1. Mapfile 214

MapServer Documentation, Release 7.0.7

END
OUTPUTFORMAT
NAME "GTiff"
DRIVER GDAL/GTiff
MIMETYPE "image/tiff"
IMAGEMODE RGB
EXTENSION "tif"

END
OUTPUTFORMAT
NAME "kml"

DRIVER KML

MIMETYPE "application/vnd.google-earth.kml.xml"
IMAGEMODE RGB

EXTENSION "kml"

END
OUTPUTFORMAT
NAME "kmz"

DRIVER KMZ
MIMETYPE "application/vnd.google—earth.kmz"
IMAGEMODE RGB
EXTENSION "kmz"
END
OUTPUTFORMAT
NAME "cairopng"
DRIVER CAIRO/PNG
MIMETYPE "image/png"
IMAGEMODE RGB
EXTENSION "png"
END
OUTPUTFORMAT
NAME "myUTEGrid"
DRIVER UTFGRID
FORMATOPTION "LABELS=true"
FORMATOPTION "UTEFRESOLUTION=4"
FORMATOPTION "DUPLICATES=false"
END

DRIVER [name] The name of the driver to use to generate this output format. Some driver names include the defini-
tion of the format if the driver supports multiple formats. For AGG, the possible driver names are “AGG/PNG”
and “AGG/JPEG”. For GD the possible driver names are “GD/Gif” and “GD/PNG”. For output through OGR the
OGR driver name is appended, such as “OGR/Mapinfo File”. For output through GDAL the GDAL shortname
for the format is appended, such as “GDAL/GTiff”. Note that PNG, JPEG and GIF output can be generated with
either GDAL or GD (GD is generally more efficient). TEMPLATE should be used for template based output.
(mandatory). Other drivers: KML, KMZ and UTFGRID.

EXTENSION [type] Provide the extension to use when creating files of this type. (optional)

FORMATOPTION [option] Provides a driver or format specific option. Zero or more FORMATOPTION statement
may be present within a OUTPUTFORMAT declaration. (optional)

* AGG/*: “GAMMA=n" is used to specify the gamma correction to apply to polygon rendering. Allowed
values are [0.0,1.0] , default is 0.75. This value is used to prevent artifacts from appearing on the border of
contiguous polygons. Set to 1.0 to disable gamma correction.

* AGG/JPEG: The “QUALITY=n" option may be used to set the quality of jpeg produced (value from
0-100).

* AGG/PNG: “COMPRESSION=n" is used to determine the ZL.IB compression applied to the png creation.
n is expected to be an integer value from O to 9, with 0 meaning no compression (not recommended),

4.1. Mapfile 215

MapServer Documentation, Release 7.0.7

1 meaning fastest compression, and 9 meaning best compression. The compression levels come at a
cost (be it in terms of cpu processing or file size, chose the setting that suits you most). The default is
COMPRESSION=6.

* AGG/PNG supports quantizing from 24/32 bits to 8bits, in order to reduce the final image size (and there-
fore save bandwidth) (see also MapServer issue #2436 for strategies when applying these options):

— “QUANTIZE_FORCE=o0n" used to reduce an RGB or RGBA image into an 8bit (or less) paletted
images. The colors used in the palette are selected to best fit the actual colors in the RGB or RGBA
image.

— “QUANTIZE_COLORS=256" used to specify the number of colors to be used when applying quan-
tization. Maximum value is 256. Specifying anything between 17 and 255 is probably a waste of
quality as each pixel is still encoded with a full byte. Specifying a value under 16 will produce tiny
images, but severely degraded.

— “PALETTE=/path/to/palette.txt” is used to define the absolute path where palette colors can be found.
This file must contain 256 entries of r,g,b triplets for RGB imagemodes, or r,g,b,a quadruplets for
RGBA imagemodes. The expected format is one triplet (or quadruplet) per line, each value separated
by commas, and each triplet/quadruplet on a single line. If you want to use transparency with a palette,
it is important to have these two colors in the palette file: 0,0,0,0 and 255,255,255,255.

Note: 0,0,0,0 is important if you have fully transparent areas. 255,255,255,255 is opaque white. The
important colors to have in your palette really depend on your actual map, although 0,0,0,0, 0,0,0,255
, and 255,255,255,255 are very likely to show up most of the time.

— “PALETTE_FORCE=on" is used to reduce image depth with a predefined palette. This option is
incompatible with the previous quantization options. To allow additional colours for anti-aliasing
other than those in the predefined palette, use with “QUANTIZE_COLORS”.

* CAIRO/PDF:

— “GEO_ENCODING=IS032000” or “GEO_ENCODING=0OGC_BP”’: Geospatial PDF will be gen-
erated. Requires GDAL 1.10 with PDF driver. See the GDAL Geospatial PDF documentation for
requirements.

New in version 6.2.

- “METADATA_ITEM:option=value”: Additional PDF options can be provided using the META-
DATA_ITEM prefix. The following options are available: AUTHOR, CREATOR, CREATION_DATE,
KEYWORDS, PRODUCER, SUBJECT, TITLE.

New in version 6.2.

Example:

OUTPUTFORMAT

NAME pdf

DRIVER "CAIRO/PDE"

MIMETYPE "application/x-pdf"

IMAGEMODE RGB

EXTENSION "pdf"

FORMATOPTION "GEO_ENCODING=IS032000"

FORMATOPTION "METADATA_ITEM:CREATOR=MapServer, with GDAL trunk"

FORMATOPTION "METADATA_ITEM:PRODUCER=MapServer, with GDAL trunk"
END

* GD/PNG: The “INTERLACE=[ON/OFF]” option may be used to turn interlacing on or off.

4.1. Mapfile 216

https://github.com/mapserver/mapserver/issues/2436#comment:4
http://www.gdal.org/frmt_pdf.html

MapServer Documentation, Release 7.0.7

GD/GIF: The “INTERLACE=[ON/OFF]” option may be used to turn interlacing on or off.

GDAL/GTiff: Supports the “TILED=YES”, “BLOCKXSIZE=n”, “BLOCKYSIZE=n”, “INTER-
LEAVE=[PIXEL/BAND]” and “COMPRESS=[NONE,PACKBITS,JPEG,LZW,DEFLATE]” format spe-
cific options.

GDAL/*: AIlFORMATOPTIONS are passed onto the GDAL create function. Options supported by GDAL
are described in the detailed documentation for each GDAL format.

GDAL/*: “NULLVALUE=n" is used in raw image modes (IMAGEMODE BYTE/INT16/FLOAT) to pre-
initialize the raster and an attempt is made to record this in the resulting file as the nodata value. This is
automatically set in WCS mode if rangeset_nullvalue is set.

OGR/*: See the OGR Output document for details of OGR format options.
UTFGRID: See rfc93.

— “LABELS=true”. Labels can be rendered using their parent feature id (derived via UTFITEM) where
the labels bounding box is drawn to the map.

— “UTFRESOLUTION=4". The resolution of the grid. A larger resolution will make the grid smaller
and therefore reduce its weight but also its precision.

— “DUPLICATES=false”. It may be desirable NOT to remove duplicate feature id/key pairs since that
process could be expensive depending on the number of features in the map. This option can be used
to skip this step. The resulting JSON file will be a bit larger.

IMAGEMODE [PC256IRGBIRGBAIINT16/[FLOAT32IFEATURE] Selects the imaging mode in which the output
is generated. Does matter for non-raster formats like Flash. Not all formats support all combinations. For
instance GD supports only PC256. (optional)

PC256: Produced a pseudocolored result with up to 256 colors in the palette (legacy MapServer mode).
Only supported for GD/GIF and GD/PNG.

RGB: Render in 24bit Red/Green/Blue mode. Supports all colors but does not support transparency.

RGBA: Render in 32bit Red/Green/Blue/Alpha mode. Supports all colors, and alpha based transparency.
All features are rendered against an initially transparent background.

BYTE: Render raw 8bit pixel values (no presentation). Only works for RASTER layers (through GDAL)
and WMS layers currently.

INT16: Render raw 16bit signed pixel values (no presentation). Only works for RASTER layers (through
GDAL) and WMS layers currently.

FLOAT32: Render raw 32bit floating point pixel values (no presentation). Only works for RASTER layers
(through GDAL) and WMS layers currently.

FEATURE: Output is a non-image result, such as features written via templates or OGR.

MIMETYPE [type] Provide the mime type to be used when returning results over the web. (optional)

NAME [name] The name to use in the IMAGETYPE keyword of the map file to select this output format. This name
is also used in metadata describing wxs formats allowed, and can be used (sometimes along with mimetype) to
select the output format via keywords in OGC requests. (optional)

TRANSPARENT [onloff] Indicates whether transparency should be enabled for this format. Note that transparency
does not work for IMAGEMODE RGB output. Not all formats support transparency (optional). When trans-
parency is enabled for the typical case of 8-bit pseudocolored map generation, the IMAGECOLOR color will be
marked as transparent in the output file palette. Any other map components drawn in this color will also be trans-
parent, so for map generation with transparency it is best to use an otherwise unused color as the background

color.

4.1. Mapfile 217

MapServer Documentation, Release 7.0.7

4.1.19 PROJECTION

Background

There are thousands of geographical reference systems. In order to combine datasets with different geographical
reference systems into a map, the datasets will have to be transformed (projected) to the chosen geographical reference
system of the map. If you want to know more about geographical reference systems and map projections in general,
please see the More Information links below, or look into Geomatics courses (Geographical Information Systems,
Cartography, Geodesy), as projections are an advanced topic for beginners.

Projections with MapServer

To set up projections you must define one projection object for the output image (in the MAP object) and one projection
object for each layer (in the LAYER objects) to be projected. MapServer relies on the PROJ.4 library for projections.
Projection objects therefore consist of a series of PROJ.4 keywords, which are either specified within the object directly
or referred to in an EPSG file. An EPSG file is a lookup file containing projection parameters, and is part of the PROJ.4
library.

The following two examples both define the same projection (UTM zone 15, NADS§3), but use 2 different methods:

Example 1: Inline Projection Parameters

PROJECTION
"proj=utm"
"ellps=GRS80"
"datum=NAD83"
"zone=15"
"units=m"
"north"
"no_defs"

END

Note: For a list of all of the possible PROJ.4 projection parameters, see the PROJ.4 parameters page.

Example 2: EPSG Projection Use

PROJECTION
"init=epsg:26915"
END

Note: This refers to an EPSG lookup file that contains a 26915’ code with the full projection parameters. “epsg” in
this instance is case-sensitive because it is referring to a file name. If your file system is case-sensitive, this must be
lower case, or MapServer (PROJ.4 actually) will complain about not being able to find this file.

Note: See http://spatialreference.org/ref/epsg/26915/ for more information on this coordinate system.

The next two examples both display how to possibly define unprojected lat/long (“geographic”):

Example 3: Inline Projection Parameters

4.1. Mapfile 218

http://trac.osgeo.org/proj/wiki/GenParms
http://spatialreference.org/ref/epsg/26915/

MapServer Documentation, Release 7.0.7

PROJECTION
"proj=latlong"
"ellps=WGS84"
"datum=WwGS84"

END

Example 4: epsg Projection Use

PROJECTION
"init=epsg:4326"
END

“Web Mercator” or “Google Mercator”

The EPSG code for the commonly used “Web” or “Google” mercator projection is ‘3857’. See http://spatialreference.
org/ref/sr-org/7483/ for more information on this coordinate system. This code was also unofficially referred to as
EPSG:900913; you are recommended to use the official EPSG:3857 code instead, such as:

PROJECTION
"init=epsg:3857"
END

PROJECTION AUTO

The following syntax may be used in LAYERs that are OGR connections, shapefile layers or raster layers :

PROJECTION
AUTO
END

* In case of a OGR connection, the projection will be retrieved from the OGR layer.
* In case of a shapefile layer, the projection will be retrieved from the associated .prj file.

* In case of raster layers refereing to single raster (DATA keyword), the projection will be retrieved from the
GDAL datasource. If the raster layer refers to a tile index (OGR layer or shapefile tileindex), the projection will
be retrieved according to the above describe rules.

Note: For other layer types, this syntax is invalid.

Specifying which EPSG files to use

MAP CONFIG can be used to specify the location of EPSG files:

MAP
CONFIG "PROJ_LIB" "/usr/share/proj/"
PROJECTION

"init=epsg:3857"
END # PROJECTION

It is important that CONFIG “PROJ_LIB” line comes before the PROJECTION block.

4.1. Mapfile 219

http://spatialreference.org/ref/sr-org/7483/
http://spatialreference.org/ref/sr-org/7483/

MapServer Documentation, Release 7.0.7

Important Notes

If all of your data in the mapfile is in the same projection, you DO NOT have to specify any projection objects.
MapServer will assume that all of the data is in the same projection.

Think of the MAP-level projection object as your output projection. The EXTENT and UNITS values at the
MAP-level must be in the output projection units. Also, if you have layers in other projections (other than the
MAP-level projection) then you must define PROJECTION objects for those layers, to tell MapServer what
projections they are in.

If you specify a MAP-level projection, and then only one other LAYER projection object, MapServer will assume
that all of the other layers are in the specified MAP-level projection.

Always refer to the EPSG file in lowercase, because it is a lowercase filename and on Linux/Unix systems this
parameter is case sensitive.

For More Information

If you get projection errors, refer to the Errors to check if your exact error has been discussed.

Search the MapServer-users email list archives, odds are that someone has faced your exact issue before.
See the PROJ.4 user guides for complete descriptions of supported projections and coordinate systems.
Refer to the Cartographical Map Projections page for background information on projections.

A respected author on map projections is John P. Snyder, if you are wishing for printed material to review.

4.1.20 QUERYMAP

COLOR [r] [g] [b] | [hexadecimal string] Color in which features are highlighted. Default is yellow.

* 1, g and b shall be integers [0..255]. To specify green, the following is used:

’COLOR 0 255 0

e hexadecimal string can be

— RGB value: “#rrggbb”. To specify magenta, the following is used:

’COLOR "#FFOOFE"

— RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

’COLOR "#FFOOFEFCC"

SIZE [x][y] Size of the map in pixels. Defaults to the size defined in the map object.

STATUS [onloff] Is the query map to be drawn?

STYLE [normallhilitelselected] Sets how selected features are to be handled. Layers not queried are drawn as usual.

e Normal: Draws all features according to the settings for that layer.
* Hilite: Draws selected features using COLOR. Non-selected features are drawn normally.

 Selected: draws only the selected features normally.

4.1. Mapfile 220

http://lists.osgeo.org/pipermail/mapserver-users/
http://trac.osgeo.org/proj/
http://www.progonos.com/furuti/MapProj/Normal/TOC/cartTOC.html

MapServer Documentation, Release 7.0.7

4.1.21 REFERENCE

Three types of reference maps are supported. The most common would be one showing the extent of a map in an
interactive interface. It is also possible to request reference maps as part of a query. Point queries will generate an
image with a marker (see below) placed at the query point. Region based queries will depict the extent of the area of
interest. Finally, feature based queries will display the selection feature(s) used.

COLOR [r] [g] [b] | [hexadecimal string] Color in which the reference box is drawn. Set any component to -1 for
no fill. Default is red.

* r, g and b shall be integers [0..255]. To specify green, the following is used:

’COLOR 0 255 0 ‘

* hexadecimal string can be

— RGB value: “#rrggbb”. To specify magenta, the following is used:

’COLOR "#FFOOFF"

— RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

’COLOR "#FFOOFFCC"

EXTENT [minx][miny][maxx][maxy] The spatial extent of the base reference image.
IMAGE [filename] Full filename of the base reference image. Must be a GIF image.

MARKER [integerlstring] Defines a symbol (from the symbol file) to use when the box becomes too small (see
MINBOXSIZE and MAXBOXSIZE below). Uses a crosshair by default.

MARKERSIZE [integer] Defines the size of the symbol to use instead of a box (see MARKER above).

MINBOXSIZE [integer] If box is smaller than MINBOXSIZE (use box width or height) then use the symbol defined
by MARKER and MARKERSIZE.

MAXBOXSIZE [integer] If box is greater than MAXBOXSIZE (use box width or height) then draw nothing (Often
the whole map gets covered when zoomed way out and it’s perfectly obvious where you are).

OUTLINECOLOR [r] [g] [b] | [hexadecimal string] Color to use for outlining the reference box. Set any compo-
nent to -1 for no outline.

* 1, g and b shall be integers [0..255]. To specify green, the following is used:

’OUTLINECOLOR 0 255 0

* hexadecimal string can be

— RGB value: “#rrggbb”. To specify magenta, the following is used:

’OUTLINECOLOR "#FFOOFE"

— RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

’OUTLINECOLOR "#FFOOFEFCC"

SIZE [x][y] Size, in pixels, of the base reference image.
STATUS [onloff] Is the reference map to be created? Default it off.

4.1. Mapfile 221

MapServer Documentation, Release 7.0.7

4.1.22 SCALEBAR

Scalebars currently do not make use of TrueType fonts. The size of the scalebar image is NOT known prior to
rendering, so be careful not to hard-code width and height in the tag in the template file. Future versions will
make the image size available.

ALIGN [leftlcenterlright] Defines how the scalebar is aligned within the scalebar image. Default is center. Available
in versions 5.2 and higher.

New in version 5.2.

BACKGROUNDCOLOR [r] [g] [b] | [hexadecimal string] Color to use for scalebar background, not the image
background.

* r, g and b shall be integers [0..255]. To specify green, the following is used:

’BACKGROUNDCOLOR 0 255 0 ‘

* hexadecimal string can be

— RGB value: “#rrggbb”. To specify magenta, the following is used:

’BACKGROUNDCOLOR "#FFOOFE"

— RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

’BACKGROUNDCOLOR "#FFOOFFCC"

COLOR [r] [g] [b] | [hexadecimal string] Color to use for drawing all features if attribute tables are not used.

* r, g and b shall be integers [0..255]. To specify green, the following is used:

’COLOR 0 255 0

* hexadecimal string can be

— RGB value: “#rrggbb”. To specify magenta, the following is used:

’COLOR "#FFOOFE"

— RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

’COLOR "#FFOOFFCC"

IMAGECOLOR [r] [g] [b] | [hexadecimal string] Color to initialize the scalebar with (i.e. background).
* 1, g and b shall be integers [0..255]. To specify green, the following is used:

’IMAGECOLOR 0 255 0

* hexadecimal string can be

— RGB value: “#rrggbb”. To specify magenta, the following is used:

’IMAGECOLOR "#FFOOFE"

— RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

4.1. Mapfile 222

MapServer Documentation, Release 7.0.7

IMAGECOLOR "#FFOOFFCC"

INTERLACE [truelfalse] Should output images be interlaced? Default is [on]. This keyword is now deprecated in
favour of using the FORMATOPTION “INTERLACE=ON” line in the OUTPUTFORMAT declaration.

Deprecated since version 4.6.
INTERVALS [integer] Number of intervals to break the scalebar into. Default is 4.
LABEL Signals the start of a LABEL object.

OUTLINECOLOR [r] [g] [b] | [hexadecimal string] Color to use for outlining individual intervals. Set any com-
ponent to -1 for no outline which is the default.

* 1, g and b shall be integers [0..255]. To specify green, the following is used:

’0UTLINECOLOR 0 255 0

* hexadecimal string can be

— RGB value: “#rrggbb”. To specify magenta, the following is used:

’OUTLINECOLOR "#FFOOFE"

— RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

’OUTLINECOLOR "#FFOOFEFCC"

POSITION [ulluclur/llllcllr] Where to place an embedded scalebar in the image. Default is Ir.

POSTLABELCACHE [truelfalse] For use with embedded scalebars only. Tells the MapServer to embed the scale-
bar after all labels in the cache have been drawn. Default is false.

SIZE [x][y] Size in pixels of the scalebar. Labeling is not taken into account.

STATUS [onlofflembed] Is the scalebar image to be created, and if so should it be embedded into the image? Default
is off. (Please note that embedding scalebars require that you define a markerset. In essence the scalebar
becomes a custom marker that is handled just like any other annotation.)

STYLE [integer] Chooses the scalebar style. Valid styles are 0 and 1.

TRANSPARENT [onloff] Should the background color for the scalebar be transparent. This flag is now deprecated
in favor of declaring transparency within OUTPUTFORMAT declarations. Default is off.

Deprecated since version 4.6.

UNITS [feetlincheslkilometersimetersimilesinauticalmiles] Output scalebar units, default is miles. Used in con-
junction with the map’s units to develop the actual graphic. Note that decimal degrees are not valid scalebar
units. Nauticalmiles was added in MapServer 5.6.

4.1.23 STYLE

Style holds parameters for symbolization and styling. Multiple styles may be applied within a CLASS or LABEL.

This object appeared in 4.0 and the intention is to separate logic from looks. The final intent is to have named styles
(Not yet supported) that will be re-usable through the mapfile. This is the way of defining the appearance of an object
(a CLASS or a LABEL).

4.1. Mapfile 223

MapServer Documentation, Release 7.0.7

ANGLE [doublelattributel AUTO] Angle, given in degrees, to rotate the symbol (counter clockwise). Default is O
(no rotation). If you have an attribute that specifies angles in a clockwise direction (compass direction), you
have to adjust the angle attribute values before they reach MapServer (360-ANGLE), as it is not possible to use
a mathematical expression for ANGLE.

* For points, it specifies the rotation of the symbol around its center.
* For decorated lines, the behaviour depends on the value of the GAP element.

— For negative GAP values it specifies the rotation of the decoration symbol relative to the direction of
the line. An angle of 0 means that the symbol’s x-axis is oriented along the direction of the line.

— For non-negativ (or absent) GAP values it specifies the rotation of the decoration symbol around its
center. An angle of 0 means that the symbol is not rotated.

* For polygons, it specifies the angle of the lines in a HATCH symbol (0 - horizontal lines), or it specifies
the rotation of the symbol used to generate the pattern in a polygon fill (it does not specify the rotation of
the fill as a whole). For its use with hatched lines, see Example #7 in the symbology examples.

* [attribute] was introduced in version 5.0, to specify the attribute to use for angle values. The hard brackets
[] are required. For example, if your data source has an attribute named “MYROTATE” that holds angle
values for each feature, your STYLE object for hatched lines might contain:

STYLE
SYMBOL 'hatch-test'
COLOR 255 0 0
ANGLE [MYROTATE]
SIZE 4.0
WIDTH 3.0

END

The associated RFC document for this feature is REC19.

* The AUTO keyword was added in version 5.4, and currently only applies when coupled with the GEOM-
TRANSFORM keyword.

Note: Rotation using ANGLE is not supported for SYMBOLSs of TYPE ellipse with the GD renderer (gif).

ANGLEITEM [string] ANGLE][attribute] must now be used instead.
Deprecated since version 5.0.

ANTIALIAS [truelfalse] Should TrueType fonts be antialiased. Only useful for GD (gif) rendering. Default is false.
Has no effect for the other renderers (where anti-aliasing can not be turned off).

BACKGROUNDCOLOR [r] [g] [b] | [hexadecimal string] - deprecated Color to use for non-transparent symbols.

Note: Multiple STYLESs can be used instead:

STYLE
BACKGROUNDCOLOR 0 0 0
SYMBOL "foo"
COLOR 255 0 O

END

can be replaced with:

STYLE
COLOR O 0 O

4.1. Mapfile 224

MapServer Documentation, Release 7.0.7

END
STYLE
SYMBOL "foo"
COLOR 255 0 O
END

Deprecated since version 6.2.
COLOR [r] [g] [b] | [hexadecimal string] | [attribute] Color to use for drawing features.
* r, g and b shall be integers [0..255]. To specify green, the following is used:

’COLOR 0 255 0

* hexadecimal string can be

— RGB value: “#rrggbb”. To specify magenta, the following is used:

’COLOR "#FFOOFE"

— RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

’COLOR "#FFOOFFCC"

e [attribute] was introduced in version 5.0, to specify the attribute to use for color values. The hard brackets
[] are required. For example, if your data set has an attribute named “MYPAINT” that holds color values
for each record, use: object for might contain:

COLOR [MYPAINT]

If COLOR is not specified, and it is not a SYMBOL of TYPE pixmap, then the symbol will not be rendered.
The associated RFC document for this feature is RFC19.

GAP [double] GAP specifies the distance between SYMBOLs (center to center) for decorated lines and polygon fills
in layer SIZEUNITS. For polygon fills, GAP specifies the distance between SYMBOLs in both the X and the Y
direction. For lines, the centers of the SYMBOLSs are placed on the line. As of MapServer 5.0 this also applies
to PixMap symbols.

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), GAP specifies the
distance in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

* For lines, if INITIALGAP is not specified, the first symbol will be placed GAP/2 from the start of the line.

* For lines, a negative GAP value will cause the symbols’ X axis to be aligned relative to the tangent of the
line.

* For lines, a positive GAP value aligns the symbols’ X axis relative to the X axis of the output device.
* For lines, a GAP of 0 (the default value) will cause the symbols to be rendered edge to edge

» For polygons, a missing GAP or a GAP of less than or equal to the size of the symbol will cause the
symbols to be rendered edge to edge.

Symbols can be rotated using ANGLE.
New in version 6.0: moved from SYMBOL

4.1. Mapfile 225

MapServer Documentation, Release 7.0.7

Note: The behaviour of GAP has not been stable over time. It has specified the amount of space between
the symbols, and also something in between the amount of space between the symbols and the center to center
distance. Since 6.2 GAP specifies the center to center distance between the symbols.

GEOMTRANSFORM [bboxIcentroidlendllabelpntllabelpolylistartlverticesl<expression>] Used to indicate that

the current feature will be transformed before the actual style is applied. Introduced in version 5.4.
* bbox: produces the bounding box of the current feature geometry.
e centroid: produces the centroid of the current feature geometry.

* end: produces the last point of the current feature geometry. When used with ANGLE AUTO, it can for
instance be used to render arrowheads on line segments.

e labelpnt: used for LABEL styles. Draws a marker on the geographic position the label is attached to. This
corresponds to the center of the label text only if the label is in position CC.

* labelpoly: used for LABEL styles. Produces a polygon that covers the label plus a 1 pixel padding.

e start: produces the first point of the current feature geometry. When used with ANGLE AUTO, it can for
instance be used to render arrow tails on line segments.

* vertices: produces all the intermediate vertices (points) of the current feature geometry (the start and end
are excluded). When used with ANGLE AUTO, the marker is oriented by the half angle formed by the two
adjacent line segments.

* <expression>: Applies the given expression to the geometry. Supported expressions:

— (buffer([shape],dist)): Buffer the geometry ([shape]) using dist pixels as buffer distance. For poly-
gons, a negative dist will produce a setback.

— (generalize([shape],tolerance)). simplifies a geometry ([shape]) in way comparable to FME’s
ThinNoPoint algorithm. See http://trac.osgeo.org/gdal/ticket/966 for more information.

Note: Depends on GEOS.

— (simplify([shape],tolerance)): simplifies a geometry ([shape]) using the standard Douglas-Peucker
algorithm.

— (simplifypt([shape],tolerance)): simplifies a geometry ([shape]), ensuring that the result is a valid
geometry having the same dimension and number of components as the input. folerance must be
non-negative.

— (smoothsia([shape], smoothing_size, smoothing_iteration, preprocessing)): will smooth a geometry
([shape]) using the SIA algorithm

Example (polygon data set) - draw a two pixel wide line 5 pixels inside the boundary of the polygon:

STYLE
OUTLINECOLOR 255 0 0
WIDTH 2
GEOMTRANSFORM (buffer ([[sjhlaple]1 , -5))
END

There is a difference between STYLE and LAYER GEOMTRANSFORM. LAYER-level will receive ground
coordinates (meters, degrees, etc) and STYLE-level will receive pixel coordinates. The argument to methods
such as simplify() must be in the same units as the coordinates of the shapes at that point of the rendering
workflow, i.e. pixels at the STYLE-level and in ground units at the LAYER-level.

4.1.

Mapfile 226

http://trac.osgeo.org/gdal/ticket/966

MapServer Documentation, Release 7.0.7

LAYER NAME "my_layer"
TYPE LINE
STATUS DEFAULT
DATA "lines.shp"
GEOMTRANSFORM ([s[ijmlp[1]i]£]y] ([[s|hlalple
CLASS
STYLE
GEOMTRANSFORM (buffer ([[sjplafple]l, 5) ## 5 pixels
WIDTH 2
COLOR 255 0 0
END

1, 10)) ## 10 ground units

END
END

See also:
GEOMTRANSFORM - Geometry Transformations
INITIALGAP [double] INITIALGAP is useful for styling dashed lines.
If used with GAP, INITIALGAP specifies the distance to the first symbol on a styled line.
If used with PATTERN, INITIALGAP specifies the distance to the first dash on a dashed line.

Example 1 - dashed line styled with circles:

STYLE
COLOR 0 0 0
WIDTH 4
PATTERN 40 10 END
END
STYLE
SYMBOL "circlef"
COLOR 0 0 O
SIZE 8
INITIALGAP 20
GAP 50
END

Example 1 - dashed line styled with dashed line overlay:

STYLE
COLOR 0O 0 O
WIDTH 6
PATTERN 40 10 END
END
STYLE
COLOR 255 255 255
WIDTH 4
INITIALGAP 2
PATTERN 36 14 END
END

New in version 6.2.

LINECAP [buttlroundIsquare] Sets the line cap type for lines. Default is round. See Cartographical Symbol Con-
struction with MapServer for explanation and examples.

New in version 6.0: moved from SYMBOL

4.1. Mapfile 227

MapServer Documentation, Release 7.0.7

LINEJOIN [roundIimiter|bevellnone] Sets the line join type for lines. Default is round. See Cartographical Symbol
Construction with MapServer for explanation and examples.

New in version 6.0: moved from SYMBOL

LINEJOINMAXSIZE [int] Sets the max length of the miter LINEJOIN type. The value represents a coefficient
which multiplies a current symbol size. Default is 3. See Cartographical Symbol Construction with MapServer
for explanation and examples.

New in version 6.0: moved from SYMBOL

MAXSCALEDENOM [double] Minimum scale at which this STYLE is drawn. Scale is given as the denominator of
the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.

New in version 5.4.
See also:
Map Scale

MAXSIZE [double] Maximum size in pixels to draw a symbol. Default is 500. Starting from version 5.4, the value
can also be a decimal value (and not only integer). See LAYER SYMBOLSCALEDENOM.

MAXWIDTH [double] Maximum width in pixels to draw the line work. Default is 32. Starting from version 5.4,
the value can also be a decimal value (and not only integer). See LAYER SYMBOLSCALEDENOM.

MINSCALEDENOM [double] Maximum scale at which this STYLE is drawn. Scale is given as the denominator of
the actual scale fraction, for example for a map at a scale of 1:24,000 use 24000.

New in version 5.4.
See also:
Map Scale

MINSIZE [double] Minimum size in pixels to draw a symbol. Default is 0. Starting from version 5.4, the value can
also be a decimal value (and not only integer). See LAYER SYMBOLSCALEDENOM.

MINWIDTH [double] Minimum width in pixels to draw the line work. Default is 0. Starting from version 5.4, the
value can also be a decimal value (and not only integer). See LAYER SYMBOLSCALEDENOM.

OFFSET [x][y] Geometry offset values in layer SIZEUNITS. In the general case, SIZEUNITS will be pixels.

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), OFFSET gives
offset values in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

An OFFSET of 20 40 will shift the geometry 20 SIZEUNITS to the left and 40 SIZEUNITS down before render-
ing.
For lines, an OFFSET of y = -99 will produce a line geometry that is shifted x SIZEUNITS perpendicular to

the original line geometry. A positive x shifts the line to the right when seen along the direction of the line. A
negative x shifts the line to the left when seen along the direction of the line.

For lines, an OFFSET of y = -999 (added in version 6.4) will produce a multiline geometry corresponding to
the borders of a line that is x SIZEUNITS wide. This can be used to render only the outlines of a thick line.

OPACITY [integerlattribute] Opacity to draw the current style (applies to 5.2+, AGG Rendering Specifics only, does
not apply to pixmap symbols)
e [attribute] was introduced in version 5.6, to specify the attribute to use for opacity values.
OUTLINECOLOR [r] [g] [b] | [hexadecimal string] | [attribute] Color to use for outlining polygons and certain

marker symbols (ellipse, vector polygons and truetype). Has no effect for lines. The width of the outline can be
specified using WIDTH. If no WIDTH is specified, an outline of one pixel will be drawn.

4.1. Mapfile 228

MapServer Documentation, Release 7.0.7

If there is a SYMBOL defined for the STYLE, the OUTLINECOLOR will be used to create an outline for that
SYMBOL (only ellipse, truetype and polygon vector symbols will get an outline). If there is no SYMBOL defined
for the STYLE, the polygon will get an outline.

* r, g and b shall be integers [0..255]. To specify green, the following is used:

OUTLINECOLOR 0O 255 0
WIDTH 3.0

e hexadecimal string can be

— RGB value: “#rrggbb”. To specify magenta, the following is used:

’OUTLINECOLOR "#FFOOFE"

— RGBA value (adding translucence): “#rrggbbaa”. To specify a semi-translucent magenta, the follow-
ing is used:

’OUTLINECOLOR "#FFOOFECC"

* [attribute] was introduced in version 5.0, to specify the attribute to use for color values. The hard brackets
[] are required. For example, if your data set has an attribute named “MYPAINT” that holds color values
for each record, use: object for might contain:

’OUTLINECOLOR [MYPAINT]

The associated RFC document for this feature is RFC19.

OUTLINEWIDTH [doublelattribute] Width in pixels for the outline. Default is 0.0. The thickness of the outline
will not depend on the scale.

New in version 5.4.

PATTERN [double on] [double off] [double on] [double off] ... END Used to define a dash pattern for line work
(lines, polygon outlines, hatch lines, ...). The numbers (doubles) specify the lengths of the dashes and gaps
of the dash pattern in layer SIZEUNITS. When scaling of symbols is in effect (SYMBOLSCALEDENOM 1is
specified for the LAYER), the numbers specify the lengths of the dashes and gaps in layer SIZEUNITS at the
map scale 1:SYMBOLSCALEDENOM.

LINECAP, LINEJOIN and LINEJOINMAXSIZE can be used to control the appearance of the dashed lines.

To specify a dashed line that is 5 units wide, with dash lengths of 5 units and gaps of 5 units, the following style
can be used:

STYLE
COIOR O 0 O
WIDTH 5.0
LINECAP BUTT
PATTERN 5.0 5.0 END
END

Since version 6.2, PATTERN can be used to create dashed lines for SYMBOLs of TYPE hatch. Patterns for
hatches are always drawn with LINECAP butt. The patterns are generated relative to the edges of the bounding
box of the polygon (an illustrated example can be found in the hatch fill section of the symbol construction
document).

New in version 6.0: moved from SYMBOL
POLAROFFSET [doublelattribute] [doublelattribute] Offset given in polar coordinates.

4.1. Mapfile 229

MapServer Documentation, Release 7.0.7

The first parameter is a double value in layer SIZEUNITS (or the name of a layer attribute) that specifies the
radius/distance.

The second parameter is a double value (or the name of a layer attribute) that specifies the angle (counter
clockwise).

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), POLAROFFSET
gives the distance in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

A POLAROFFSET of 20 40 will shift the geometry to a position that is 20 SIZEUNITS away along a line that is
at an angle of 40 degrees with a line that goes horizontally to the right.

When POLAROFFSET is used with layers that have CONNECTIONTYPE uvraster (vector field), the special
attributes uv_length, uv_length_2, uv_angle and uv_minus_angle are available, making it convenient to specify
arrow heads and tails. Example:

LAYER
TYPE POINT
CONNECTIONTYPE uvraster
CLASS
STYLE
SYMBOL "arrowbody"
ANGLE [uv_angle]
SIZE [uv_length]
WIDTH 3
COLOR 100 255 0
END
STYLE
SYMBOL "arrowhead"
ANGLE [uv_angle]
SIZE 10
COLOR 255 0 0
POLAROFFSET [uv_length_2] [uv_angle]
END
STYLE
SYMBOL "arrowtail"
ANGLE [uv_angle]
SIZE 10
COLOR 255 0 0
POLAROFFSET [uv_length_2] [uv_minus_angle]
END
END #class
END #layer

New in version 6.2: (rfc78)

SIZE [doublelattribute] Height, in layer SIZEUNITS, of the symbol/pattern to be used. Default value depends on
the SYMBOL TYPE. For pixmap: the height (in pixels) of the pixmap; for ellipse and vector: the maximum y
value of the SYMBOL POINTS parameter, for hatch: 1.0, for truetype: 1.0.

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), SIZE gives the
height, in layer SIZEUNITS, of the symbol/pattern to be used at the map scale 1:SYMBOLSCALEDENOM.

» For symbols of TYPE hatch, the SIZE is the center to center distance between the lines. For its use with
hatched lines, see Example#8 in the symbology examples.

e [attribute] was introduced in version 5.0, to specify the attribute to use for size values. The hard brackets
[] are required. For example, if your data set has an attribute named “MYHEIGHT” that holds size values
for each feature, your STYLE object for hatched lines might contain:

4.1. Mapfile 230

MapServer Documentation, Release 7.0.7

STYLE
SYMBOL 'hatch-test'
COLOR 255 0 0
ANGLE 45
SIZE [MYHEIGHT]
WIDTH 3.0

END

The associated RFC document for this feature is RFC19.
* Starting from version 5.4, the value can also be a decimal value (and not only integer).
SYMBOL [integerlstringlfilenamelurllattribute] The symbol to use for rendering the features.
* Integer is the index of the symbol in the symbol set, starting at 1 (the Sth symbol is symbol number 5).
» String is the name of the symbol (as defined using the SYMBOL NAME parameter).

* Filename specifies the path to a file containing a symbol. For example a PNG file. Specify the path relative
to the directory containing the mapfile.

e URL specifies the address of a file containing a pixmap symbol. For example a PNG file. A URL must
start with “http”:

SYMBOL "http://myserver.org/path/to/file.png"

New in version 6.0.

e [attribute] allows individual rendering of features by using an attribute in the dataset that specifies the
symbol name (as defined in the SYMBOL NAME parameter). The hard brackets [] are required.

New in version 5.6.
If SYMBOL is not specified, the behaviour depends on the type of feature.
¢ For points, nothing will be rendered.

¢ For lines, SYMBOL is only relevant if you want to style the lines using symbols, so the absence of SYMBOL
means that you will get lines as specified using the relevant line rendering parameters (COLOR, WIDTH,
PATTERN, LINECAP, ...).

* For polygons, the interior of the polygons will be rendered using a solid fill of the color specified in the
COLOR parameter.

See also:
SYMBOL
WIDTH [doublelattribute] WIDTH refers to the thickness of line work drawn, in layer SIZEUNITS. Default is 1.0.

When scaling of symbols is in effect (SYMBOLSCALEDENOM is specified for the LAYER), WIDTH refers to
the thickness of the line work in layer SIZEUNITS at the map scale 1:SYMBOLSCALEDENOM.

 If used with SYMBOL and OUTLINECOLOR, WIDTH specifies the width of the symbol outlines. This
applies to SYMBOL TYPE vector (polygons), ellipse and truetype.

* For lines, WIDTH specifies the width of the line.
* For polygons, if used with OUTLINECOLOR, WIDTH specifies the thickness of the polygon outline.

 For a symbol of SYMBOL TYPE hatch, WIDTH specifies the thickness of the hatched lines. For its use
with hatched lines, see Example #7 in the symbology examples.

* [attribute] was added in version 5.4 to specify the attribute to use for the width value. The hard brackets []
are required.

4.1. Mapfile 231

MapServer Documentation, Release 7.0.7

* Starting from version 5.4, the value can also be a decimal value (and not only integer).

4.1.24 STYLEITEM Javascript

Author Charles-ALric Bourget
Contact cbourget at mapgears.com
Author Alan Boudreault

Contact aboudreault at mapgears.com

Last Updated 2015-05-21

Table of Contents

» STYLEITEM Javascript

Introduction

Usage
Example 1. Single STYLE definition

Example 2. CLASS with multiple STYLE definitions

Example 3. Printing logs in MapServer logs

Introduction

Using STYLEITEM this way makes it possible to style features programmatically rather than with the standard
MapServer expressions.

Usage

Simply declare the javascript plugin this way:

MAP
LAYER
STYLEITEM "javascript://myscript.]js" # relative path
CLASS
END

END
END

The path can also be absolute.

MAP
LAYER
STYLEITEM "javascript:///home/user/myscript.js" # absolute path

CLASS
END

4.1. Mapfile 232

MapServer Documentation, Release 7.0.7

END
END

The javascript plugin has to implement a function named styleitem that will be automatically called. This function
has to return one of these two options:

* a STYLE definition (Plain String)

* a CLASS definition with one or multiple styles (Plain String)

Note: Features are parsed one at a time and each one makes a call to the javascript plugin. That means the STYLE or
CLASS returned is applied to that specific feature only. Therefore, a CLASS block should not contain an EXPRES-
SION definition and the corresponding LAYER should not contain a CLASSITEM definition.

Note: Declaring an empty CLASS is mandatory

Access to the feature attributes is made through the shape.attributes javascript object.
The following javascript functions are available:

« alert(strl, str2, ..., str) print some text in MapServer logs

e print(strl, str2, ..., str) print some text in MapServer logs

* require(path_to_libl, path_to_lib2, ..., path_to_lib) include one or more javascript lib

Example 1. Single STYLE definition

This example returns a single STYLE definition ...

function styleitem() {
//Make symbol size 14 or 7
var size = shape.attributes.NAME.length > 10 ? 14:7;

var style = "STYLE SIZE " + size + " SYMBOL 'circle'";

var red = Math.random() *255;

var green = Math.random() *255;

var blue = Math.random() *255;

style += "COLOR " + red + " " + green + " " + blue + " END";

//Return style to MapServer
return style;

Example 2. CLASS with multiple STYLE definitions

This example returns a single CLASS with multiple STYLE definitions ...

function styleitem() {
var cls = "CLASS";

//Make symbol size 14 or 7
var size = shape.attributes.NAME.length > 10 ? 14:7;

4.1. Mapfile 233

MapServer Documentation, Release 7.0.7

var stylel = "STYLE SIZE " + size + " SYMBOL 'circle'";
"STYLE SIZE " + size + " SYMBOL 'cross'";

var style2

var red = Math.random () *255;
var green = Math.random() *255;

’

var blue = Math.random () «255;
stylel += "COLOR " + red + " " + green + " " + blue + " END";
style2 += "COLOR " + red + " " + green + " " + blue + " END";
cls += " " + stylel + " " + style2 + " END";
//Return class to MapServer
return cls;
}
Example 3. Printing logs in MapServer logs
This example prints some javascript logs in MapServer logs.
MAP
CONFIG "MS_ERRORFILE" "/tmp/mapserver.log"
DEBUG 1
LAYER
STYLEITEM "javascript://myscript.js"
CLASS
END
END
END
function styleitem() {
//Print some logs in MapServer logs
alert ("Processing feature " + shape.attributes.NAME)
//Make symbol size 14 or 7
var size = shape.attributes.NAME.length > 10 ? 14:7;
var style = "STYLE SIZE " + size + " SYMBOL 'circle'";
var red = Math.random () *255;
var green = Math.random() *255;
var blue = Math.random () «255;
style += "COLOR " + red + " " + green + " " + blue + " END";

//Return style to MapServer
return style;

4.1.25 SYMBOL

* Symbol definitions can be included within the main map file or, more commonly, in a separate file. Symbol
definitions in a separate file are designated using the SYMBOLSET keyword, as part of the MAP object. This

4.1. Mapfile

234

MapServer Documentation, Release 7.0.7

recommended setup is ideal for re-using symbol definitions across multiple MapServer applications.
There are 3 main types of symbols in MapServer: Markers, Lines and Shadesets.

Symbol 0 is always the degenerate case for a particular class of symbol. For points, symbol 0 is a single pixel,
for shading (i.e. filled polygons) symbol O is a solid fill, and for lines, symbol O is a single pixel wide line.

Symbol definitions contain no color information, colors are set within STYLE objects.

Line styling was moved to CLASS STYLE in MapServer version 5. The mechanisms are no longer available in
SYMBOL.

For MapServer versions < 5 there is a maximum of 64 symbols per file. This can be changed by editing
mapsymbol.h and changing the value of MS_MAXSYMBOLS at the top of the file. As of MapServer 5.0 there
is no symbol limit.

More information can be found in the Construction of Cartographic Symbols document.

ANCHORPOINT [x] [y] Used to specify the location (within the symbol) that is to be used as an anchorpoint when

rotating the symbol and placing the symbol on a map. Default is 0.5 0.5 (corresponding to the center of the
symbol).

x: A double in the range [0,1] that specifies the location within the symbol along the x axis. 0
specifies the left edge of the symbol, 1 specifies the right edge of the symbol. 0.5 specifies the center
of the symbol (in the x direction).

y: A double in the range [0,1] that specifies the location within the symbol along the y axis. 0
specifies the top edge of the symbol, 1 specifies the lower edge of the symbol. 0.5 specifies the center
of the symbol (in the y direction).

ANCHORPOINT can be used with SYMBOLs of TYPE ellipse, pixmap, svg, truetype and vector. To ensure
proper behaviour for vector symbols, the left and top edges of the bounding box of the symbol should be at 0.

New in version 6.2.

ANTIALIAS [truelfalse] Should TrueType fonts be antialiased. Only useful for GD (gif) rendering. Default is false.

Has no effect for the other renderers (where anti-aliasing can not be turned off).

CHARACTER [char] Character used to reference a particular TrueType font character. You’ll need to figure out the

mapping from the keyboard character to font character.

FILLED [truelfalse] If true, the symbol will be filled with a user defined color (using STYLE COLOR). Default is

false.

If true, symbols of TYPE ellipse and vector will be treated as polygons (fill color specified using STYLE COLOR
and outline specified using STYLE OUTLINECOLOR and WIDTH).

If false, symbols of TYPE ellipse and vector will be treated as lines (the lines can be given a color using STYLE
COLOR and a width using STYLE WIDTH).

FONT [string] Name of TrueType font to use as defined in the FONTSET.

IMAGE [string] Image (GIF or PNG) to use as a marker or brush for type pixmap symbols.
NAME [string] Alias for the symbol. To be used in CLASS STYLE objects.

POINTS [x y] [x y] ... END

Signifies the start of a sequence of points that make up a symbol of TYPE vector or that define the x and y
radius of a symbol of TYPE ellipse. The end of this section is signified with the keyword END. The x and
y values can be given using decimal numbers. The maximum x and y values define the bounding box of
the symbol. The size (actually height) of a symbol is defined in the STYLE. You can create non-contiguous
paths by inserting “-99 -99” at the appropriate places.

x values increase to the right, y values increase downwards.

4.1. Mapfile

235

MapServer Documentation, Release 7.0.7

For symbols of TYPE ellipse, a single point is specified that defines the x and y radius of the ellipse.
Circles are created when x and y are equal.

Note: If a STYLE using this symbol doesn’t contain an explicit size, then the default symbol size will
be based on the range of “y” values in the point coordinates. e.g. if the y coordinates of the points in the
symbol range from O to 5, then the default size for this symbol will be assumed to be 5.

TRANSPARENT [color index] Sets a transparent color for the input image for pixmap symbols, or determines
whether all shade symbols should have a transparent background. For shade symbols it may be desirable to
have background features “show through” a transparent hatching pattern, creating a more complex map. By
default a symbol’s background is the same as the parent image (i.e. color 0). This is user configurable.

Note: The default (AGG) renderer does not support the TRANSPARENT parameter. It is supported by the GD
renderer (GIF).

TYPE [ellipselhatchlpixmaplsvgltruetypelvector]
* ellipse: radius values in the x and y directions define an ellipse.
* hatch: produces hatched lines throughout the (polygon) shape.
* pixmap: a user supplied image will be used as the symbol.

* svg: scalable vector graphics (SVG) symbol. Requires the libsvg/libsvg-cairo libraries (or alternatively the
librsvg library).

e truetype: TrueType font to use as defined in the MAP FONTSET.

* vector: a vector drawing is used to define the shape of the symbol.

Note: TYPE cartoline is no longer used. Dashed lines are specified using PATTERN, LINECAP, LINEJOIN
and LINEJOINMAXSIZE in STYLE. Examples in Construction of Cartographic Symbols.

4.1.26 Symbology Examples

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com
Author HAgvard Tveite

Contact havard.tveite at nmbu.no

Last Updated 2011/05/11

Table of Contents

* Symbology Examples
— Example 1. Dashed Line

— Example 2. TrueType font marker symbol

— Example 3. Vector triangle marker symbol

4.1. Mapfile 236

MapServer Documentation, Release 7.0.7

Example 4. Non-contiguous vector marker symbol (Cross)

Example 5. Circle vector symbol

Example 6. Downward diagonal fill

Example 7. Using the Symbol Type HATCH (new in 4.6)

Example 8. Styled lines using GAP

Example 1. Dashed Line

This example creates a dashed line that is 5 SIZEUNITS wide, with 10 SIZEUNITS on, 5 off, 5 on, 10 off ...

LAYER
CLASS

STYLE
COLOR 0O 0 O
WIDTH 5
LINECAP butt
PATTERN 10 5 5 10 END

END

END
END

Example 2. TrueType font marker symbol

This example symbol is a star, used to represent the national capital, hence the name. The font name in defined in
the FONTSET file. The code number “114” varies, you can use MS Windows’ character map to figure it out, or
guestimate.

SYMBOL
NAME "natcap"
TYPE TRUETYPE
FONT "geo"
FILLED true
ANTIALIAS true # only necessary for GD rendering
CHARACTER "r"
END

Example 3. Vector triangle marker symbol

This example is fairly straight forward. Note that to have 3 sides you need 4 points, hence the first and last points are
identical. The triangle is not filled.

SYMBOL
NAME "triangle"
TYPE vector
POINTS
0 4
20
4 4

4.1. Mapfile 237

MapServer Documentation, Release 7.0.7

0 4
END
END

Example 4. Non-contiguous vector marker symbol (Cross)

This example draws a cross, that is 2 lines (vectors) that are not connected end-to-end (Like the triangle in the previous
example). The negative values separate the two.

SYMBOL
NAME "cross"
TYPE vector
POINTS
2.0 0.0
2.0 4.0
-99 -99
0.0 2.0
4.0 2.0
END
END

Example 5. Circle vector symbol

This example creates a simple filled circle. Using non-equal values for the point will give you an actual ellipse.

SYMBOL
NAME "circle"
TYPE ellipse
FILLED true
POINTS

11

END

END

Example 6. Downward diagonal fill

This example creates a symbol that can be used to create a downward diagonal fill for polygons.

SYMBOL
NAME "downwarddiagonalfill"
TYPE vector
TRANSPARENT 0
POINTS
01
10
END
END

Example 7. Using the Symbol Type HATCH (new in 4.6)

As of MapServer 4.6, you can use the symbol type HATCH to produce hatched lines. The following will display
hatched lines at a 45 degree angle, 10 SIZEUNITS apart (center to center), and 3 SIZEUNITS wide.

4.1. Mapfile 238

MapServer Documentation, Release 7.0.7

Symbol definition:

SYMBOL
NAME 'hatch-test'
TYPE HATCH

END

Layer definition:

LAYER
CLASS

STYLE
SYMBOL 'hatch-test'
COLOR 255 0 0
ANGLE 45
SIZE 10
WIDTH 3

END

END
END

Other parameters available for HATCH are: MINSIZE, MAXSIZE, MINWIDTH, and MAXWIDTH.

Example 8. Styled lines using GAP

This example shows how to style lines with symbols.

A 5 SIZEUNITS wide black line is decorated with ellipses that are 15 SIZEUNITS long (and 7.5 SIZEUNITS ‘wide).
The ellipses are placed 30 ‘SIZEUNITS apart, and the negative GAP value ensures that the ellipses are oriented relative
to the direction of the line. The ellipses are rotated 30 degrees counter clock-wise from their position along the line.

Symbol definition:

SYMBOL
NAME "ellipse2"
TYPE ellipse
FILLED true
POINTS

12

END

END

Layer definition:

LAYER
CLASS

STYLE
WIDTH 5
COLOR 0 0 O

END

STYLE
SYMBOL 'ellipse2'

COLOR 0 0 O
ANGLE 30

4.1. Mapfile 239

MapServer Documentation, Release 7.0.7

SIZE 15
GAP -30
END
END

END

4.1.27 Templating

Author Frank Koormann

Contact frank.koormann at intevation.de
Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2017-03-03

Table of Contents

o Templating
— Introduction

- Format

— Example Template

Introduction

Templates are used:
* to define the look of a MapServer CGI application interface
* to present the results of a query.
* to create custimised output (see Template-Driven Output)

They guide the presentation of results, either a query or a map, to the user. Templates are almost always HTML files
although they can also be a URL (e.g.. http://www.somewhere.com/{[}ATTRIBUTE({]}/info.html). URL templates
can only be used with simple QUERY or ITEMQUERY results so many substitutions defined below are not avail-
able for them. Simple pan/zoom interfaces use a single template file while complicated queries often require many
templates. Templates often use JavaScript to enhance the basic interface.

Notes

» Templates must contain the magic string ‘mapserver template’ in the first line of the template. Often this takes
the form of an HTML, javascript or XML comment. This line is not written to the client. The magic string is
not case sensitive.

* MapServer will only accept certain file extensions for templates; valid file extensions are:

.gml
.html
.htm
.Js

4.1. Mapfile 240

http://www.somewhere.com/{[}ATTRIBUTE{]}/info.html

MapServer Documentation, Release 7.0.7

.kml
.svg
.tmpl
.wml
.xml

e All CGI parameters can be referenced in template substitutions, MapServer specific parameters as well as user
defined ones. In principle parameters are handed through by the MapServer 1:1. This feature is essential for
implementing MapServer applications.

The reference below only lists special template substitution strings which are needed to obtain information
modified by the MapServer, e.g. a new scale, query results, etc.

» Template substitution strings are case sensitive.
¢ Attribute item substitutions must be the same case as the item names in the dbase file.

* ArcView and ArcInfo generally produce dbase files with item names that are all uppercase. Appropriate URL
encoding (i.e. * ‘ to ‘+°) is applied when templates are URLSs.

* Some substitutions are also available in escaped form (i.e. URL encoded).

As an example this is needed when generating links within a template. This might pass the current mapextent to a new
MapServer call. [mapext] is substituted by a space delimited set of lower left and upper right coordinates. This would
break the URL. [mapext_esc] is substituted by a proper encoded set.

Format

Templates are simply HTML files or URL strings that contains special characters that are replaced by mapserv each
time the template is processed. The simple substitution allows information such as active layers or the spatial extent
to be passed from the user to mapserv and back again. Most often the new values are dumped into form variables that
will be passed on again. The list of special characters and form variables is given below. HTML templates can include
just about anything including JavaScript and Java calls.

(131

In HTML files, the attribute values can be inside quotes(‘”’). Writing attribute values inside quotes allows you to set
special characters in value that you couldn’t use normally (ie:],=,” and space). To write a single quote in a attribute
value, just use two quotes (“’).

General

[date] Outputs the date (as per the web server’s clock). The default format is the same as is used by Apache’s Common
Log format, which looks like:

01/Dec/2010:17:34:58 -0800

Available arguments:

» format= A format string as supported by the standard C strftime() function. As an example, the default
format is defined as:

[date format="%d/%b/%Y:%H:%M:%S %z"]

e tz= timezone to use for the date returned. Default is “local”. Valid values are:
— “gmt” Output date will be Greenwich time

— “local” Output the time in the web server’s local time zone.

4.1. Mapfile 241

MapServer Documentation, Release 7.0.7

Additionally or alternatively, the %z and %Z strftime format strings allow the timezone offset or name
to be output.

[version] The MapServer version number.

[id] Unique session id. The id can be passed in via a form but is more commonly generated by the software. In that
case the id is a concatenation of UNIX time (or NT equivalent) and the process id. Unless you’re getting more
requests in a second than the system has process ids the id can be considered unique. ;->

[host] Hostname of the web server.
[port] Port the web server is listening to.

[post or get variable name], [post or get variable name_esc] The contents of any variables passed to the
MapServer, whether they were used or not, can be echoed this way. One use might be to have the user set
a map title or north arrow style in an interactive map composer. The system doesn’t care about the values, but
they might be real important in creating the final output, e.g. if you specified a CGI parameter like myvalue=....
you can access this in the template file with [myvalue].

Also available as escaped version.

[web_meta data key],[web_meta data key_esc] Web object meta data access (e.g [web_projection]
Also available as escaped version.

[errmsg], [errmsg_esc] Current error stack output. Various error messages are delimited by semi-colons.

Also available as escaped version.

File Reference

[img] Path (relative to document root) of the new image, just the image name if IMAGE_URL is not set in the mapfile.

In a map interface template, [img] is substituted with the path to the map image. In a query results template, it
is substituted with the path to the querymap image (if a QUERYMAP object is defined in the Mapfile).

[ref] Path (relative to document root) of the new reference image.
[legend] Path (relative to document root) of new legend image rendered by the MapServer.

Since version 3.5.1 a new HTML Legend template is provided by MapServer. If a template is defined in the
Mapfile the [legend] string is replaced by the processed legend as. See the HTML Legends with MapServer for
details.

[scalebar] Path (relative to document root) of new scalebar image.
[queryfile] Path to the query file (if savequery was set as a CGI Parameter).

[map] Path to the map file (if savemap was set as a CGI Parameter).

Image Geometry

[center] Computed image center in pixels. Useful for setting imgxy form variable when map sizes change.
[center_x], [center_y] Computed image center X or Y coordinate in pixels.
[mapsize], [mapsize_esc] Current image size in cols and rows (separated by spaces).

Also available as escaped version.

[mapwidth], [mapheight] Current image width or height.

4.1. Mapfile 242

MapServer Documentation, Release 7.0.7

[scaledenom] Current image scale. The exact value is not appropriate for user information but essential for some
applications. The value can be rounded e.g. using JavaScript or server side post processing.

[scale] - deprecated Since MapServer 5.0 the proper parameter to use is [scaledenom] instead. The deprecated [scale]
is the current image scale. The exact value is not appropriate for user information but essential for some appli-
cations. The value can be rounded e.g. using JavaScript or server side post processing.

[cellsize] Size of an pixel in the current image in map units. Useful for distance measurement tools in user interfaces.

Map Geometry

[mapx], [mapy] X and Y coordinate of mouse click.
[mapext], [mapext_esc] Full mapextent (separated by spaces).

Also available as escaped version. (mapext_esc is deprecated in MapServer 5.2. You should use the “escape="
argument instead)

The default template [mapext] returns coordinates in the format of: mixx miny maxx maxy
Available arguments:
* escape= Escape the coordinates returned. Default is “none”. Valid values are:
— “url” Use URL escape codes to encode the coordinates returned.
— “none” Do not escape.

» expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,
[mapext] might return:

’123456 123456 567890 567890

and [mapext expand=1000] would therefore return:

’122456 122456 568890 568890

 format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

’[mapext format="$minx, Sminy, Smaxx, $maxy"]

e precision= The number of decimal places to output for coordinates (default is 0).
[minx], [miny], [maxx], [maxy] Minimum / maximum X or Y coordinate of new map extent.
[dx], [dy] The differences of minimum / maximum X or Y coordinate of new map extent.
Useful for creating cachable extents (i.e. 0 0 dx dy) with legends and scalebars

[rawext], [rawext_esc] Raw mapextent, that is the extent before fitting to a window size (separated by spaces). In
cases where input came from imgbox (via Java or whatever) rawext refers to imgbox coordinates transformed
to map units. Useful for spatial query building.

Also available as escaped version. (rawext_esc is deprecated in MapServer 5.2. You should use the “escape="
argument instead)

The default template [rawext] returns coordinates in the format of: mixx miny maxx maxy
Available arguments:

* escape= Escape the coordinates returned. Default is “none”. Valid values are:

4.1. Mapfile 243

MapServer Documentation, Release 7.0.7

— “url” Use URL escape codes to encode the coordinates returned.
— “none” Do not escape.

» expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,
[rawext] might return:

’123456 123456 567890 567890

and [rawext expand=1000] would therefore return:

’122456 122456 568890 568890

 format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

’[rawext format="$minx, Sminy, Smaxx, $maxy"]

e precision= The number of decimal places to output for coordinates (default is 0).

[rawminx], [rawminy], [rawmaxx], [rawmaxy] Minimum / maximum X or Y coordinate of a raw map/search ex-
tent.

The following substitutions are only available if the MapServer was compiled with PROJ support and a PROJECTION
is defined in the Mapfile.

[maplon], [maplat] Longitude / latitude value of mouse click. Available only when projection enabled.

[mapext_latlon], [mapext_latlon_esc] Full mapextent (separated by spaces). Available only when projection en-
abled.

Also available as escaped version. (mapext_latlon_esc is deprecated in MapServer 5.2. You should use the
“escape=""argument instead)

The default template [mapext_latlon] returns coordinates in the format of: mixx miny maxx maxy
Available arguments:
» escape= Escape the coordinates returned. Default is “none”. Valid values are:
— “arl” Use URL escape codes to encode the coordinates returned.
— “none” Do not escape.

» expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,
[mapext_latlon] might return:

’123456 123456 567890 567890

and [mapext_latlon expand=1000] would therefore return:

’122456 122456 568890 568890

e format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

’[mapext_latlon format="Sminx, Sminy, Smaxx, Smaxy"]

¢ precision= The number of decimal places to output for coordinates (default is 0).

[minlon], [minlat], [maxlon] [maxlat] Minimum / maximum longitude or latitude value of mapextent. Available
only when projection enabled.

4.1. Mapfile 244

MapServer Documentation, Release 7.0.7

[refext], [refext_esc] Reference map extent (separated by spaces).

This template has been added with version 4.6 on behalf of an enhancement request. See the thread in the
MapServer ticket#1102 for potential use cases.

Also available as escaped version. (refext_esc is deprecated in MapServer 5.2. You should use the “escape="
argument instead)

The default template [refext] returns coordinates in the format of: mixx miny maxx maxy
Available arguments:
* escape= Escape the coordinates returned. Default is “none”. Valid values are:
— “url” Use URL escape codes to encode the coordinates returned.
— “none” Do not escape.

» expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,
[refext] might return:

’123456 123456 567890 567890

and [refext expand=1000] would therefore return:

’122456 122456 568890 568890

e format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

’[refwext format="%$minx, $Sminy, Smaxx, $maxy"]

e precision= The number of decimal places to output for coordinates (default is 0).

Layer

[layers] | [layers_esc] All active layers space delimited. Used for a “POST” request.
Also available as escaped version.

[toggle_layers] | [toggle_layers_esc] List of all layers that can be toggled, i.e. all layers defined in the Mapfile which
status is currently not default.

Also available as escaped version.

[layername_check | select] Used for making layers persistent across a map creation session. String is replaced with
the keyword “checked”, “selected” or “’ if layername is on. Layername is the name of a layer as it appears in
the Mapfile. Does not work for default layers.

[layername_meta data key] Layer meta data access (e.g. [streets_build] the underscore is essential).

Zoom

[zoom_minzoom to maxzoom_checklselect] Used for making the zoom factor persistent. Zoom values can range
from -25 to 25 by default. The string is replaced with the HTML keyword “checked”, “selected” or “”’ depending
on the current zoom value.

E.g. if the zoom is 12, a [zoom_12_select] is replaced with “selected”, while a [zoom_13_select] in the same
HTML template file is not.

4.1. Mapfile 245

https://github.com/mapserver/mapserver/issues/1102

MapServer Documentation, Release 7.0.7

[zoomdir_-11011_checklselect] Used for making the zoom direction persistent. Use check with a radio control or
select with a selection list. See the demo for an example. The string is replaced with the HTML keyword
“checked”, “selected” or “”’ depending on the current value of zoomdir.

Query

The following substitutions are only available when the template is processed as a result of a query.
[shpext], [shpext_esc] Extent of current shape plus a 5 percent buffer. Available only when processing query results.
The default template [shpext] returns coordinates in the format of: mixx miny maxx maxy
Available arguments:
» escape= Escape the coordinates returned. Default is “none”. Valid values are:
- “url”
Use URL escape codes to encode the coordinates returned.
— “none” Do not escape.

» expand= Expand the bounds of the extents by a specific value. Specified in map coordinates. For example,
[shpext] might return:

’123456 123456 567890 567890 ‘

and [shpext expand=1000] would therefore return:

’122456 122456 568890 568890 ‘

e format= Format of the coordinates. Default is “$minx $miny $maxx $maxy”. For example, to add
commas to the coordinates you would use:

’[shpext format="$minx, Sminy, Smaxx, $maxy"]

e precision= The number of decimal places to output for coordinates (default is 0).

[shpminx], [shpminy], [shpmaxx], [shpmaxy] Minimum / maximum X or Y coordinate of shape extent. Available
only when processing query results.

[shpmid] Middle of the extent of current shape. Available only when processing query results.

[shpmidx], [shpmidy] X or Y coordinate of middle of the extent of the current shape. Available only when processing
query results.

[shpidx] Index value of the current shape. Available only when processing query results.
[shpclass] Classindex value of the current shape. Available only when processing query results.
[shpxy formatting options] The list of shape coordinates, with list formatting options, especially useful for SVG.

The default template [shpxy] returns a comma separated list of space delimited of coordinates (i.e. x1 y1, x2 y2,
x3 y3).

Available only when processing query results.
Available attributes (h = header, f=footer, s=separator):
* buffer=, Buffer size, currently the only unit available is pixels. Default is 0.
 centroid= Should only the centroid of the shape be used? true or false (case insensitive). Default is false.

LTET)

* cs= Coordinate separator. Default is ”,

4.1. Mapfile 246

MapServer Documentation, Release 7.0.7

e irh=, irf=, orh=, orf=

Characters to be put before (irh) and after (irf) inner rings, and before (orh) and after (orf) outer
rings of polygons with holes. Defaults are “”.

Note: Within each polygon, the outer ring is always output first, followed by the inner rings.

If neither irh nor orh are set, rings are output as “parts” using ph/pf/ps.

ph=, pf=, ps= Characters to put before (ph) and after (pf) and separators between (ps) feature parts (e.g.
rings of multigeometries). Defaults are ph=""", pf= ”

3993 9999

and ps=""".

e precision= The number of decimal places to output for coordinates. Default is 0.

proj= The output projection definition for the coordinates, a special value of “image” will convert to
image coordinates. Default is none.

* scale=, scale_x=, scale_y= Scaling factor for coordinates: Both axes (scale), x axis (scale_x) and y axis
(scale_y). Defaults are 1.0.

32

e sh=, sf= Characters to put before (sh) and after (sf) a feature. Defaults are “”.

e xh=, xf= Characters to put before (x/) and after (xf) the x coordinates. Defaults are xh="""and xf=",").

132

* yh=yf= Characters to put before (y#) and after (yf) the y coordinates. Defaults are *”’.

As a simple example:

[shpxy xh=" (" yf=")"] will result in: (x1 yl), (x2 y2), (x3 y3)

or

[shpxy precision="2" xh=" (" yf=")"] will result in: (x1,vyl) (x2,vy2) (x3,y3)

or

[shpxy precision="2" xf=" " xh=" (" yf=")"] will result in: (x1 yl) (x2 y2) (x3 y3)

And a more complicated example of outputting KML for multipolygons which may potentially have holes (note
that the parameters must all be on one line):

<MultiGeometry>
<Point>
<coordinates>[shplabel proj=epsg:4326 precision=10],0</coordinates>
</Point>
[shpxy ph="<Polygon><tessellate>1</tessellate>" pf="</Polygon>" xf=",6"
xh=" " yh=" " yf=",0 " orh="<outerBoundaryIs><LinearRing><coordinates>"

orf="</coordinates></LinearRing></outerBoundaryIs>"
irh="<innerBoundaryIs><LinearRing><coordinates>"
irf="</coordinates></LinearRing></innerBoundaryIs>" proj=epsg:4326
precision=10]

</MultiGeometry>

[tileindex] Index value of the current tile. If no tiles used for the current shape this is replaced by “-1”. Available only
when processing query results.

[item formatting options] An attribute table “item”, with list formatting options. The “name” attribute is required.
Available only when processing query results.

Available attributes:

4.1. Mapfile 247

MapServer Documentation, Release 7.0.7

* name = The name of an attribute, case insenstive. (required)

e precision = The number of decimal places to use for numeric data. Use of this will force display as a
number and will lead to unpredicable results with non-numeric data.

* pattern = Regular expression to compare the value of an item against. The tag is output only if there is a
match.

e uc = Set this attribute to “true” to convert the attribute value to upper case.
¢ lc = Set this attribute to “true” to convert the attribute value to lower case.

* commify = Set this attribute to “true” to add commas to a numeric value. Again, only useful with numeric
data.

e escape = Default escaping is for HTML, but you can escape for inclusion in a URL (=url), or not escape
at all (=none).

e format = A format string used to output the attribute value. The token “$value” is used to place the value
in a more complex presentation. Default is to output only the value.

* nullformat = String to output if the attribute value is NULL, empty or doesn’t match the pattern (if de-
fined). If not set and any of these conditions occur the item tag is replaced with an empty string.

As a simple example:

[item name="area" precision="2" commify="2" format="Area is Svalue"]

[attribute name],[attrribute name_esc],[attribute item name_raw] Attribute name from the data table of a queried
layer. Only attributes for the active query layers are accessible. Case must be the same as what is stored in the
data file. ArcView, for example, uses all caps for shapefile field names. Available only when processing query
results.

By default the attributes are encoded especially for HTML representation. In addition the escaped version (for
use in URLs) as well as the raw data is available.

[Join name_attribute name],[Join name_attribute name_esc], [Join name_attribute name_raw]

One-to-one joins: First the join name (as specified in the Mapfile has to be given, second the tables fields
can be accessed similar to the layers attribute data. Available only when processing query results.

By default the attributes are encoded especially for HTML representation. In addition the escaped version
(for use in URLSs) as well as the raw data is available.

[join_Join name] One-to-many joins: The more complex variant. If the join type is multiple (one-to-many) the
template is replaced by the set of header, template file and footer specified in the Mapfile.

[metadata_meta data key], [metadata_meta data key_esc] Queried layer meta data access (e.g [meta-
data_projection]

Also available as escaped version.

For query modes that allow for multiple result sets, the following string substitutions are available. For FEATURESE-
LECT and FEATURENSELECT modes the totals a re adjusted so as not to include the selection layer. The selection
layer results ARE available for display to the user.

[nr] Total number of results. Useful in web header and footers. Available only when processing query results.

[nl] Number of layers returning results. Useful in web header and footers. Available only when processing query
results.

[nlr] Total number of results within the current layer. Useful in web header and footers. Available only when pro-
cessing query results.

4.1. Mapfile 248

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

37

38

40

41

42

43

44

45

MapServer Documentation, Release 7.0.7

[rn] Result number within all layers. Starts at 1. Useful in web header and footers. Available only when processing
query results.

[Irn] Result number within the current layer. Starts at 1. Useful in query templates. Available only when processing
query results.

[cl] Current layer name. Useful in layer headers and footers. Available only when processing query results.

Example Template

A small example to give an idea how to work with templates. Note that it covers MapServer specific templates (e.g.
the [map], [mapext]) and user defined templates (e.g. [htmlroot] or [program]) used to store application settings.

<!-- MapServer Template ——>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/transitional.dtd">
<html>
<head>
<title>MapServer Template Sample</title>
</head>

<body>
MapServer Template Sample

<!-- The central form the application is based on. ——>
<form method="GET" action="[program]">

<!-- CGI MapServer applications are server stateless in principle,

all information must be "stored" in the client. This includes
some basic settings as below.
The example is based on the pan and zoom test suite:
http://maps.dnr.state.mn.us/mapserver._demos/tests36/ -——>

<input type="hidden" name="map" value="[map]">

<input type="hidden" name="imgext" wvalue="[mapext]">

<input type="hidden" name="imgxy" value="149.5 199.5">

<input type="hidden" name="program" value="[program]">

<input type="hidden" name="htmlroot" value="[htmlroot]">

<input type="hidden" name="map_web" value="[map_web]">

<!-- A table for minimal page formatting. —-->
<table border=0 cellpadding=5>
<tr>
<!-— First column: Map and scale bar —-->
<td align=center>
<!-— The map -->
<input type="image" name="img" src="[img]"
style="border:0;width:300;height:400">

<!-- The scale bar-->

</td>
<!-- Second column: Zoom direction, Legend and Reference ——>
<td valign=top>
<!-- Zoom direction -->

Map Controls

Set your zoom option:

<select name="zoom" size="1">

4.1. Mapfile 249

46

47

48

49

51

52

54

55

57

58

60

61

62

63

64

65

66

MapServer Documentation, Release 7.0.7

<option value="2" |[|z|olo 2| Isle|lle|c|t|]> Zoom in 2 times

<option value="1" [|zlojojm|_I1| Isle|lle|c|t|]» Recenter Map
<option value="-2" [zoom_—Z_select]P Zoom out 2 times
</select>

<!-- Legend —-—>
Legend

<!-- Reference map ——>
<input type="image" name="ref" src="[ref]"
style="border:0;width:150; height:150">
</td>
</tr>
</table>
</form>
</body>

</html>

4.1.28 VALIDATION

Contents

* VALIDATION

— Introduction

— Default values if not provided in the URL

— Filter example

Introduction

Because Run-time Substitution affects potentially sensitive areas of your mapfile such as database columns and file-
names, it is mandatory that you use pattern validation (since version 6.0).

Note: Similar validation pattern mechanisms have been available for variable substitutions since version 4.10, but
then it was optional. The pattern for %omyvar% was then provided in METADATA using “myvar_validation_pattern”.

Pattern validation uses regular expressions, which are strings that describe how to compare strings to patterns. The
exact functionality of your systems’ regular expressions may vary, but you can find a lot of general information by a
Google search for “regular expression tutorial”.

As of MapServer 5.4.0 the preferred mechanism is a VALIDATION block in the LAYER definition. This is only slightly
different from the older METADATA mechanism. VALIDATION blocks can be used with CLASS, LAYER and WEB.

VALIDATION
$firstname$ substitutions can only have letters and hyphens
'firstname'’ '"“la-zA-Z\-]+$S"'

4.1. Mapfile 250

MapServer Documentation, Release 7.0.7

%parcelid$ must be numeric and between 5 and 8 characters
'parcelid’ '~10-91{5,8)S$"

Staxid® must be two capital letters and six digits
'taxid' '"“"[A-Z]1{2}[0-9]{6}s"
END

If identical keys appear in more than one validation block, then keys in more specialised blocks override those in more
generalised blocks. So CLASS overrides LAYER which overrides WEB.

Default values if not provided in the URL
The runtime substitution mechanism will usually create syntactically incorrect, and almost always semantically incor-
rect mapfiles if the substitution parameter was not provided in the calling URL.

Since version 5.6, you can provide a default value for any substitution parameter, that will be applied if the parameter
was not found in the url. You do this by providing special entries inside CLASS, LAYER or WEB validation blocks:

VALIDATION
'default_sound' 'yes'
'default_nseats' '5"
'default_multimedia' 'yes'
END

In this example, the mapfile will be created as if the url contained “&sound=yes&nseats=5&multimedia=yes”

If identical default keys appear in more than one validation block then keys in more specialised blocks override those
in more generalised blocks. i.e. CLASS overrides LAYER which overrides WEB.

The same functionality is available using METADATA blocks instead of VALIDATION but this is deprecated as of
MapServer 5.4.0.

This behavior is also accessible in the shp2img utility, allowing you to test runtime substitution mapfiles without using
a webserver.

Filter example

You can use runtime substitutions to change values within a FILTER as you go. For example your FILTER could be
written like this:

FILTER ("multimedia='%multimedia%' and seats >= %nseats% and Sound= ' ound$%"')

Then (assuming you’re using the CGI interface) you could pass in variables named multimedia, nseats and sound with
values defined by the user in an HTML form.

You must define validation expressions on these variables to guard against unintentional SQL being submitted to
postgis. Within the layer you’d do the following:

VALIDATION
'multimedia' '"“yes|no$'
'sound' '“yes|no$S'

'nseats' '"~[0-9]{1,2}$"
END

The first two limit the value of multimedia and sound to yes or no. The third limits the value for nseats to a 2 digit
integer.

4.1. Mapfile 251

MapServer Documentation, Release 7.0.7

4.1.29 Union Layer

Author Tamas Szekeres

Contact szekerest at gmail.com

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Last Updated 2011-04-11

Table of Contents

* Union Layer

Description

Requirements

Mapfile Configuration

Feature attributes

Classes and Styles

Projections

Supported Processing Options

Examples

* Mapfile Example

* PHP MapScript Example

Description

Since version 6.0, MapServer has the ability to display features from multiple layers (called ‘source layers’) in a single
mapfile layer. This feature was added through rfc68.

Requirements

This is a native MapServer option that doesn’t use any external libraries to support it.

Mapfile Configuration

e The CONNECTIONTYPE parameter must be set to UNION.
* The CONNECTION parameter must contain a comma separated list of the source layer names.

 All of the source layers and the union layer must be the same TYPE (e.g. all must be TYPE POINT, or all TYPE
POLYGON etc.)

Note: You may wish to disable the visibility (change their STATUS) of the source layers to avoid displaying the
features twice.

4.1. Mapfile 252

MapServer Documentation, Release 7.0.7

For example:

LAYER
NAME "union-layer"
TYPE POINT
STATUS DEFAULT
CONNECTIONTYPE UNION
CONNECTION "layerl, layer2,layer3" # reference to the source layers
PROCESSING "ITEMS=itemnamel, itemname?2, itemname3"

END

LAYER
NAME "layerl"
TYPE POINT
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION ...

END

LAYER
NAME "layer2"
TYPE POINT
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION ...

END

LAYER
NAME "layer3"
TYPE POINT
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION ...

END

Feature attributes

In the LAYER definition you may refer to any attributes supported by each of the source layers. In addition to the
source layer attributes the union layer provides the following additional attributes:

1. Combine_SourceLayerName - The name of the source layer the feature belongs to
2. Combine_SourceLayerGroup - The group of the source layer the feature belongs to

During the selection / feature query operations only the ‘Combine_SourceLayerName’ and ‘Com-
bine_SourceLayerGroup’ attributes are provided by default. The set of the provided attributes can manually
be overridden (and further attributes can be exposed) by using the ITEMS processing option (refer to the example
above).

Classes and Styles

We can define the symbology and labelling for the union layers in the same way as for any other layer by specifying the
classes and styles. In addition the STYLEITEM AUTO option is also supported for the union layer, which provides to
display the features as specified at the source layers. The source layers may also use the STYLEITEM AUTO setting
if the underlying data source provides that.

4.1. Mapfile 253

MapServer Documentation, Release 7.0.7

Projections

For speed, it is recommended to always use the same projection for the union layer and source layers. However
MapServer will reproject the source layers to the union layer if requested. (for more information on projections in
MapServer refer to PROJECTION)

Supported Processing Options

The following processing options can be used with the union layers:

UNION_STATUS_CHECK (TRUE or FALSE) Controls whether the status of the source layes should be checked
and the invisible layers (STATUS=OFF) should be skipped. Default value is FALSE.

UNION_SCALE_CHECK (TRUE or FALSE) Controls whether the scale range of the source layes should be
checked and the invisible layers (falling outside of the scale range and zoom range) should be skipped. De-
fault value is TRUE.

UNION_SRCLAYER_CLOSE_CONNECTION Override the connection pool setting of the source layers. By
introducing this setting we alter the current behaviour which is equivalent to:

UNION_SRCLAYER CLOSE_CONNECTION=ALWAYS

Examples

Mapfile Example

The follow example contains 3 source layers in different formats, and one layer (yellow) in a different projection.
The union layer uses the STYLEITEM “AUTO” parameter to draw the styles from the source layers. (in this case
MapServer will reproject the yellow features, in EPSG:4326, for the union layer, which is in EPSG:3978).

4.1. Mapfile 254

MapServer Documentation, Release 7.0.7

MAP

PROJECTION
"init=epsg:3978"

END

LAYER
NAME 'unioned'
TYPE POLYGON
STATUS DEFAULT
CONNECTIONTYPE UNION

CONNECTION "red,green,yellow”
STYLEITEM "AUTO"

Define an empty class that will be filled at runtime from the color and

styles read from each source layer.
CLASS
END
PROJECTION
"init=epsg:3978"
END
END

LAYER
NAME 'red'
TYPE POLYGON
STATUS OFF
DATA 'nb.shp'
CLASS
NAME 'red'
STYLE

4.1. Mapfile

255

MapServer Documentation, Release 7.0.7

OUTLINECOLOR 0 O O
COLOR 255 85 0
END
END
END

LAYER
NAME 'green'
TYPE POLYGON
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION 'ns.mif'
CLASS
NAME 'green'
STYLE
OUTLINECOLOR 0O 0 0
COLOR 90 218 71
END
END
END

LAYER
NAME 'yellow'
TYPE POLYGON
STATUS OFF
CONNECTIONTYPE OGR
CONNECTION 'pei.gml'
CLASS
NAME 'yellow'
STYLE
OUTLINECOLOR O 0 0
COLOR 255 255 0
END
END
PROJECTION
"init=epsg:4326"
END
END

END # Map

PHP MapScript Example

<?php

// open map
SoMap = ms_newMapObj("D:/msdw/apps/osm/map/osm.map");

// create union layer

SoLayer = ms_newLayerObj (SoMap) ;

SoLayer->set ("name", "unioned");

SoLayer—->set ("type", MS_LAYER_POLYGON) ;
SoLayer—->set ("status", MS_ON);
SoLayer->setConnectionType (MS_UNION) ;
SoLayer->set ("connection", "red,green,yellow");
SoLayer->set ("styleitem", "AUTO");

4.1. Mapfile 256

MapServer Documentation, Release 7.0.7

SoLayer—->setProjection("init=epsg:3978");
// create empty class
SoClass = ms_newClassObj (SolLayer);

2>

4.1.30 WEB

BROWSEFORMAT [mime-type] Format of the interface output, using MapServer CGI. (added to MapServer 4.8.0)
The default value is “text/html”. Example:

BROWSEFORMAT "image/svg+xml"

EMPTY [url] URL to forward users to if a query fails. If not defined the value for ERROR is used.

ERROR [url] URL to forward users to if an error occurs. Ugly old MapServer error messages will appear if this is
not defined

FOOTER [filename] Template to use AFTER anything else is sent. Multiresult query modes only.
HEADER [filename] Template to use BEFORE everything else has been sent. Multiresult query modes only.

IMAGEPATH [path] Path to the temporary directory for writing temporary files and images. Must be writable by
the user the web server is running as. Must end with a / or depending on your platform.

IMAGEURL [path] Base URL for IMAGEPATH. This is the URL that will take the web browser to IMAGEPATH
to get the images.

LEGENDFORMAT [mime-type] Format of the legend output, using MapServer CGI. (added to MapServer 4.8.0)
The default value is “text/html”. Example:

LEGENDFORMAT "image/svg+xml"

LOG [filename] Since MapServer 5.0 the recommended parameters to use for debugging are the MAP object’s CON-
FIG and DEBUG parameters instead (see the Debugging MapServer document).

File to log MapServer activity in. Must be writable by the user the web server is running as.
Deprecated since version 5.0.

MAXSCALEDENOM [double] Minimum scale at which this interface is valid. When a user requests a map at
a smaller scale, MapServer automatically returns the map at this scale. This effectively prevents user from
zooming too far out. Scale is given as the denominator of the actual scale fraction, for example for a map at a
scale of 1:24,000 use 24000. Implemented in MapServer 5.0, to replace the deprecated MAXSCALE parameter.

See also:
Map scale

MAXSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is MAXSCALEDENOM in-
stead. The deprecated MAXSCALE is the minimum scale at which this interface is valid. When a user requests
a map at a smaller scale, MapServer automatically returns the map at this scale. This effectively prevents user

from zooming too far out. Scale is given as the denominator of the actual scale fraction, for example for a map
at a scale of 1:24,000 use 24000.

Deprecated since version 5.0.

MAXTEMPLATE ([filelurl] Template to be used if below the minimum scale for the app (the denominator of the
requested scale is larger than MAXSCALEDENOM), useful for nesting apps.

4.1. Mapfile 257

MapServer Documentation, Release 7.0.7

METADATA This keyword allows for arbitrary data to be stored as name value pairs.

Used with OGC services (WMS Server, WFS Server, WCS Server, SOS Server, ...) to define things such
as layer title.

It can also allow more flexibility in creating templates, as anything you put in here will be accessible via
template tags.

If you have XMP support enabled, you can also embed xmp_metadata in your output images by specifying
XMP tag information here. Example:

METADATA
title "My layer title"
author "Me!"

aﬂa!@@!Title "My Map Title"

END

labelcache_map_edge_buffer

For tiling, the amount of gutter around an image where no labels are to be placed is controlled by the
parameter labelcache_map_edge_buffer. The unit is pixels. The value had to be a negative value for 6.0
and earlier versions. From 6.2 the absolute value is taken, so the sign does not matter.

METADATA
"labelcache_map_edge_buffer" "10"
END

ms_enable_modes
Enable / disable modes (see rfc90).
9’ !”

Use the asterisk “*” to specify all modes and a preceding exclamation sign

To disable all CGI modes:

to negate the given condition

METADATA
"ms_enable_modes" "!x"
END

To disable everything but MAP and LEGEND:

METADATA
"ms_enable_modes" "!x MAP LEGEND"
END

MINSCALEDENOM [double] Maximum scale at which this interface is valid. When a user reqests a map at a larger
scale, MapServer automatically returns the map at this scale. This effectively prevents the user from zooming
in too far. Scale is given as the denominator of the actual scale fraction, for example for a map at a scale of
1:24,000 use 24000. Implemented in MapServer 5.0, to replace the deprecated MINSCALE parameter.

See also:

Map scale

MINSCALE [double] - deprecated Since MapServer 5.0 the proper parameter to use is MINSCALEDENOM in-
stead. The deprecated MINSCALE is the maximum scale at which this interface is valid. When a user reqests a
map at a larger scale, MapServer automatically returns the map at this scale. This effectively prevents the user
from zooming in too far. Scale is given as the denominator of the actual scale fraction, for example for a map at
a scale of 1:24,000 use 24000.

Deprecated since version 5.0.

4.1. Mapfile 258

MapServer Documentation, Release 7.0.7

MINTEMPLATE [filelurl]] Template to be used if above the maximum scale for the app (the denominator of the
requested scale is smaller than MINSCALEDENOM), useful for nesting apps.

QUERYFORMAT [mime-type] Format of the query output. (added to MapServer 4.8.0) This works for
mode=query (using query templates in CGI mode), but not for mode=browse. The default value is “text/html”.
Example:

QUERYFORMAT "image/svg+xml"

TEMPLATE [filenamelurl]

Template file or URL to use in presenting the results to the user in an interactive mode (i.e. map generates
map and soon ...).

URL is not a remote file, rather a template. For example:

TEMPLATE 'http://someurl/somescript.cgi?mapext=[mapext]"’

TEMPPATH [path] Path for storing temporary files. If not set, the standard system temporary file path will be used
(e.g. tmp for unix). TEMPPATH can also be set using the environment variable MS_TEMPPATH.

TEMPPATH is used in many contexts (see rfc66).
Make sure that that MapServer has sufficient rights to read and write files at the specified location.
New in version 6.0.

VALIDATION Signals the start of a VALIDATION block.

As of MapServer 5.4.0, VALIDATION blocks are the preferred mechanism for specifying validation patterns for
CGI param runtime substitutions. See Run-time Substitution.

4.1.31 XML Mapfile support

MapServer is able to load XML mapfiles automatically, without user XSLT transformations. Basically, MapServer
will simply do an XSLT transformation when the mapfile passed to it is an XML one, convert it to a text mapfile in a
temporary file on disk, then process the mapfile normally.

New Dependencies
* libxslt

* libexslt
Enabling the support
You can enable the XML mapfile support by adding the following option: —with-xml-mapfile. This configure option

will enable the libxslt and libexslt check up. If your libxslt/libexslt are not installed in /usr, you’ll have to add the
following options:

——with-xslt=/path/to/xslt/installation
—--with-exslt=/path/to/exslt/installation

Usage:

In order to enable this feature, set the MS_XMLMAPFILE_XSLT environment variable to point to the location of the
XSLT to use for the XML->text mapfile conversion. e.g. in Apache:

4.1. Mapfile 259

MapServer Documentation, Release 7.0.7

SetEnv MS_XMLMAPFILE_XSLT /path/to/mapfile.xsl
PassEnv MS_XMLMAPFILE_XSLT

With this enabled, passing an .xml filename to the CGI map parameter will automatically trigger the conversion.

Note: This is a first step to XML mapfile loading support. Obviously, there is a cost to parse and translate the XML
mapfile, but this allows easier use of XML mapfiles.

4.1.32 Notes

The Mapfile is NOT case-sensitive.

The Mapfile is read from top to bottom by MapServer; this means that LAYERs near the
top of your Mapfile will be drawn before those near the bottom. Therefore users commonly place background
imagery and other background layer types near the top of their mapfile, and lines and points near the bottom of
their mapfile.

Strings containing non-alphanumeric characters or a MapServer keyword MUST be quoted. It is recommended
to put ALL strings in double-quotes.

Mapfiles are expected to be UTF-8 encoded. Non UTF-8 encoded mapfiles will need to be iconvidAZed to
UTE-8.

New in version 7.0.

For MapServer versions < 5, there was a default maximum of 200 layers per mapfile (there is no layer limit with
MapServer >= 5). This can be changed by editing the map.h file to change the value of MS_MAXLAYERS to
the desired number and recompiling. Here are other important default limits when using a MapServer version <
5:

— MAXCLASSES 250 (set in map.h)
— MAXSTYLES 5 (set in map.h)
— MAXSYMBOLS 64 (set in mapsymbol.h)
MapServer versions >= 5 have no limits for classes, styles, symbols, or layers.

File paths may be given as absolute paths, or as paths relative to the location of the mapfile. In addition, data
files may be specified relative to the SHAPEPATH.

The mapfile has a hierarchical structure, with the MAP object being the “root”. All other objects fall under this
one.

Comments are designated with a #.

Attributes are named using the following syntax: [ATTRIBUTENAME].

Note: that the name of the attribute included between the square brackets IS CASE SENSITIVE. Generally
ESRI generated shape data sets have their attributes (.dbf column names) all in upper-case for instance, and for
PostGIS, ALWAYS use lower-case.

MapServer Regular Expressions are used through the operating system’s C Library. For information on how to
use and write Regular Expressions on your system, you should read the documentation provided with your C
Library. On Linux, this is GLibC, and you can read “man 7 regex” ... This man page is also available on most
UNIXs. Since these RegEx’s are POSIX compliant, they should be the same on Windows as well, so windows
users can try searching the web for “man 7 regex” since man pages are available all over the web.

4.1.

Mapfile 260

CHAPTER 5

MapScript

5.1 MapScript

Release 7.0.7

5.1.1 Introduction
This is language agnostic documentation for the MapScript interface to MapServer generated by SWIG. This document

is intended for developers and to serve as a reference for writers of more extensive, language specific documentation
located at Mapfile

Appendices

Language-specific extensions are described in the following appendices

Python Appendix

Documentation Elements

Classes will be documented in alphabetical order in the manner outlined below. Attributes and methods will be
formatted as definition lists with the attribute or method as item, the type or return type as classifier, and a concise

description. To make the document as agnostic as possible, we refer to the following types: int, float, and string. There
are yet no mapscript methods that return arrays or sequences or accept array or sequence arguments.

We will use the SWIG term immutable to indicate that an attribute’s value is read-only.

fooObj

A paragraph or two about class fooOby;.

fooObj Attributes

attribute [type [access]] Concise description of the attribute.

261

MapServer Documentation, Release 7.0.7

Attribute name are completely lower case. Multiple words are packed together like outlinecolor.

Note that because of the way that mapscript is generated many confusing, meaningless, and even dangerous attributes
are creeping into objects. See outputFormatObj.refcount for example. Until we get a grip on the structure members
we are exposing to SWIG this problem will continue to grow.

fooObj Methods

method(type mandatory_parameter [, type optional_parameter=default]) [type] Description of the method in-
cluding elaboration on the method arguments, the method’s actions, and returned values. Optional parameters
and their default values are enclosed in brackets.

Class method names are camel case with a leading lower case character like getExpressionString.

Additional Documentation

There’s no point in duplicating the MapServer Mapfile Reference, which remains the primary reference for mapscript
class attributes.

5.1.2 SWIG MapScript APl Reference

Author Sean Gillies

Author Steve Lime

Contact steve.lime at dnr.state.mn.us
Author Frank Warmerdam

Contact warmerdam at pobox.com
Author Umberto Nicoletti

Contact umberto.nicoletti at gmail.com
Author Tamas Szekeres

Contact szekerest at gmail.com
Author Daniel Morissette

Contact dmorisette at mapgears.com

Last Updated 2016-08-22

Contents

* SWIG MapScript API Reference
— Introduction
* Appendices
* Documentation Elements
* fooObj

x Additional Documentation

— MapScript Constants

5.1. MapScript 262

MapServer Documentation, Release 7.0.7

* Version
* Logical Control - Boolean Values
* Logical Control - Status Values
* Map Units
* Layer Types
* Label Positions
* Label Size (Bitmap only)
* Shape Types
* Measured Shape Types
+ Shapefile Types
* Query Types
+ File Types
* Querymap Styles
* Connection Types
* DB Connection Types
* Join Types
* Line Join Types (for rendering)
* Image Types
* Image Modes
+* Symbol Types
% Return Codes
* Limiters
* Error Return Codes
— MapScript Functions
— MapScript Classes
* classObj
* colorObj
* errorObj
* fontSetObj
* hashTableObj
* imageObj
* intarray
* labelCacheMemberObj
* labelCacheObj

% labelObj

5.1. MapScript 263

MapServer Documentation, Release 7.0.7

* layerObj

* legendObj

* lineObj

* mapObj

* markerCacheMemberObj
* outputFormatObj

* OWSRequest

* pointObj

% projectionObj

* rectObj

* referenceMapObj

x resultCacheMemberObj
* resultCacheObj

% scalebarObj

* shapefileObj

* shapeObj

x styleObj

* symbolObj

* symbolSetObj

* webODbj

Introduction

This is language agnostic documentation for the mapscript interface to MapServer generated by SWIG. This document
is intended for developers and to serve as a reference for writers of more extensive, language specific documentation
in DocBook format for the MDP.

Appendices

Language-specific extensions are described in the following appendices

Python MapScript Appendix

Documentation Elements

Classes will be documented in alphabetical order in the manner outlined below. Attributes and methods will be
formatted as definition lists with the attribute or method as item, the type or return type as classifier, and a concise
description. To make the document as agnostic as possible, we refer to the following types: int, float, and string. There
are yet no mapscript methods that return arrays or sequences or accept array or sequence arguments.

We will use the SWIG term immutable to indicate that an attribute’s value is read-only.

5.1. MapScript 264

MapServer Documentation, Release 7.0.7

fooObij

A paragraph or two about class fooOb;.

fooObj Attributes

attribute [type [access]] Concise description of the attribute.
Attribute name are completely lower case. Multiple words are packed together like outlinecolor.

Note that because of the way that mapscript is generated many confusing, meaningless, and even dangerous attributes
might be exposed by objects.

fooObj Methods

method(type mandatory_parameter [, type optional_parameter=default]) [type] Description of the method in-
cluding elaboration on the method arguments, the method’s actions, and returned values. Optional parameters
and their default values are enclosed in brackets.

might be exposed byClass method names are camel case with a leading lower case character like getExpressionString.

Additional Documentation

There’s no point in duplicating the MapServer Mapfile Reference, which remains the primary reference for mapscript
class attributes.

MapScript Constants

The constants are ordered alphabetically within each group.

Version

Name Type
MS_VERSION | character

Logical Control - Boolean Values

Name Type

MS_FALSE | integer
MS_NO integer
MS_OFF integer
MS_ON integer
MS_TRUE integer
MS_YES integer

5.1. MapScript 265

MapServer Documentation, Release 7.0.7

Logical Control - Status Values

Name Type

MS_DEFAULT | integer
MS_DELETE integer
MS_EMBED integer

Map Units
Name Type
MS_DD integer
MS_FEET integer
MS_INCHES integer
MS_METERS integer
MS_MILES integer
MS_NAUTICALMILES | integer
MS_PIXELS integer

Layer Types
Name Type
MS_LAYER_ANNOTATION (deprecated since 6.2) | integer
MS_LAYER_CIRCLE integer
MS_LAYER_LINE integer
MS_LAYER_POINT integer
MS_LAYER_POLYGON integer
MS_LAYER_QUERY integer
MS_LAYER_RASTER integer
MS_LAYER_TILEINDEX integer

Label Positions

Name Type
MS_AUTO | integer
MS_CC integer

MS_CL integer
MS_CR integer
MS_LC integer
MS_LL integer
MS_LR integer

MS_UC integer
MS_UL integer
MS_UR integer

5.1. MapScript

266

MapServer Documentation, Release 7.0.7

Label Size (Bitmap only)

Name Type
MS_GIANT integer
MS_LARGE integer
MS_MEDIUM | integer
MS_SMALL integer
MS_TINY integer
Shape Types
Name Type
MS_SHAPE_LINE integer
MS_SHAPE_NULL integer
MS_SHAPE_POINT integer
MS_SHAPE_POLYGON | integer
Measured Shape Types
Name Type
MS_SHP_ARCM integer
MS_SHP_MULTIPOINTM | integer
MS_SHP_POINTM integer
MS_SHP_POLYGONM integer

Shapefile Types

Name Type

MS_SHAPEFILE_ARC integer
MS_SHAPEFILE_MULTIPOINT | integer
MS_SHAPEFILE_POINT integer
MS_SHAPEFILE_POLYGON integer

Query Types
Name Type
MS_MULTIPLE | integer
MS_SINGLE integer
File Types
Name Type
MS_FILE_MAP integer
MS_FILE_SYMBOL | integer

5.1. MapScript

267

MapServer Documentation, Release 7.0.7

Querymap Styles
Name Type
MS_HILITE integer

MS_NORMAL integer

MS_SELECTED | integer

Connection Types

Name Typ
MS_GRATICULE integer
MS_INLINE integer
MS_MYGIS integer
MS_OGR integer
MS_ORACLESPATIAL integer
MS_POSTGIS integer
MS_RASTER integer
MS_SDE integer
MS_SHAPEFILE integer
MS_TILED_SHAPEFILE | integer
MS_WES integer
MS_WMS integer
DB Connection Types
Name Type
MS_DB_CSV integer
MS_DB_MYSQL integer

MS_DB_ORACLE integer

MS_DB_POSTGRES | integer

MS_DB_XBASE integer

Join Types

Name

Type

MS_JOIN_ONE_TO_MANY | integer

MS_JOIN_ONE_TO_ONE

integer

Line Join Types (for rendering)

Name Type

MS_CJC_BEVEL integer
MS_CIJC_BUTT integer
MS_CJC_MITER integer
MS_CJC_NONE integer
MS_CJC_ROUND integer
MS_CJC_SQUARE integer
MS_CJC_TRIANGLE | integer

5.1. MapScript

268

MapServer Documentation, Release 7.0.7

Image Types
Name Type
GD/GIF integer
GD/JPEG integer
GD/PNG integer

GD/PNG24 | integer
GD/WBMP | integer
GDAL/GTiff | integer

imagemap integer
pdf integer
swf integer

Image Modes

Name Type
MS_GD_ALPHA integer
MS_IMAGEMODE_BYTE integer
MS_IMAGEMODE_FLOAT32 | integer
MS_IMAGEMODE_INT16 integer
MS_IMAGEMODE_NULL integer
MS_IMAGEMODE_PC256 integer
MS_IMAGEMODE_RGB integer
MS_IMAGEMODE_RGBA integer
MS_NOOVERRIDE integer
Symbol Types

Name Type
MS_SYMBOL_ELLIPSE integer
MS_SYMBOL_PIXMAP integer
MS_SYMBOL_SIMPLE integer
MS_SYMBOL_TRUETYPE | integer
MS_SYMBOL_VECTOR integer

Return Codes

Name Type

MS_DONE integer
MS_FAILURE | integer
MS_SUCCESS | integer

5.1. MapScript

269

MapServer Documentation, Release 7.0.7

Limiters

Name Type

MS_IMAGECACHESIZE long

MS_MAXSTYLELENGTH | long

MS_MAXSYMBOLS long

MS_MAXVECTORPOINTS | long

Error Return Codes

Name Type
MESSAGELENGTH long
MS_CGIERR long
MS_CHILDERR long
MS_DBFERR long
MS_EOFERR long
MS_GDERR long
MS_HASHERR long
MS_HTTPERR long
MS_IDENTERR long
MS_IMGERR long
MS_IOERR long
MS_JOINERR long
MS_MAPCONTEXTERR long
MS_MEMERR long
MS_MISCERR long
MS_NOERR long
MS_NOTFOUND long
MS_NUMERRORCODES long
MS_OGRERR long
MS_ORACLESPATIALERR | long
MS_PARSEERR long
MS_PROJERR long
MS_QUERYERR long
MS_REGEXERR long
MS_SDEERR long
MS_SHPERR long
MS_SYMERR long
MS_TTFERR long
MS_TYPEERR long
MS_WCSERR long
MS_WEBERR long
MS_WFSCONNERR long
MS_WEFSERR long
MS_WMSCONNERR long
MS_WMSERR long
ROUTINELENGTH long

5.1. MapScript

270

MapServer Documentation, Release 7.0.7

MapScript Functions

msCleanup() [void] msCleanup() attempts to recover all dynamically allocated resources allocated by MapServer
code and dependent libraries. It it used primarily for final cleanup in scripts that need to do memory leak testing
to get rid of “noise” one-time allocations. It should not normally be used by production code.

msGetVersion() [string] Returns a string containing MapServer version information, and details on what optional
components are built in. The same report as produced by “mapserv -v”.

msGetVersionInt() [int] Returns the MapServer version number (X.y.z) as an integer (x*10000 + y*100 + z). (New
in v5.0) e.g. V5.4.3 would return 50403.

msIO_getStdoutBufferBytes() [binary data] Fetch the current stdout buffer contents as a binary buffer. The exact
form of this buffer will vary by mapscript language (eg. string in Python, byte[] array in Java and C#, unhandled
in perl)

msIO_getStdoutBufferString() [string] Fetch the current stdout buffer contents as a string. This method does not
clear the buffer.

msIO_installStdinFromBuffer() [void] Installs a mapserver IO handler directing future stdin reading (ie. post re-
quest capture) to come from a buffer.

mslO_installStdoutToBuffer() [void] Installs a mapserver 10 handler directing future stdout output to a memory
buffer.

msIO_resetHandlers() [void] Resets the default stdin and stdout handlers in place of “buffer” based handlers.
mslO_stripStdoutBufferContentHeaders(): void Strip all Content-* headers off the stdout buffer if it has ones.

mslO_stripStdoutBufferContentType() [string] Strip the Content-type header off the stdout buffer if it has one, and
if a content type is found it is return (otherwise NULL/None/etc).

msResetErrorList() [void] Clears the current error stack.

MapScript Classes

classObj

An instance of classObj is associated with with one instance of layerObj:

f——— + 1 0..x +——————— +

| Class | ————————— > | Style |

fo———— + o +

F——— + 1 0..% +——————— +

| Class | ————————— > | Label |

o + Fo——— +

o + 1 1 +————————— +

| Class | ————————— > | HashTable |

Fomm + | - |
| metadata |
Fom +

5.1. MapScript 271

MapServer Documentation, Release 7.0.7

Multiple class styles have been supported since 4.1, and multiple class labels since 6.2. See the styleObj section for
details on use of multiple class styles.

classObj Attributes

debug [int] MS_TRUE or MS_FALSE
keyimage [string] TODO Not sure what this attribute is for

label [labelObj immutable] Definition of class labeling. Removed (6.2) - use addLabel, getLabel and removeLabel
instead.

layer [layerObj immutable] Reference to the parent layer
maxscaledenom [float] The minimum scale at which class is drawn
metadata [/ashTubleObj immutable] class metadata hash table.
minscaledenom [float] The maximum scale at which class is drawn
name [string] Unique within a layer
numlabels [int] Number of labels for class.

New in version 6.2.

numstyles [int] Number of styles for class. In the future, probably the 4.4 release, this attribute will be made im-
mutable.

status [int] MS_ON or MS_OFF. Draw features of this class or do not.
template [string] Template for queries

title [string] Text used for legend labeling

type [int] The layer type of its parent layer

classObj Methods

new classObj([layerObj parent_layer=NULL]) [classObj] Create a new child classObj instance at the tail (highest
index) of the class array of the parent_layer. A class can be created outside the context of a parent layer by
omitting the single constructor argument.

addLabel(labelObj) [int] Add a labelObj to the classObj and return its index in the labels array.
New in version 6.2.

clone() [classObj] Return an independent copy of the class without a parent layer.

convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.
New in version 6.4.

createLegendIcon(mapObj map, layerObj layer, int width, int height) [imageObj] Draw and return a new legend
icon.

drawLegendIcon(mapObj map, layerObj layer, int width, int height, imageObj image, int dstx, int dsty) [int]
Draw the legend icon onto image at dstx, dsty. Returns MS_SUCCESS or MS_FAILURE.

getExpressionString() [string] Return a string representation of the expression enclosed in the quote characters ap-
propriate to the expression type.

5.1. MapScript 272

MapServer Documentation, Release 7.0.7

getFirstMetaDataKey() [string] Returns the first key in the metadata hash table. With getNextMetaDataKey(), pro-
vides an opaque iterator over keys.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableObj.

getLabel(int index) [labelObj] Return a reference to the labelObj at index in the labels array.
See the labelObj section for more details on multiple class labels.
New in version 6.2.

getMetaData(string key) [string] Return the value of the classObj metadata at key.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableObj.

getNextMetaDataKey(string lastkey) [string] Returns the next key in the metadata hash table or NULL if lastkey
is the last valid key. If lastkey is NULL, returns the first key of the metadata hash table.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableObj.

getStyle(int index) [s7yleObj] Return a reference to the styleObj at index in the styles array.
See the styleObj section for more details on multiple class styles.

getTextString() [string] Return a string representation of the text enclosed in the quote characters appropriate to the
text expression type (logical or simple string).

insertStyle(styleObj style [, int index=-1]) [int] Insert a copy of style into the styles array at index index. Default
is -1, or the end of the array. Returns the index at which the style was inserted.

moveStyleDown(int index) [int] Swap the styleObj at index with the styleObj index + 1.
moveStyleUp(int index) [int] Swap the styleObj at index with the styleObj index - 1.

removeLabel(int index) [/abelObj] Remove the labelObj at index from the labels array and return a reference to the
labelObj. numlabels is decremented, and the array is updated.

New in version 6.2.
removeStyle(int index) [styleObj] Remove the styleObj at index from the styles array and return a copy.

setExpression(string expression) [int] Set expression string where expression is a MapServer regular, logical or
string expression. Returns MS_SUCCESS or MS_FAILUIRE.

setMetaData(string key, string value) [int] Insert value into the classObj metadata at key. Returns MS_SUCCESS
or MS_FAILURE.

Note: setMetaData() is deprecated and will be removed in a future version. Replaced by direct metadata access,
see hashTableObj.

setText(string text) [int] Set text string where text is a MapServer text expression. Returns MS_SUCCESS or
MS_FAILUIRE.

5.1. MapScript 273

MapServer Documentation, Release 7.0.7

Note: Older versions of MapScript (pre-4.8) featured the an undocumented setText() method that required a
layerObj be passed as the first argument. That argument was completely bogus and has been removed.

colorObj

Since the 4.0 release, MapServer colors are instances of colorObj. A colorObj may be a lone object or an attribute of
other objects and have no other associations.

colorObj Attributes

alpha [int] Alpha (opacity) component of color in range [0-255]
blue [int] Blue component of color in range [0-255]
green [int] Green component of color in range [0-255]

red [int] Red component of color in range [0-255]

colorObj Methods

new colorObj([int red=0, int green=0, int blue=0, int alpha=255]) [colorObj] Create a new instance. The color
arguments are optional.

setHex(string hexcolor) [int] Set the color to values specified in case-independent hexadecimal notation. hex must
start with a ‘#” followed by three or four hex bytes, e.g. ‘#ffffff* or “#ffffffff’. If only three hex bytes are
supplied, the alpha will be set to 255. Calling setHex(‘#{fffff’) therefore assigns values of 255 to each color
component, including the alpha. Returns MS_SUCCESS or MS_FAILURE.

setRGB(int red, int green, int blue, int alpha=255) [int] Set all four RGBA components. Returns MS_SUCCESS
or MS_FAILURE.

toHex() [string] Complement to setHex, returning a hexadecimal representation of the color components. If alpha is
255 then this is three hex bytes “#rrggbb”, otherwise four hex bytes “#rrggbbaa”.

errorObj

This class allows inspection of the MapServer error stack. Only needed for the Perl module as the other language
modules expose the error stack through exceptions.

errorObj Attributes

code [int] MapServer error code such as MS_IMGERR (1).
message [string] Context-dependent error message.

routine [string] MapServer function in which the error was set.

errorObj Methods

next [errorObj] Returns the next error in the stack or NULL if the end has been reached.

5.1. MapScript 274

MapServer Documentation, Release 7.0.7

fontSetObj

A fontSetObj is always a ‘fontset’ attribute of a mapObj.

fontSetObj Attributes

filename [string immutable] Path to the fontset file on disk.
fonts [hashTableObj immutable] Mapping of fonts.

numfonts [int immutable] Number of fonts in set.

fontSetObj Methods

None

hashTableObj

A hashTableObj is a very simple mapping of case-insensitive string keys to single string values. Map, Layer, and Class
metadata have always been hash hables and now these are exposed directly. This is a limited hash that can contain no
more than 41 values.

hashTableObj Attributes

numitems [int immutable] Number of hash items.

hashTableObj Methods

clear() [void] Empties the table of all items.

get(string key [, string default=NULL]) [string] Returns the value of the item by its key, or default if the key does
not exist.

nextKey([string key=NULL]) [string] Returns the name of the next key or NULL if there is no valid next key. If
the input key is NULL, returns the first key.

remove(string key) [int] Removes the hash item by its key. Returns MS_SUCCESS or MS_FAILURE.
set(string key, string value) [int] Sets a hash item. Returns MS_SUCCESS or MS_FAILURE.

imageObj

An image object is a wrapper for GD and GDAL images.

imageObj Attributes

format [outputFormatObj immutable] Image format.
height [int immutable] Image height in pixels.

imagepath [string immutable] If image is drawn by mapObj.draw(), this is the mapObj’s web.imagepath.

5.1. MapScript 275

MapServer Documentation, Release 7.0.7

imageurl [string immutable] If image is drawn by mapObj.draw(), this is the mapObj’s web.imageurl.

renderer [int] MS_RENDER_WITH_GD, MS_RENDER_WITH_SWF, MS_RENDER_WITH_RAWDATA,
MS_RENDER_WITH_PDF, or MS_RENDER_WITH_IMAGEMAP. Don’t mess with this!

size [int immutable] To access this attribute use the getSize method.

Note: the getSize method is inefficient as it does a call to getBytes and then computes the size of the byte array.
The bytearray is then immediately discarded. In most cases it is more efficient to call getBytes directly.

width [int immutable] Image width in pixels.

imageObj Methods

new imageObj(int width, int height [, outputFormatObj format=NULL [, string filename=NULL]])
[imageObj] Create new instance of imageObj. If filename is specified, an imageObj is created from the
file and any specified width, height, and format parameters will be overridden by values of the image in
filename. Otherwise, if format is specified an imageObj is created using that format. See the format attribute
above for details. If filename is not specified, then width and height should be specified.

getBytes() [binary data] Returns the image contents as a binary buffer. The exact form of this buffer will vary by
mapscript language (eg. string in Python, byte[] array in Java and C#, unhandled in perl)

getSize() [int] Resturns the size of the binary buffer representing the image buffer.

Note: the getSize method is inefficient as it does a call to getBytes and then computes the size of the byte array.
The byte array is then immediately discarded. In most cases it is more efficient to call getBytes directly.

save(string filename [, mapObj parent_map=NULL]) [int] Save image to filename. The optional parent_map pa-
rameter must be specified if saving GeoTIFF images.

write([FILE file=NULL]) [int] Write image data to an open file descriptor or, by default, to stdout. Returns
MS_SUCCESS or MS_FAILURE.

Note: This method is current enabled for Python and C# only. C# supports writing onto a Stream object.
User-contributed typemaps are needed for Perl, Ruby, and Java.

Note: The free() method of imageObj has been deprecated. In MapServer revisions 4+ all instances of imageObj will
be properly disposed of by the interpreter’s garabage collector. If the application can’t wait for garabage collection,
then the instance can simply be deleted or undef’d.

intarray

An intarray is a utility class generated by SWIG wuseful for manipulating map layer draw-
ing order. See mapObj::getLayersDrawingOrder for discussion of mapscript use and see
http://www.swig.org/Doc1.3/Library.html#Library_nn5 for a complete reference.

5.1. MapScript 276

MapServer Documentation, Release 7.0.7

intarray Attributes

None

intarray Methods

new intarray(int numitems) [intarray] Returns a new instance of the specified length.

labelCacheMemberObj

An individual feature label. The labelCacheMemberObj class is associated with labelCacheOb;:

labelCacheMemberObj Attributes

classindex [int immutable] Index of the class of the labeled feature.
featuresize [float immutable] TODO

label [labelObj immutable] Copied from the class of the labeled feature.
layerindex [int immutable] The index of the layer of the labeled feature.
numstyles [int immutable] Number of styles as for the class of the labeled feature.
point [pointObj immutable] Label point.

poly [shapeObj immutable] Label bounding box.

shapeindex [int immutable] Index within shapefile of the labeled feature.
status [int immutable] Has the label been drawn or not?

styles [sryleObj immutable] TODO this should be protected from SWIG.
text [string immutable] Label text.

tileindex [int immutable] Tileindex of the layer of the labeled feature.

labelCacheMemberObj Methods

None.

Note: No real scripting control over labeling currently, but there may be some interesting new possibilities if users

have control over labeling text, position, and status.

5.1. MapScript

277

MapServer Documentation, Release 7.0.7

labelCacheObj

Set of a map’s cached labels. Has no other existence other than as a ‘labelcache’ attribute of a mapObj. Associated
with labelCacheMemberObj and markerCacheMemberObj:

o + 1 0% +——————————————————— +
| LabelCache | ————————— > | LabelCacheMember |
o + + +
| MarkerCacheMember |
e +

labelCacheObj Attributes

cachesize [int immutable] TODO
markercachesize [int immutable] TODO
numlabels [int immutable] Number of label members.

nummarkers [int immutable] Number of marker members.

labelCacheObj Methods

freeCache() [void] Free the labelcache.

labelObj

A labelObj is associated with a classObj, a scalebarObyj, or a legendOb;:

N +0..1 1 4 +
| Label | <————————— | Scalebar |
o + | === \
| Legend
fom +
t-—— + 0..% 1+ +
| Label | <————————— | Class |
o + e +

An instance of labelObj can exist outside of a classObj container and be explicitly inserted into the classObj:

new_label = new labelObj()
the_class.addLabel (new_label)

labelObj Attributes

angle [float] TODO
antialias [int] MS_TRUE or MS_FALSE
autoangle [int] MS_TRUE or MS_FALSE

autofollow [int] MS_TRUE or MS_FALSE. Tells mapserver to compute a curved label for appropriate linear features
(see rfc11 for specifics).

5.1. MapScript 278

MapServer Documentation, Release 7.0.7

autominfeaturesize: int MS_TRUE or MS_FALSE
backgroundcolor [colorObj] Color of background rectangle or billboard.

Deprecated since version 6.0: Use styleObj and geomtransform.
backgroundshadowcolor [colorObj] Color of background rectangle or billboard shadow.

Deprecated since version 6.0: Use styleObj and geomtransform.
backgroundshadowsizex [int] Horizontal offset of drop shadow in pixels.

Deprecated since version 6.0: Use styleObj and geomtransform.
backgroundshadowsizey [int] Vertical offset of drop shadow in pixels.

Deprecated since version 6.0: Use styleObj and geomtransform.
buffer [int] Maybe this should’ve been named ‘padding’ since that’s what it is: padding in pixels around a label.
color [colorObj] Foreground color.

encoding [string] Supported encoding format to be used for labels. If the format is not supported, the label will not
be drawn. Requires the iconv library (present on most systems). The library is always detected if present on the
system, but if not the label will not be drawn. Required for displaying international characters in MapServer.
More information can be found at: http://www.foss4g.org/FOSS4G/MAPSERVER/mpsnf-il8n-en.html.

font [string] Name of TrueType font.

force [int] MS_TRUE or MS_FALSE.

maxsize [int] Maximum height in pixels for scaled labels. See symbolscale attribute of /layerObj.
mindistance [int] Minimum distance in pixels between duplicate labels.

minfeaturesize [int] Features of this size of greater will be labeled.

minsize [int] Minimum height in pixels.

numstyles [int] Number of label styles

offsetx [int] Horizontal offset of label.

offsety [int] Vertical offset of label.

outlinecolor [colorObj] Color of one point outline.

partials [int] MS_TRUE (default) or MS_FALSE. Whether or not labels can flow past the map edges.
position [int] MS_UL, MS_UC, MS_UR, MS_CL, MS_CC, MS_CR, MS_LL, MS_LC, MS_LR, or MS_AUTO.
shadowcolor [colorObj] Color of drop shadow.

shadowsizex [int] Horizontal offset of drop shadow in pixels.

shadowsizey [int] Vertical offset of drop shadow in pixels.

size [int] Annotation height in pixels.

type : removed in version 7.0. All labels are truetype.

wrap [string] Character on which legend text will be broken to make multi-line legends.

labelObj Methods

convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.

New in version 6.4.

5.1. MapScript 279

http://www.foss4g.org/FOSS4G/MAPSERVER/mpsnf-i18n-en.html

MapServer Documentation, Release 7.0.7

getBinding(int binding) [string] Get the attribute binding for a specified label property. Returns NULL if there is
no binding for this property.

getExpressionString() [string] Returns the label expression string.
getStyle(int index) [sry/eObj] Return a reference to the styleObj at index in the styles array.
getTextString() [string] Returns the label text string.

insertStyle(styleObj style [, int index=-1]) [int] Insert a copy of style into the styles array at index index. Default
is -1, or the end of the array. Returns the index at which the style was inserted.

moveStyleDown(int index) [int] Swap the styleObj at index with the styleObj index + 1.

moveStyleUp(int index) [int] Swap the styleObj at index with the styleObj index - 1.

removeBinding(int binding) [int] Remove the attribute binding for a specfiled label property.
removeStyle(int index) [s7y/leObj] Remove the styleObj at index from the styles array and return a copy.

setBinding (int binding, string item) [int] Set the attribute binding for a specified label property. Binding constants
look like this: MS_LABEL_BINDING_[attribute name]:

setBinding (MS_LABEL_BINDING_COLOR, "FIELD_NAME_COLOR");

setExpression(string expression) [int] Set the label expression.
setText(string text) [int] Set the label text.

updateFromString (string snippet) [int] Update a label from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

layerObj

A layerObj is associated with mapObj. In the most recent revision, an instance of layerObj can exist outside of a
mapObj:

F———— + 1 0..% +——————— +

| Layer | <———————- > | Class |

o + - +

and hashTableObj:

- + 1 1+ +

| Layer | ————————— > | HashTable |

o + | - |
| metadata |
Fo———— +

layerObj Attributes

bandsitem [string] The attribute from the index file used to select the source raster band(s) to be used. Normally
NULL for default bands processing.

5.1. MapScript 280

MapServer Documentation, Release 7.0.7

classitem [string] The attribute used to classify layer data.
connection [string] Layer connection or DSN.

connectiontype [int] See MS_CONNECTION_TYPE in mapserver.h for possible values. When setting the connec-
tion type setConnectionType() should be used in order to initialize the layer vtable properly.

data [string] Layer data definition, values depend upon connectiontype.

debug [int] Enable debugging of layer. MS_ON or MS_OFF (default).

dump [int] Since 6.0, dump is not available anymore. metadata is used instead.
Switch to allow mapserver to return data in GML format. MS_TRUE or MS_FALSE. Default is MS_FALSE.
Deprecated since version 6.0: metadata is used instead.

extent [rectObj] optional limiting extent for layer features.

filteritem [string] Attribute defining filter.

footer [string] TODO

group [string] Name of a group of layers.

header [string] TODO

index [int immutable] Index of layer within parent map’s layers array.

labelangleitem [string] Attribute defining label angle.

labelcache [int] MS_ON or MS_OFF. Default is MS_ON.

labelitem [string] Attribute defining feature label text.

labelmaxscaledenom [float] Minimum scale at which layer will be labeled.

labelminscaledenom [float] Maximum scale at which layer will be labeled.

labelrequires [string] Logical expression.

labelsizeitem [string] Attribute defining label size.

map [mapObj immutable] Reference to parent map.

mask [string] Layer name for masking. (rfc79)

maxfeatures [int] Maximum number of layer features that will be drawn. For shapefile data this means the first N
features where N = maxfeatures.

maxscaledenom [float] Minimum scale at which layer will be drawn.
metadata [hashTableObj immutable] Layer metadata.

minscaledenom [float] Maximum scale at which layer will be drawn.
name [string] Unique identifier for layer.

numclasses [int immutable] Number of layer classes.

numitems [int immutable] Number of layer feature attributes (items).
numjoins [int immutable] Number of layer joins.

numprocessing [int immutable] Number of raster processing directives.

offsite [colorObj] transparent pixel value for raster layers.

5.1. MapScript 281

MapServer Documentation, Release 7.0.7

opacity [int] Layer opacity percentage in range [0, 100]. The special value of MS_GD_ALPHA (1000) indicates that
the alpha transparency of pixmap symbols should be honored, and should be used only for layers that use RGBA
pixmap symbols.

postlabelcache [int] MS_TRUE or MS_FALSE. Default is MS_FALSE.
requires [string] Logical expression.

sizeunits [int] Units of class size values. MS_INCHES, MS_FEET, MS_MILES, MS_NAUTICALMILES,
MS_METERS, MS_KILOMETERS, MS_DD or MS_PIXELS

status [int] MS_ON, MS_OFF, or MS_DEFAULT.
styleitem [string] Attribute defining styles.
symbolscaledenom [float] Scale at which symbols are default size.

template [string] Template file. Note that for historical reasons, the query attribute must be non-NULL for a layer to
be queryable.

tileindex [string] Layer index file for tiling support.
tileitem [string] Attribute defining tile paths.
tolerance [float] Search buffer for point and line queries.

toleranceunits [int] MS_INCHES, MS_FEET, MS_MILES, MS_NAUTICALMILES, MS_METERS,
MS_KILOMETERS, MS_DD or MS_PIXELS

transform [int] Whether or not layer data is to be transformed to image units. MS_TRUE or MS_FALSE. Default is
MS_TRUE. Case of MS_FALSE is for data that are in image coordinates such as annotation points.

type [int] See MS_LAYER_TYPE in mapserver.h.
units [int] Units of the layer. See MS_UNITS in mapserver.h.

layerObj Methods

new layerObj([mapObj parent_map=NULL]) [layerObj] Create a new layerObj in parent_map. The layer index
of the new layerObj will be equal to the parent_map numlayers - 1. The parent_map arg is now optional and
Layers can exist outside of a Map.

addFeature(shapeObj shape) [int] Add a new inline feature on a layer. Returns -1 on error. TODO: Is this similar
to inline features in a mapfile? Does it work for any kind of layer or connection type?

addProcessing(string directive) [void] Adds a new processing directive line to a layer, similar to the PROCESSING
directive in a map file. Processing directives supported are specific to the layer type and underlying renderer.

applySLD(string sld, string stylelayer) [int] Apply the SLD document to the layer object. The matching between
the sld document and the layer will be done using the layer’s name. If a namedlayer argument is passed (argu-
ment is optional), the NamedLayer in the sld that matchs it will be used to style the layer. See SLD HOWTO
for more information on the SLD support.

applySLDURL(string sld, string stylelayer) [int] Apply the SLD document pointed by the URL to the layer object.
The matching between the sld document and the layer will be done using the layer’s name. If a namedlayer
argument is passed (argument is optional), the NamedLayer in the sld that matchs it will be used to style the
layer. See SLD HOWTO for more information on the SLD support.

clearProcessing() [int] Clears the layer’s raster processing directives. Returns the subsequent number of directives,
which will equal MS_SUCCESS if the directives have been cleared.

clone() [layerObj] Return an independent copy of the layer with no parent map.

5.1. MapScript 282

MapServer Documentation, Release 7.0.7

close() [void] Close the underlying layer.
convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.

New in version 6.4.

Note: demote() is removed in MapServer 4.4

draw(;mapObj map, imageObj image) [int] Renders this layer into the target image, adding labels to the cache if
required. Returns MS_SUCCESS or MS_FAILURE. TODO: Does the map need to be the map on which the
layer is defined? I suspect so.

drawQuery(mapObj map, imageObj image) : Draw query map for a single layer into the target image. Returns
MS_SUCCESS or MS_FAILURE.

execute WFSGetFeature(layer) [string] Executes a GetFeature request on a WFS layer and returns the name of the
temporary GML file created. Returns an empty string on error.

generateSLD() [void] Returns an SLD XML string based on all the classes found in the layer (the layer must have
STATUS on).

getClass(inti) [classObj] Fetch the requested class object. Returns NULL if the class index is out of the legal range.
The numclasses field contains the number of classes available, and the first class is index O.

getExtent() [rectObj] Fetches the extents of the data in the layer. This normally requires a full read pass through the
features of the layer and does not work for raster layers.

getFeature(int shapeindex [, int tileindex=-1]) [shapeObj] Return the layer feature at shapeindex and tileindex.

Note: getFeature has been removed as of version 6.0 and replaced by getShape

getFilterString() [string] Returns the current filter expression.

getFirstMetaDataKey() [string] Returns the first key in the metadata hash table. With getNextMetaDataKey(), pro-
vides an opaque iterator over keys.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableObj.

getltem(inti) [string] Returns the requested item. Items are attribute fields, and this method returns the item name
(field name). The numitems field contains the number of items available, and the first item is index zero.

getMetaData(string key) [string] Return the value at key from the metadata hash table.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableObj.

getNextMetaDataKey(string lastkey) [string] Returns the next key in the metadata hash table or NULL if lastkey
is the last valid key. If lastkey is NULL, returns the first key of the metadata hash table.

Note: getFirstMetaDataKey(), getMetaData(), and getNextMetaDataKey() are deprecated and will be removed
in a future version. Replaced by direct metadata access, see hashTableObj.

5.1. MapScript 283

MapServer Documentation, Release 7.0.7

getNumFeatures() [int] Returns the number of inline features in a layer. TODO: is this really only online features or
will it return the number of non-inline features on a regular layer?

getNumResults() [int] Returns the number of entries in the query result cache for this layer.
getProcessing(int index) [string] Return the raster processing directive at index.
getProjection() [string] Returns the PROJ.4 definition of the layer’s projection.

getResult(int i) [resultCacheMemberObj] Fetches the requested query result cache entry, or NULL if the index is
outside the range of available results. This method would normally only be used after issuing a query operation.

getResults() [resultCacheObj] Returns a reference to layer’s result cache. Should be NULL prior to any query, or
after a failed query or query with no results.

getResultsBounds() [recrObj] Returns the bounds of the features in the result cache.

getShape(resultCacheMemberObj result) [int] Get a shape from layer data. Argument is a result cache member
from layerObj::getResult(i)

getWMSFeatureInfoURL(mapObj map, int click_x, int click_y, int feature_count, string info_format) [string]
Return a WMS GetFeatureInfo URL (works only for WMS layers) clickX, clickY is the location of to query
in pixel coordinates with (0,0) at the top left of the image. featureCount is the number of results to return.
infoFormat is the format the format in which the result should be requested. Depends on remote server’s
capabilities. MapServer WMS servers support only “MIME” (and should support “GML.1” soon). Returns “”
and outputs a warning if layer is not a WMS layer or if it is not queriable.

insertClass(classObj class [, int index=-1]) [int] Insert a copy of the class into the layer at the requested index.
Default index of -1 means insertion at the end of the array of classes. Returns the index at which the class was
inserted.

isVisible() [int] Returns MS_TRUE or MS_FALSE after considering the layer status, minscaledenom, and maxscale-
denom within the context of the parent map.

moveClassDown(int class) [int] The class specified by the class index will be moved up into the array of layers.
Returns MS_SUCCESS or MS_FAILURE. ex. moveClassDown(1) will have the effect of moving class 1 down
to position 2, and the class at position 2 will be moved to position 1.

moveClassUp(int class) [int] The class specified by the class index will be moved up into the array of layers. Re-
turns MS_SUCCESS or MS_FAILURE. ex. moveClassUp(1) will have the effect of moving class 1 up to
position 0, and the class at position 0 will be moved to position 1.

nextShape() [shapeObj] Called after msWhichShapes has been called to actually retrieve shapes within a given area
returns a shape object or MS_FALSE

example of usage:

mapObj map = new mapObj ("d:/msapps/gmap-ms40/htdocs/gmap75.map") ;
layerObj layer = map.getLayerByName ('road'");

int status = layer.open();

status = layer.whichShapes (map.extent);
shapeObj shape;

while ((shape = layer.nextShape()) != null)

{

}

layer.close();

open() [void] Opens the underlying layer. This is required before operations like getFeature() will work, but is not
required before a draw or query call.

5.1. MapScript 284

MapServer Documentation, Release 7.0.7

Note: promote() is eliminated in MapServer 4.4.

queryByAttributes(mapObj map, string qitem, string gstring, int mode) [int] Query layer for shapes that inter-
sect current map extents. qitem is the item (attribute) on which the query is performed, and gstring is the expres-
sion to match. The query is performed on all the shapes that are part of a CLASS that contains a TEMPLATE
value or that match any class in a layer that contains a LAYER TEMPLATE value.

Note that the layer’s FILTER/FILTERITEM are ignored by this function. Mode is MS_SINGLE or
MS_MULTIPLE depending on number of results you want. Returns MS_SUCCESS if shapes were found
or MS_FAILURE if nothing was found or if some other error happened.

queryByFeatures(mapObj map, int slayer) [int] Perform a query set based on a previous set of results from another
layer. At present the results MUST be based on a polygon layer. Returns MS_SUCCESS if shapes were found
or MS_FAILURE if nothing was found or if some other error happened

queryByIndex(mapObj map, int shapeindex, int tileindex [, int bAddToQuery=MS_FALSE]) [int] Pop a query
result member into the layer’s result cache. By default clobbers existing cache. Returns MS_SUCCESS or
MS_FAILURE.

queryByPoint(mapObj map, pointObj point, int mode, float buffer) [int] Query layer at point location specified
in georeferenced map coordinates (i.e. not pixels). The query is performed on all the shapes that are part of a
CLASS that contains a TEMPLATE value or that match any class in a layer that contains a LAYER TEMPLATE
value. Mode is MS_SINGLE or MS_MULTIPLE depending on number of results you want. Passing buffer <=0
defaults to tolerances set in the map file (in pixels) but you can use a constant buffer (specified in ground units)
instead. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other
error happened.

queryByRect(mapObj map, rectObj rect) [int] Query layer using a rectangle specified in georeferenced map co-
ordinates (i.e. not pixels). The query is performed on all the shapes that are part of a CLASS that contains
a TEMPLATE value or that match any class in a layer that contains a LAYER TEMPLATE value. Returns
MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other error happened.

queryByShape(mapObj map, shapeObj shape) [int] Query layer based on a single shape, the shape has to be a
polygon at this point. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or
if some other error happened

removeClass(int index) [c/assObj] Removes the class indicated and returns a copy, or NULL in the case of a failure.
Note that subsequent classes will be renumbered by this operation. The numclasses field contains the number
of classes available.

removeMetaData(string key) [int] Delete the metadata hash at key. Returns MS_SUCCESS or MS_FAILURE.

Note: removeMetaData() is deprecated and will be removed in a future version. Replaced by direct metadata
access, see hashlableObj.

resultsGetShape(int shapeindex [, int tileindex = -1]) [shapeObj] Retrieve shapeObj from a layer’s resultset by in-
dex. Tileindex is optional and is used only for tiled shapefiles, Simply omit or pass tileindex = -1 for other data
sources. Added in MapServer 5.6.0 due to the one-pass query implementation.

setConnectionType(int connectiontype, string library_str) [int] Changes the connectiontype of the layer and recre-
ates the vtable according to the new connection type. This method should be used instead of setting the con-
nectiontype parameter directly. In case when the layer.connectiontype = MS_PLUGIN the library_str parameter
should also be specified so as to select the library to load by mapserver. For the other connection types this
parameter is not used.

5.1. MapScript 285

MapServer Documentation, Release 7.0.7

setExtent(float minx, float miny, float maxx, float maxy) [int] Sets the extent of a layer. Returns MS_SUCCESS
or MS_FAILURE.

setFilter(string filter) [int] Sets a filter expression similarly to the FILTER expression in a map file. Returns
MS_SUCCESS on success or MS_FAILURE if the expression fails to parse.

setMetaData(string key, string value) [int] Assign value to the metadata hash at key. Return MS_SUCCESS or
MS_FAILURE.

Note: setMetaData() is deprecated and will be removed in a future version. Replaced by direct metadata access,
see hashTableObj.

setProcessingKey(string key, string value) [void] Adds or replaces a processing directive of the form “key=value”.
Unlike the addProcessing() call, this will replace an existing processing directive for the given key value. Pro-
cessing directives supported are specific to the layer type and underlying renderer.

setProjection(string proj4) [int] Set the layer projection using a PROJ.4 format projection definition (ie.
“+proj=utm +zone=11 +datum=WGS84” or “init=EPSG:26911”). Returns MS_SUCCESS or MS_FAILURE.

setWKTProjection(string wkt) [int] Set the layer projection using OpenGIS Well Known Text format. Returns
MS_SUCCESS or MS_FAILURE.

whichShapes(rectObj rect) [int] Performs a spatial, and optionally an attribute based feature search. The function
basically prepares things so that candidate features can be accessed by query or drawing functions (eg using
nextShape function). Returns MS_SUCCESS, MS_FAILURE or MS_DONE. MS_DONE is returned if the
layer extent does not overlap rect.

legendObj

legendObj is associated with mapObj:

o + 0..1 1 +——- +

| Legend | <———————- > | Map |
o + +————= +
and with labelOby:

e + 1 1+ +
| Legend | ————————- > | Label |
+——— + F———— +

legendObj Attributes

height [int] Legend height.

imagecolor [colorObj] Legend background color.

keysizex [int] Width in pixels of legend keys.

keysizey [int] Pixels.

keyspacingx [int] Horizontal padding around keys in pixels.
keyspacingy [int] Vertical padding.

label [labelObj immutable] legend label.

5.1. MapScript 286

MapServer Documentation, Release 7.0.7

map [mapObj immutable] Reference to parent mapObj.

outlinecolor [colorObj] key outline color.

position [int] MS_UL, MS_UC, MS_UR, MS_LL, MS_LC, or MS_LR.
postlabelcache [int] MS_TRUE or MS_FALSE.

status [int] MS_ON, MS_OFF, or MS_EMBED.

template [string] Path to template file.

width [int] Label width.

legendObj Methods

convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.

New in version 6.4.

lineObj

A lineObj is composed of one or more pointObj instances:

lineObj Attributes

numpoints [int immutable] Number of points in the line.

lineObj Methods

new lineObj() [lineObj] Create a new instance.
add(pointObj point) [int] Add point to the line. Returns MS_SUCCESS or MS_FAILURE.
get(int index) [pointObj] Return reference to point at index.

project(projectionObj proj_in, projectionObj proj_out) [int] Transform line in place from proj_in to proj_out. Re-
turns MS_SUCCESS or MS_FAILURE.

set(int index, pointObj point) [int] Set the point at index to point. Returns MS_SUCCESS or MS_FAILURE.

mapObj

A mapObj is primarily associated with instances of layerObj:

Secondary associations are with legendObj, scalebarObj, referenceMapObj:

5.1. MapScript 287

MapServer Documentation, Release 7.0.7

+———— + 1 0..1 +—————————————— +
| Map | ————————— > | Legend |
Fo——— + | ——————— \
| Scalebar |
| —————— \
| ReferenceMap |
o +

outputFormatObj:

mapObj Attributes

cellsize [float] Pixel size in map units.

configoptions [hashObj immutable] A hash table of configuration options from CONFIG keywords in the .map. Di-
rect access to config options is discouraged. Use the setConfigOption() and getConfigOption() methods instead.

datapattern [string] TODO not sure this is meaningful for mapscript.
debug [int] MS_TRUE or MS_FALSE.

extent [rectObj] Map’s spatial extent.

fontset [fon:SerObj immutable] The map’s defined fonts.

height [int] Map’s output image height in pixels.

Note: direct setting of height is deprecated in MapServer version 4.4. Users should set width and height
simultaneously using setSize().

imagecolor [colorObj] Initial map background color.

imagequality [int] JPEG image quality.

Note: map imagequality is deprecated in MapServer 4.4 and should instead be managed through map output-
formats.

imagetype [string immutable] Name of the current output format.

interlace [int] Output image interlacing.

Note: map interlace is deprecated in MapServer 4.4 and should instead be managed through map outputformats.

lablecache [labelCacheObj immutable] Map’s labelcache.
legend [legendObj immutable] Reference to map’s legend.
mappath [string] Filesystem path of the map’s mapfile.
maxsize [int] TODO ?

name [string] Unique identifier.

5.1. MapScript 288

MapServer Documentation, Release 7.0.7

numlayers [int immutable] Number of map layers.

numoutputformats [int] The number of output formats currently configured on the map object. Can be used to iterate
over the list of output formats with the getOutputFormat(idx) method (see below).

outputformat [outputFormarObj] The currently selected output format.

Note: Map outputformat should not be modified directly. Use the selectOutputFormat() method to select named
formats.

outputformatlist [outputFormatObj[]] Array of the available output formats.

Note: Currently only available for C#. A proper typemaps should be implemented for the other languages.

Note: As of 6.2 other languages can use the getoutputFormat(idx) and getNumoutputformats() functions to
iterate over the format array.

querymap [queryMapObj immutable] TODO should this be exposed to mapscript?
reference [referenceMapObj immutable] Reference to reference map.

resolution [float] Nominal DPI resolution. Default is 72.

scalebar [scalebarObj immutable] Reference to the scale bar.

scaledenom [float] The nominal map scale. A value of 25000 means 1:25000 scale.
shapepath [string] Base filesystem path to layer data.

status [int] MS_OFF, MS_ON, or MS_DEFAULT.

symbolset [symbolSetObj immutable] The map’s set of symbols.

templatepattern [string] TODO not sure this is meaningful for mapscript.

transparent [int] MS_TRUE or MS_FALSE.

Note: map transparent is deprecated in MapServer 4.4 and should instead be managed through map outputfor-
mats.

units [int] MS_DD, MS_METERS, etc.
web [webObj immutable] Reference to map’s web definitions.

width [int] Map’s output image width in pixels.

Note: direct setting of width is deprecated in MapServer version 4.4. Users should set width and height
simultaneously using setSize().

mapObj Methods

new mapObj([string filename=""]) [mapObj] Create a new instance of mapObj. Note that the filename is now
optional.

5.1. MapScript 289

MapServer Documentation, Release 7.0.7

appendOutputFormat(outputFormatObj format) [int] Attach format to the map’s output format list. Returns the
updated number of output formats.

applyConfigOptions() [void] Apply the defined configuration options set by setConfigOption().

applySLD(string sldxml) [int] Parse the SLD XML string sldxml and apply to map layers. Returns MS_SUCCESS
or MS_FAILURE.

applySLDURL(string sldurl) [int] Fetch SLD XML from the URL sldurl and apply to map layers. Returns
MS_SUCCESS or MS_FAILURE.

clone() [mapObj] Returns a independent copy of the map, less any caches.

Note: In the Java module this method is named ‘cloneMap’.

convertToString() [string] Saves the object to a string.

Note: The inverse method updateFromString does not exist for the mapObj

New in version 6.4.
draw() [imageObj] Draw the map, processing layers according to their defined order and status. Return an imageOb;.

drawLabelCache(imageObj image) [int] Draw map’s label cache on image. Returns MS_SUCCESS or
MS_FAILURE.

drawLegend() [imageObj] Draw map legend, returning an imageOb.

drawQuery() [imageObj] Draw query map, returning an imageOb.

drawReferenceMap() [imageObj] Draw reference map, returning an imageObj.

drawScalebar() [imageObj] Draw scale bar, returning an imageODbj.

embedLegend(imageObj image) [int] Embed map’s legend in image. Returns MS_SUCCESS or MS_FAILURE.

embedScalebar(imageObj image) [int] Embed map’s scalebar in image. Returns MS_SUCCESS or
MS_FAILURE.

freeQuery([int qlayer=-1]) [void] Clear layer query result caches. Default is -1, or all layers.
generateSLD() [string] Return SLD XML as a string for map layers that have STATUS on.

getConfigOption(string key) [string] Fetches the value of the requested configuration key if set. Returns NULL if
the key is not set.

getFirstMetaDataKey() [string] Returns the first key in the web.metadata hash table. With getNextMetaDataKey(),
provides an opaque iterator over keys.

getLabel(int labelindex) [/abelCacheMemberObj] Return label at specified index from the map’s labelcache.
getLayer(int index) [layerObj] Returns a reference to the layer at index.
getLayerByName(string name) [/ayerObj] Returns a reference to the named layer.

getLayersDrawingOrder() [int*] Returns an array of layer indexes in drawing order.

Note: Unless the proper typemap is implemented for the module’s language a user is more likely to get back
an unusable SWIG pointer to the integer array.

getMetaData(string key) [string] Return the value at key from the web.metadata hash table.

5.1. MapScript 290

MapServer Documentation, Release 7.0.7

getNextMetaDataKey(string lastkey) [string] Returns the next key in the web.metadata hash table or NULL if
lastkey is the last valid key. If lastkey is NULL, returns the first key of the metadata hash table.

getNumSymbols() [int] Return the number of symbols in map.

getOutputFormat(int i): outputFormatObj Returns the output format at the specified i index from the output for-
mats array or null if i is beyond the array bounds. The number of outpuFormats can be retrieved by calling
getNumoutputformats.

getOutputFormatByName(string imagetype) [outputFormatObj] Return the output format corresponding to
driver name imagetype or to format name imagetype. This works exactly the same as the IMAGETYPE di-
rective in a mapfile, is case insensitive and allows an output format to be found either by driver (like ‘GD/PNG’)
or name (like ‘PNG24°).

getProjection() [string] Returns the PROJ.4 definition of the map’s projection.

getSymbolByName(string name) [int] Return the index of the named symbol in the map’s symbolset.

Note: This method is poorly named and too indirect. It is preferable to use the getSymbolByName method of
symbolSetObj, which really does return a symbolObj reference, or use the index method of symbolSetObj to
get a symbol’s index number.

insertLayer(layerObj layer [, int nIndex=-1]) [int] Insert a copy of layer into the Map at index nindex. The de-
fault value of nlndex is -1, which means the last possible index. Returns the index of the new Layer, or -1 in the
case of a failure.

loadMapContext(string filename [, int useUniqueNames=MS_FALSE]) [int] Load an OGC map context file to
define extents and layers of a map.

loadOWSParameters(OWSRequest request [, string version=‘1.1.1"]) [int] Load OWS request parameters
(BBOX, LAYERS, &c.) into map. Returns MS_SUCCESS or MS_FAILURE.

loadQuery(string filename) [int] Load a saved query. Returns MS_SUCCESS or MS_FAILURE.

moveLayerDown(int layerindex) [int] Move the layer at layerindex down in the drawing order array, meaning that
it is drawn later. Returns MS_SUCCESS or MS_FAILURE.

moveLayerUp(int layerindex) [int] Move the layer at layerindex up in the drawing order array, meaning that it is
drawn earlier. Returns MS_SUCCESS or MS_FAILURE.

nextLabel() [labelCacheMemberObj] Return the next label from the map’s labelcache, allowing iteration over labels.

Note: nextLabel() is deprecated and will be removed in a future version. Replaced by getLabel().

OWSDispatch(OWSRequest req) [int] Processes and executes the passed OpenGIS Web Services request on the
map. Returns MS_DONE (2) if there is no valid OWS request in the req object, MS_SUCCESS (0) if an OWS
request was successfully processed and MS_FAILURE (1) if an OWS request was not successfully processed.
OWS requests include WMS, WFS, WCS and SOS requests supported by MapServer. Results of a dispatched
request are written to stdout and can be captured using the msIO services (ie. msIO_installStdoutToBuffer() and
mslO_getStdoutBufferString())

preparelmage() [imageObj] Returns an imageObj initialized to map extents and outputformat.
prepareQuery() [void] TODO this function only calculates the scale or am I missing something?

processLegendTemplate(string names|[], string values[], int numitems) [string] Process MapServer legend tem-
plate and return HTML.

5.1. MapScript 291

MapServer Documentation, Release 7.0.7

Note: None of the three template processing methods will be usable unless the proper typemaps are imple-
mented in the module for the target language. Currently the typemaps are not implemented.

processQueryTemplate(string names[], string values[], int numitems) [string] Process MapServer query tem-
plate and return HTML.

Note: None of the three template processing methods will be usable unless the proper typemaps are imple-
mented in the module for the target language. Currently the typemaps are not implemented.

processTemplate(int generateimages, string names[], string values[], int numitems) [string] Process MapServer
template and return HTML.

Note: None of the three template processing methods will be usable unless the proper typemaps are imple-
mented in the module for the target language. Currently the typemaps are not implemented.

queryByFeatures(int layerindex) [int] Query map layers, result sets contain features that intersect or are con-
tained within the features in the result set of the MS_LAYER_POLYGON type layer at layerindex. Returns
MS_SUCCESS or MS_FAILURE.

queryByPoint(pointObj point, int mode, float buffer) [int] Query map layers, result sets contain one or more
features, depending on mode, that intersect point within a tolerance buffer. Returns MS_SUCCESS or
MS_FAILURE.

queryByRect(rectObj rect) [int] Query map layers, result sets contain features that intersect or are contained within
rect. Returns MS_SUCCESS or MS_FAILURE.

queryByShape(shapeObj shape) [int] Query map layers, result sets contain features that intersect or are contained
within shape. Returns MS_SUCCESS or MS_FAILURE.

removeLayer(int index) [int] Remove the layer at index.

removeMetaData(string key) [int] Delete the web.metadata hash at key. Returns MS_SUCCESS or
MS_FAILURE.

removeQutputFormat(string name) [int] Removes the format named name from the map’s output format list. Re-
turns MS_SUCCESS or MS_FAILURE.

save(string filename) [int] Save map to disk as a new map file. Returns MS_SUCCESS or MS_FAILURE.

saveMapContext(string filename) [int] Save map definition to disk as OGC-compliant XML. Returns
MS_SUCCESS or MS_FAILURE.

saveQuery(string filename) [int] Save query to disk. Returns MS_SUCCESS or MS_FAILURE.
saveQueryAsGML(string filename) [int] Save query to disk. Returns MS_SUCCESS or MS_FAILURE.

selectOutputFormat(string imagetype) [void] Set the map’s active output format to the internal format named
imagetype. Built-in formats are “PNG”, “PNG24”, “JPEG”, “GIF”, “GTIFF”.

setConfigOption(string key, string value) [void] Set the indicated key configuration option to the indicated value.
Equivalent to including a CONFIG keyword in a map file.

setExtent(float minx, float miny, float maxx, float maxy) [int] Set the map extent, returns MS_SUCCESS
or MS_FAILURE. This method will correct the extents (width/height ratio) before setting the
minx,miny,maxx,maxy values. See extent properties to set up a custom extent from recrObj.

5.1. MapScript 292

MapServer Documentation, Release 7.0.7

offsetExtent(float x, float y) [int] Offset the map extent based on the given distances in map coordinates, returns
MS_SUCCESS or MS_FAILURE.

scaleExtent(float zoomfactor, float minscaledenom, float maxscaledenom) [int] Scale the map extent using the
zoomfactor and ensure the extent within the minscaledenom and maxscaledenom domain. If minscalede-
nom and/or maxscaledenom is O then the parameter is not taken into account. returns MS_SUCCESS or
MS_FAILURE.

setCenter(pointObj center) [int] Set the map center to the given map point, returns MS_SUCCESS or
MS_FAILURE.

setFontSet(string filename) [int] Load fonts defined in filename into map fontset. The existing fontset is cleared.
Returns MS_SUCCESS or MS_FAILURE.

setImageType(string name) [void] Sets map outputformat to the named format.

Note: setlmageType() remains in the module but it’s use is deprecated in favor of selectOutputFormat().

setLayersDrawingOrder(int layerindexes[]) [int] Set map layer drawing order.

Note: Unless the proper typemap is implemented for the module’s language users will not be able to pass
arrays or lists to this method and it will be unusable.

setMetaData(string key, string value) [int] Assign value to the web.metadata hash at key. Return MS_SUCCESS
or MS_FAILURE.

setOutputFormat(outputFormatObj format) [void] Sets map outputformat.
setProjection(string proj4) [int] Set map projection from PROJ.4 definition string proj4.

setRotation(float rotation_angle) [int] Set map rotation angle. The map view rectangle (specified in EXTENTS)
will be rotated by the indicated angle in the counter- clockwise direction. Note that this implies the rendered
map will be rotated by the angle in the clockwise direction. Returns MS_SUCCESS or MS_FAILURE.

setSize(int width, int height) [int] Set map’s image width and height together and carry out the necessary subse-
quent geotransform computation. Returns MS_SUCCESS or MS_FAILURE.

setSymbolSet(string filename) [int] Load symbols defined in filename into map symbolset. The existing symbolset
is cleared. Returns MS_SUCCESS or MS_FAILURE.

setWKTProjection(string wkt) [int] Sets map projection from OGC definition wkt.

zoomPoint(int zoomfactor, pointObj imgpoint, int width, int height, rectObj extent, rectObj maxextent) [int]
Zoom by zoomfactor to imgpoint in pixel units within the image of height and width dimensions and
georeferenced extent. Zooming can be constrained to a maximum maxextent. Returns MS_SUCCESS or
MS_FAILURE.

zoomRectangle(rectObj imgrect, int width, int height, rectObj extent, rectObj maxextent) : int Zoom to a pixel
coordinate rectangle in the image of width and height dimensions and georeferencing extent. Zooming can be
constrained to a maximum maxextent. The imgrect rectangle contains the coordinates of the LL and UR coordi-
nates in pixel: the maxy in the rect object should be < miny value. Returns MS_SUCCESS or MS_FAILURE:

——————— UR (values in the rect object : maxx, maxy)

LL (values in the rectobject minx, miny)

5.1. MapScript 293

MapServer Documentation, Release 7.0.7

zoomScale(float scale, pointObj imgpoint, int width, int height, rectObj extent, rectObj maxextent) [int] Like
the previous methods, but zooms to the point at a specified scale.

markerCacheMemberObj

An individual marker. The markerCacheMemberObj class is associated with labelCacheOb;:

| MarkerCacheMember | <-————————— | LabelCache |

markerCacheMemberObj Attributes

id [int immutable] Id of the marker.

poly [shapeObj immutable] Marker bounding box.

markerCacheMemberObj Methods

None.

outputFormatObj

An outputFormatObj is associated with a mapObj:

and can also be an attribute of an imageObj.

outputFormatObj Attributes

bands [int] The number of bands in the raster. Only used for the “raw” modes, MS_IMAGEMODE_BYTE,
MS_IMAGEMODE_INT16, and MS_IMAGEMODE_FLOAT32. Normally set via the BAND_COUNT for-
matoption ... this field should be considered read-only.

driver [string] A string such as ‘GD/PNG’ or ‘GDAL/GTiff’.
extension [string] Format file extension such as ‘png’.

imagemode [int] MS_IMAGEMODE_PC256, MS_IMAGEMODE_RGB, MS_IMAGEMODE_RGBA,
MS_IMAGEMODE_INT]16, MS_IMAGEMODE_FLOAT32, MS_IMAGEMODE_BYTE, or
MS_IMAGEMODE_NULL.

mimetype [string] Format mimetype such as ‘image/png’.
name [string] A unique identifier.

numformatoptions: int The number of option values set on this format. Can be used to iterate over the options array
in conjunction with getOptionAt

5.1. MapScript 294

MapServer Documentation, Release 7.0.7

renderer [int] MS_RENDER_WITH_GD, MS_RENDER_WITH_SWF, MS_RENDER_WITH_RAWDATA,
MS_RENDER_WITH_PDF, or MS_RENDER_WITH_IMAGEMAP. Normally set internally based on the
driver and some other setting in the constructor.

transparent [int] MS_ON or MS_OFF.

outputFormatObj Methods

new outputFormatObj(string driver [, string name=driver]) [oufputFormatObj] Create new instance. If name is
not provided, the value of driver is used as a name.

getOption(string key [, string defaultvalue="""]) [string] Return the format option at key or defaultvalue if key is
not a valid hash index.

getOptionAt(int idx): string Returns the option at idx or null if the index is beyond the array bounds. The option
is returned as the original KEY=VALUE string. The number of available options can be obtained by calling
getNumformatoptions.

setExtension(string extension) [void] Set file extension for output format such as ‘png’ or ‘jpg’. Method could
probably be deprecated since the extension attribute is mutable.

setMimetype(string mimetype) [void] Set mimetype for output format such as ‘image/png’ or ‘image/jpeg’.
Method could probably be deprecated since the mimetype attribute is mutable.

setOption(string key, string value) [void] Set the format option at key to value. Format options are mostly driver
specific.

validate() [int] Checks some internal consistency issues, and returns MS_TRUE if things are OK and MS_FALSE if
there are problems. Some problems are fixed up internally. May produce debug output if issues encountered.

OWSRequest

Not associated with other mapscript classes. Serves as a message intermediary between an application and
MapServer’s OWS capabilities. Using it permits creation of lightweight WMS services:

wms_map = mapscript.mapObj ('wms.map')
wms_request = mapscript.OWSRequest ()

Convert application request parameters (reqg.args)
for param, value in reg.args.items():
wms_request.setParam(param, value)

Map loads parameters from OWSRequest, adjusting its SRS, extents,
active layers accordingly
wms_map.loadWMSRequest ('1.1.0"', wms_request)

Render the Map
img = wms_map.draw ()

OWSRequest Attributes

NumParams [int immutable] Number of request parameters. Eventually should be changed to numparams lowercase
like other attributes.

postrequest [string] TODO

5.1. MapScript 295

MapServer Documentation, Release 7.0.7

type [int] MS_GET_REQUEST or MS_POST_REQUEST.

OWSRequest Methods

new OWSRequest() [OWSRequest] Create a new instance.

Note: MapServer’s OWSRequest supports only single valued parameters.

addParameter(string name, string value) [void] Add a request parameter, even if the parameter key was previ-
ousely set. This is useful when multiple parameters with the same key are required. For example:

request.addParameter ('SIZE', 'x(100)")
request.addParameter ("SIZE', 'y (100)")

getName(int index) [string] Return the name of the parameter at index in the request’s array of parameter names.
getValue(int index) [string] Return the value of the parameter at index in the request’s array of parameter values.
getValueByName(string name) [string] Return the value associated with the parameter name.

loadParams() [int] Initializes the OWSRequest object from the cgi environment variables REQUEST_METHOD,
QUERY_STRING and HTTP_COOKIE. Returns the number of name/value pairs collected. Warning: most
errors will result in a process exit!

loadParamsFromURL(string url) [int] Initializes the OWSRequest object from the provided URL which is treated
like a QUERY_STRING. Note that REQUEST_METHOD=GET and no post data is assumed in this case. This
method was added in MapServer 6.0.

setParameter(string name, string value) [void] Set a request parameter. For example:

request.setParameter ('REQUEST', 'GetMap')
request.setParameter ('BBOX', '-107.0,40.0,-106.0,41.0")

pointObj

A pointObj instance may be associated with a lineObj:

pointObj Attributes

m [float] Measure. Meaningful only for measured shapefiles. Given value -2e38 if not otherwise assigned to indicate
“nodata”.

x [float] Easting
y [float] Northing

z [float] Elevation

5.1. MapScript 296

MapServer Documentation, Release 7.0.7

pointObj Methods

new pointObj([float x=0.0, float y=0.0, float z=0.0, float m=-2e38]) [pointObj] Create new instance. Easting,
northing, and measure arguments are optional.

distanceToPoint(pointObj point) [float] Returns the distance to point.

distanceToSegment(pointObj point1, pointObj point2) [float] Returns the minimum distance to a hypothetical
line segment connecting pointl and point2.

distanceToShape(shapeObj shape) [float] Returns the minimum distance to shape.

draw(mapObj map, layerObj layer, imageObj image, int classindex, string text) [int] Draw the point using the
styles defined by the classindex class of layer and labeled with string text. Returns MS_SUCCESS or
MS_FAILURE.

project(projectionObj proj_in, projectionObj proj_out) [int] Reproject point from proj_in to proj_out. Transfor-
mation is done in place. Returns MS_SUCCESS or MS_FAILURE.

setXY/(float x, float y [, float m=2e-38]) [int] Set spatial coordinate and, optionally, measure values simultaneously.
The measure will be set only if the value of m is greater than the ESRI measure no-data value of 1e-38. Returns
MS_SUCCESS or MS_FAILURE.

setXYZ(float x, float y, float z [, float m=-2e38]) [int] Set spatial coordinate and, optionally, measure values si-
multaneously. The measure will be set only if the value of m is greater than the ESRI measure no-data value of
-1e38. Returns MS_SUCCESS or MS_FAILURE.

setXYZM(float x, float y, float z, float m) [int] Set spatial coordinate and, optionally, measure values simultane-
ously. The measure will be set only if the value of m is greater than the ESRI measure no-data value of -1e38.
Returns MS_SUCCESS or MS_FAILURE.

toShape() [shapeObj] Convience method to quickly turn a point into a shapeOb;.

toString() [string] Return a string formatted like:

{ "x': %£ , 'y': Sf, 'z': %Sf }

with the coordinate values substituted appropriately. Python users can get the same effect via the pointObj
__str__ method:

>>> p = mapscript.pointObj (1, 1)
>>> str(p)
{ 'x': 1.000000 , 'y': 1.000000, 'z': 1.000000 }

projectionObj

This class is not really fully implemented yet. MapServer’s Maps and Layers have Projection attributes, and these
are C projectionObj structures, but are not directly exposed by the mapscript module. Currently we have to do some
round-a-bout logic like this:

point.project (projectionObj (mapobj.getProjection(),
projectionObj(layer.getProjection())

to project a point from map to layer reference system.

5.1. MapScript 297

MapServer Documentation, Release 7.0.7

projectionObj Attributes

numargs [int immutable] Number of PROJ.4 arguments.

projectionObj Methods

new projectionObj(string proj4) [projectionObj] Create new instance of projectionObj. Input parameter proj4 is a
PROJ.4 definition string such as “init=EPSG:4269".

getUnits() [int] Returns the units of a projection object. Returns -1 on error.

rectODbj

A rectObj may be a lone object or an attribute of another object and has no other associations.

rectObj Attributes

maxx [float] Maximum easting
maxy [float] Maximum northing
minx [float] Minimum easting

miny [float] Minimum northing

rectObj Methods

new rectObj([float minx=-1.0, float miny=-1.0, float maxx=-1.0, float maxy=-1.0, int imageunits=MS_FALSE])
[rectObj] Create new instance. The four easting and northing arguments are optional and default to -1.0. Note
the new optional fifth argument which allows creation of rectangles in image (pixel/line) units which are also
tested for validity.

draw(mapObj map, layerObj layer, imageObj img, int classindex, string text) [int] Draw rectangle into img us-
ing style defined by the classindex class of layer. The rectangle is labeled with the string fext. Returns
MS_SUCCESS or MS_FAILURE.

getCenter() [pointObj] Return the center point of the rectagle.

project(projectionObj proj_in, projectionObj proj_out) [int] Reproject rectangle from proj_in to proj_out. Trans-
formation is done in place. Returns MS_SUCCESS or MS_FAILURE.

toPolygon() [shapeObj] Convert to a polygon of five vertices.

toString() [string] Return a string formatted like:

{ 'minx': %f , 'miny': $f , 'maxx': $f , 'maxy': %f }

with the bounding values substituted appropriately. Python users can get the same effect via the rectObj __str__
method:

>>> r = mapscript.rectObj(0, 0, 1, 1)
>>> str(r)

{ 'minx': 0 , 'miny': O , 'maxx': 1 , 'maxy': 1 }

5.1. MapScript 298

MapServer Documentation, Release 7.0.7

referenceMapObij

A referenceMapODbj is associated with mapObj:

referenceMapObj Attributes

color [colorObj] Color of reference box.

extent [rectObj] Spatial extent of reference in units of parent map.
height [int] Height of reference map in pixels.

image [string] Filename of reference map image.

map [mapObj immutable] Reference to parent mapOb.

marker [int] Index of a symbol in the map symbol set to use for marker.
markername [string] Name of a symbol.

markersize [int] Size of marker.

maxboxsize [int] Pixels.

minboxsize [int] Pixels.

outlinecolor [colorObj] Outline color of reference box.

status [int] MS_ON or MS_OFF.

width [int] In pixels.

referenceMapObj Methods

convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.

New in version 6.4.

resultCacheMemberObj

Has no associations with other MapScript classes and has no methods. By using several indexes, a resultCacheMem-
berObj refers to a single layer feature.

resultCacheMemberObj Attributes

classindex [int immutable] The index of the layer class into which the feature has been classified.
shapeindex [int immutable] Index of the feature within the layer.

tileindex [int immutable] Meaningful for tiled layers only, index of the shapefile data tile.

5.1. MapScript 299

MapServer Documentation, Release 7.0.7

resultCacheObj

See querying-HOWTO.txt for extra guidance in using the new 4.4 query APL

resultCacheObj Attributes

bounds [rectObj immutable] Bounding box of query results.

numresults [int immutable] Length of result set.

resultCacheObj Methods

getResult(inti) [resultCacheMemberObj] Returns the result at index i, like layerObj::getResult, or NULL if index
is outside the range of results.

scalebarObj

A scalebarObj is associated with mapObj:

Fm + 0..1 1 +——- +

| Scalebar | <—————————— | Map |
fo————— + +————= +
and also with labelObj:

e + 1 1 +——————— +
| Scalebar | ———————— > | Label |
o + o +

scalebarObj Attributes

backgroundcolor [colorObj] Scalebar background color.
color [colorObj] Scalebar foreground color.

height [int] Pixels.

imagecolor [colorObj] Background color of scalebar.
intervals [int] Number of intervals.

label [labelObj] Scalebar label.

outlinecolor [colorObj] Foreground outline color.
position [int] MS_UL, MS_UC, MS_UR, MS_LL, MS_LC, or MS_LR.
postlabelcache [int] MS_TRUE or MS_FALSE.

status [int] MS_ON, MS_OFF, or MS_EMBED.

style [int] O or 1.

units [int] See MS_UNITS in mapserver.h.

width [int] Pixels.

5.1. MapScript 300

MapServer Documentation, Release 7.0.7

scalebarObj Methods

convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.

New in version 6.4.

shapefileObj
shapefileObj Attributes

bounds [rectObj] Extent of shapes.
numshapes [int] Number of shapes.

type [int] See mapshape.h for values of type.

shapefileObj Methods

new shapefileObj(string filename [, int type=-1]) [shapefileObj] Create a new instance. Omit the fype argument
or use a value of -1 to open an existing shapefile.

add(shapeObj shape) [int] Add shape to the shapefile. Returns MS_SUCCESS or MS_FAILURE.

get(int i, shapeObj shape) [int] Get the shapefile feature from index i and store it in shape. Returns MS_SUCCESS
or MS_FAILURE.

getShape(inti) [shapeObj] Returns the shapefile feature at index i. More efficient than get.
TODO

shapeObj

Each feature of a layer’s data is a shapeObj. Each part of the shape is a closed lineObj:

shapeObj Attributes

bounds [rectObj] Bounding box of shape.

classindex [int] The class index for features of a classified layer.
index [int] Feature index within the layer.

numlines [int immutable] Number of parts.

numvalues [int immutable] Number of shape attributes.

text [string] Shape annotation.

tileindex [int] Index of tiled file for tileindexed layers.

type [int] MS_SHAPE_POINT, MS_SHAPE_LINE, MS_SHAPE_POLYGON, or MS_SHAPE_NULL.

5.1. MapScript 301

MapServer Documentation, Release 7.0.7

shapeObj Methods

new shapeObj(int type) [shapeObj] Return a new shapeObj of the specified fype. See the type attribute above. No
attribute values created by default. initValues should be explicitly called to create the required number of values.

add(lineObj line) [int] Add line (i.e. a part) to the shape. Returns MS_SUCCESS or MS_FAILURE.

boundary() [shapeObj] Returns the boundary of the existing shape. Requires GEOS support. Returns NULL/undef
on failure.

buffer(int distance) [shapeObj] Returns a new buffered shapeObj based on the supplied distance (given in the co-
ordinates of the existing shapeObj). Requires GEOS support. Returns NULL/undef on failure.

clone() [shapeObj] Return an independent copy of the shape.
contains(pointObj point) [int] Returns MS_TRUE if the point is inside the shape, MS_FALSE otherwise.

contains(shapeObj shape2) [int] Returns MS_TRUE if shape? is entirely within the shape. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

convexHull() [shapeObj] Returns the convex hull of the existing shape. Requires GEOS support. Returns
NULL/undef on failure.

copy(shapeObj shape_copy) [int] Copy the shape to shape_copy. Returns MS_SUCCESS or MS_FAILURE.

crosses(shapeObj shape2) [int] Returns MS_TRUE if shape2 crosses the shape. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

difference(shapeObj shape) [shapeObj] Returns the computed difference of the supplied and existing shape. Re-
quires GEOS support. Returns NULL/undef on failure.

disjoint(shapeObj shape2) [int] Returns MS_TRUE if shape2 and the shape are disjoint. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

distanceToPoint(pointObj point) [float] Return distance to point.
distanceToShape(shapeObj shape) [float] Return the minimum distance to shape.

draw(mapObj map, layerObj layer, imageObj img) [int] Draws the individual shape using layer. Returns
MS_SUCCESS or MS_FAILURE.

equals(shapeObj shape2) [int] Returns MS_TRUE if the shape and shape2 are equal (geometry only). Returns -1
on error and MS_FALSE otherwise. Requires GEOS support.

fromWKT(char *wkt) [shapeObj] Returns a new shapeObj based on a well-known text representation of a geom-
etry. Requires GEOS support. Returns NULL/undef on failure.

get(int index) [/ineObj] Returns a reference to part at index. Reference is valid only during the life of the shapeObj.
getArea() [double] Returns the area of the shape (if applicable). Requires GEOS support.

getCentroid() [pointObj] Returns the centroid for the existing shape. Requires GEOS support. Returns NULL/undef
on failure.

getLength() [double] Returns the length (or perimeter) of a shape. Requires GEOS support.
getValue(inti) [string] Return the shape attribute at index i.
initValues(int numvalues) [void] Allocates memory for the requested number of values.

intersects(shapeObj shape) [int] Returns MS_TRUE if the two shapes intersect, MS_FALSE otherwise.

Note: Does not require GEOS support but will use GEOS functions if available.

5.1. MapScript 302

MapServer Documentation, Release 7.0.7

intersection(shapeObj shape) [shapeObj] Returns the computed intersection of the supplied and existing shape.
Requires GEOS support. Returns NULL/undef on failure.

overlaps(shapeObj shape2) [int] Returns MS_TRUE if shape2 overlaps shape. Returns -1 on error and MS_FALSE
otherwise. Requires GEOS support.

project(projectionObj proj_in, projectionObj proj_out) [int] Reproject shape from proj_in to proj_out. Transfor-
mation is done in place. Returns MS_SUCCESS or MS_FAILURE.

setBounds [void] Must be called to calculate new bounding box after new parts have been added.
TODO: should return int and set msSetError.
setValue(int i, string value) [int] Set the shape value at index i to value.

simplify(double tolerance): shapeObj Given a tolerance, returns a simplified shape object or NULL on error. Re-
quires GEOS support (>=3.0).

symDifference(shapeObj shape) [shapeObj] Returns the computed symmetric difference of the supplied and exist-
ing shape. Requires GEOS support. Returns NULL/undef on failure.

topologyPreservingSimplify(double tolerance): shapeObj Given a tolerance, returns a simplified shape object or
NULL on error. Requires GEOS support (>=3.0).

touches(shapeObj shape2) [int] Returns MS_TRUE if the shape and shape2 touch. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

toWKT() [string] Returns the well-known text representation of a shapeObj. Requires GEOS support. Returns
NULL/undef on failure.

Union(shapeObj shape) [shapeObj] Returns the union of the existing and supplied shape. Shapes must be of the
same type. Requires GEOS support. Returns NULL/undef on failure.

within(shapeObj shape2) [int] Returns MS_TRUE if the shape is entirely within shape2. Returns -1 on error and
MS_FALSE otherwise. Requires GEOS support.

styleObj

An instance of styleObj is associated with one instance of classObj:

An instance of styleObj can exist outside of a classObj container and be explicitly inserted into the classObj for use in
mapping:

new_style = new styleObj()
the_class.insertStyle (new_style)

It is important to understand that insertStyle inserts a copy of the styleObj instance, not a reference to the instance
itself.

The older use case:

new_style = new styleObj(the_class)

remains supported. These will be the only ways to access the styles of a class. Programmers should no longer directly
access the styles attribute.

5.1. MapScript 303

MapServer Documentation, Release 7.0.7

styleObj Attributes

angle [double] Angle, given in degrees, to draw the line work. Default is 0. For symbols of Type HATCH, this is the
angle of the hatched lines.

angleitem [string] Deprecated since version 5.0: Use setBinding.
backgroundcolor [colorObj] Background pen color.
color [colorObj] Foreground or fill pen color.

mincolor [colorObj] Attribute for Color Range Mapping (rfc6). mincolor, minvalue, maxcolor, maxvalue define the
range for mapping a continuous feature value to a continuous range of colors when rendering the feature on the
map.

minsize [int] Minimum pen or symbol width for scaling styles.

minvalue [double] Attribute for Color Range Mapping (rfc6). mincolor, minvalue, maxcolor, maxvalue define the
range for mapping a continuous feature value to a continuous range of colors when rendering the feature on the
map.

minwidth [int] Minimum width of the symbol.

maxcolor [colorObj] Attribute for Color Range Mapping (rfc6). mincolor, minvalue, maxcolor, maxvalue define the
range for mapping a continuous feature value to a continuous range of colors when rendering the feature on the
map.

maxsize [int] Maximum pen or symbol width for scaling.

maxvalue [double] Attribute for Color Range Mapping (rfc6). mincolor, minvalue, maxcolor, maxvalue define the
range for mapping a continuous feature value to a continuous range of colors when rendering the feature on the
map.

maxwidth [int] Maximum width of the symbol.

offsetx [int] Draw with pen or symbol offset from map data.
offsety [int] Draw with pen or symbol offset from map data.
outlinecolor [colorObj] Outline pen color.

pattern [array of double values] List of on, off values to define a dash pattern for line work (lines, polygon outlines,
hatch lines, ...)

patternlength [int] Number of elements in the pattern attribute.

rangeitem [string] Attribute/field that stores the values for the Color Range Mapping (rfc6).
size [int] Pixel width of the style’s pen or symbol.

sizeitem [string] Deprecated since version 5.0: Use setBinding.

symbol [int] The index within the map symbolset of the style’s symbol.

symbolname [string immutable] Name of the style’s symbol.

width [int] Width refers to the thickness of line work drawn, in pixels. Default is 1. For symbols of Type HATCH,
the with is how thick the hatched lines are.

styleObj Methods

new styleObj([classObj parent_class]) [styleObj] Returns new default style Obj instance. The parent_class is
optional.

5.1. MapScript 304

MapServer Documentation, Release 7.0.7

clone [styleObj] Returns an independent copy of the style with no parent class.
convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.
New in version 6.4.

getBinding(int binding) [string] Get the attribute binding for a specified style property. Returns NULL if there is
no binding for this property.

removeBinding(int binding) [int] Remove the attribute binding for a specfiled style property.

setBinding (int binding, string item) [int] Set the attribute binding for a specified style property. Binding constants
look like this: MS_STYLE_BINDING_[attribute name]:

setBinding (MS_STYLE_BINDING_SIZE, 'mySizeItem');

setSymbolByName(map Obj map, string symbolname) [int] Setting the symbol of the styleObj given the reference
of the map object and the symbol name.

updateFromString (string snippet) [int] Update a style from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

symbolObj

A symbolObj is associated with one symbolSetObj:

A styleObj will often refer to a symbolObj by name or index, but this is not really an object association, is it?

symbolObj Attributes

antialias [int] MS_TRUE or MS_FALSE.

character [string] For TrueType symbols.

filled [int] MS_TRUE or MS_FALSE.

font [string] For TrueType symbols.

gap [int] Moved to STYLE

imagepath [string] Path to pixmap file.

inmapfile [int] If set to TRUE, the symbol will be saved inside the mapfile. Added in MapServer 5.6.1
linecap [int] Moved to STYLE

linejoin [int] Moved to STYLE

linejoinmaxsize [float] Moved to STYLE

name [string] Symbol name

numpoints [int immutable] Number of points of a vector symbol.
position [int] No more available?

sizex [float] TODO what is this?

sizey [float] TODO what is this?

5.1. MapScript 305

MapServer Documentation, Release 7.0.7

stylelength [int] Number of intervals
transparent [int] TODO what is this?
transparentcolor [int] TODO is this a derelict attribute?

type [int] MS_SYMBOL_SIMPLE, MS_SYMBOL_VECTOR, MS_SYMBOL_ELLIPSE,
MS_SYMBOL_PIXMAP, or MS_SYMBOL_TRUETYPE.

symbolObj Methods

new symbolObj(string symbolname [, string imagefile]) [symbolObj] Create new default symbol named name.
If imagefile is specified, then the symbol will be of type MS_SYMBOL_PIXMAP.

getImage() [imageObj] Returns a pixmap symbol’s imagery as an imageObj.

getPoints() [/ineObj] Returns the symbol points as a lineObyj.

setImage(imageObj image) [int] Set a pixmap symbol’s imagery from image.

setPoints(/ineObj line) [int] Sets the symbol points from the points of line. Returns the updated number of points.

setStyle(int index, int value) [int] Set the style at index to value. Returns MS_SUCCESS or MS_FAILURE.

symbolSetObj

A symbolSetObj is an attribute of a mapObj and is associated with instances of symbolObj:

symbolSetObj Attributes

filename [string] Symbolset filename

numsymbols [int immutable] Number of symbols in the set.

symbolSetObj Methods

new symbolSetObj([string symbolfile]) [symbolSetObj] Create new instance. If symbolfile is specified, symbols
will be loaded from the file.

appendSymbol(symbolObj symbol) [int] Add a copy of symbol to the symbolset and return its index.

getSymbol(int index) [symbolObj] Returns a reference to the symbol at index.

getSymbolByName(string name) [symbolObj] Returns a reference to the symbol named name.

index(string name) [int] Return the index of the symbol named name or -1 in the case that no such symbol is found.
removeSymbol(int index) [symbolObj] Remove the symbol at index and return a copy of the symbol.

save(string filename) [int] Save symbol set to a file. Returns MS_SUCCESS or MS_FAILURE.

5.1. MapScript 306

MapServer Documentation, Release 7.0.7

webObj

Has no other existence than as an attribute of a mapObj. Serves as a container for various run-time web application

definitions like temporary file paths, template paths, etc.

webObj Attributes

empty [string] TODO

error [string] TODO

extent [rectObj] Clipping extent.
footer [string] Path to footer document.

header [string] Path to header document.

imagepath [string] Filesystem path to temporary image location.

imageurl [string] URL to temporary image location.
log [string] TODO

map [mapObj immutable] Reference to parent mapObj.
maxscaledenom [float] Minimum map scale.

maxtemplate [string] TODO

metadata [hashTubleObj immutable] metadata hash table.

minscaledenom [float] Maximum map scale.
mintemplate [string] TODO
queryformat [string] TODO

template [string] Path to template document.

webObj Methods

convertToString() [string] Saves the object to a string. Provides the inverse option for updateFromString.

New in version 6.4.

5.1.3 PHP MapScript

Release 7.0.7

Introduction

This is a PHP module that makes MapServer’s MapScript functionalities available in a PHP Dynamically Loadable
Library. In simple terms, this module will allow you to use the powerful PHP scripting language to dynamically create

and modify map images in MapServer.

5.1. MapScript

307

http://www.php.net/

MapServer Documentation, Release 7.0.7

Versions Supported

PHP 5.2.0 or more recent is required; since MapServer 6.0, support for PHP 4, PHP 5.0 and PHP 5.1 have been
dropped. PHP MapScript was originally developed for PHP 3.0.14, and after MapServer 3.5 support for PHP 3 was
dropped.

The module has been tested and used on Linux, Solaris, *BSD, and Windows.

Note: If you are using MapServer 5.6 and older, please refer to the PHP MapScript 5.6 documentation
instead.

Note: If you are migrating your existing application that is based on MapServer 5.6 or older, to
MapServer 6.0 or beyond, please read the PHP MapScript Migration Guide for important changes.

How to Get More Information on PHP MapScript

* For installation questions regarding the PHP MapScript module, see PHP MapScript Installation.
* The MapServer Wiki has information on this module, that was contributed by users.

¢ New PHP MapScript users should read the By Example document.

* The project’s home is the PHP/MapScript page on MapTools.org.

* Also, see the MapScript, and the Mapfile sections of this site.

¢ Refer to the main PHP site for their official documentation.

Memory Management

Normally, you should not have to worry about the memory management because php has a garbage collector and will
free resources for you. If you write only small scripts that don’t do a lot of processing, it’s not worth to care about
that. Everything will be freed at the end of the script.

However, it may be useful to free resources during the execution if the script executes many tasks. To do so, you’ll
have to call the free() method of the mapscript objects and unset the php variables. The purpose of the free methods is
to break the circular references between an object and its properties to allow the zend engine to free the resources.

Here’s an example of a script that doesn’t free things during the execution:

Smap = new mapObj("mapfile.map");
Sof = $map->outputformat;
echo $map->extent->minx." - ".$map->extent->miny." - ".
Smap->extent->maxx." - ".Smap->extent->maxy."\n";
echo "Outputformat name: $of->name\n";
unset ($of) ;
unset ($Smap); // Even if we unset the php variables, resources
// won't be freed. Resources will be only freed
// at the end of the script

and the same script that frees resources as soon as it can

5.1. MapScript 308

http://trac.osgeo.org/mapserver/wiki/PHPMapScript
http://www.maptools.org/php_mapscript/
http://www.php.net

MapServer Documentation, Release 7.0.7

Smap = new mapObj ("mapfile.map");

Sof = $map->outputformat;

echo $map->extent->minx." - ".S$map->extent->miny." - ".
Smap->extent->maxx." - ".S$map->extent->maxy."\n";

echo "Outputformat name: S$Sof->name\n";

unset ($of) ;

Smap->free(); // break the circular references

// at this place, the outputformat ($of) and the rect object

// (Smap->extent) resources are freed

unset (Smap) ;

// the map object is immediately freed after the unset (before the

// end of the script)

PHP MapScript API

Author Daniel Morissette

Contact dmorissette at mapgears.com
Author Yewondwossen Assefa
Contact yassefa at dmsolutions.ca
Author Alan Boudreault

Contact aboudreault at mapgears.com
Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com

Note: If you are using MapServer 5.6 and older, please refer to the PHP MapScript 5.6 documen-
tation instead.

Warning: PHP 7 support is still in development; please follow along and contribute through
the associated ticket.

Contents

* PHP MapScript API

Important Note

Constants

Functions

Classes

% classObj

*

clusterObj

*

colorObj

*

errorObj

5.1. MapScript 309

https://github.com/mapserver/mapserver/issues/5252

MapServer Documentation, Release 7.0.7

* gridObj

* hashTableObj

* imageObj

% labelcacheMemberObj
* labelcacheObj
* labelObj

% layerObj

* legendObj

* lineObj

* mapObj

% outputformatObj
* OwsrequestObj
* pointObj

% projectionObj

* querymapObj

% rectObj

* referenceMapObj
% resultObj

* scalebarObj

* shapefileObj

* shapeObj

* styleObj

* symbolObj

* webObj

Important Note

¢ Constant names and class member variable names are case-sensitive in PHP.

Constants

The following MapServer constants are available:
Boolean values MS_TRUE, MS_FALSE, MS_ON, MS_OFF, MS_YES, MS_NO

Map units MS_INCHES, MS_FEET, MS_MILES, MS_METERS, MS_KILOMETERS, MS_DD, MS_PIXELS,
MS_NAUTICALMILES

Layer types MS_LAYER_POINT, MS_LAYER_LINE, MS_LAYER_POLYGON, MS_LAYER_RASTER,
MS_LAYER_ANNOTATION (deprecated since 6.2), MS_LAYER_QUERY, MS_LAYER_CIRCLE,
MS_LAYER_TILEINDEX, MS_LAYER_CHART

5.1. MapScript 310

MapServer Documentation, Release 7.0.7

Layer/Legend/Scalebar/Class Status MS_ON, MS_OFF, MS_DEFAULT, MS_EMBED, MS_DELETE
Layer alpha transparency allows alpha transparent pixmaps to be used with RGB map images MS_GD_ALPHA

Label positions MS_UL, MS_LR, MS_UR, MS_LL, MS_CR, MS_CL, MS_UC, MS_LC, MS_CC, MS_XY,
MS_AUTO, MS_AUTO2, MS_FOLLOW, MS_NONE

Bitmap font styles MS_TINY , MS_SMALL, MS_MEDIUM, MS_LARGE, MS_GIANT

Shape types MS_SHAPE_POINT, MS_SHAPE_LINE, MS_SHAPE_POLYGON, MS_SHAPE_NULL
Shapefile types MS_SHP_POINT, MS_SHP_ARC, MS_SHP_POLYGON, MS_SHP_MULTIPOINT
Query/join types MS_SINGLE, MS_MULTIPLE

Querymap styles MS_NORMAL, MS_HILITE, MS_SELECTED

Connection Types MS_INLINE, = MS_SHAPEFILE, @ MS_TILED_SHAPEFILE, @ MS_SDE, MS_OGR,
MS_TILED_OGR, MS_POSTGIS, MS_WMS, MS_ORACLESPATIAL, MS_WEFS, MS_GRATICULE,
MS_RASTER, MS_PLUGIN, MS_UNION

Error codes MS_NOERR, MS_IOERR, MS_MEMERR, MS_TYPEERR, MS_SYMERR, MS_REGEXERR,
MS_TTFERR, MS_DBFERR, MS_GDERR, MS_IDENTERR, MS_EOFERR, MS_PROJERR,
MS_MISCERR, MS_CGIERR, MS_WEBERR, MS_IMGERR, MS_HASHERR, MS_JOINERR,
MS_NOTFOUND, MS_SHPERR, MS_PARSEERR, MS_SDEERR, MS_OGRERR, MS_QUERYERR,
MS_WMSERR, MS_WMSCONNERR, MS_ORACLESPATIALERR, MS_WFSERR, MS_WFSCONNERR,
MS_MAPCONTEXTERR, MS_HTTPERR, MS_WCSERR

Symbol types MS_SYMBOL_SIMPLE, MS_SYMBOL_VECTOR, MS_SYMBOL_ELLIPSE,
MS_SYMBOL_PIXMAP, MS_SYMBOL_TRUETYPE

Image Mode types (outputFormatObj) MS_IMAGEMODE_PC256, MS_IMAGEMODE_RGB,
MS_IMAGEMODE_RGBA, MS_IMAGEMODE_INT16, MS_IMAGEMODE_FLOAT32,
MS_IMAGEMODE_BYTE, MS_IMAGEMODE_FEATURE, MS_IMAGEMODE_NULL

Style/Attribue binding MS_STYLE_BINDING_SIZE, MS_STYLE_BINDING_ANGLE,
MS_STYLE BINDING_COLOR, MS_STYLE BINDING_OUTLINECOLOR,
MS_STYLE_BINDING_SYMBOL, MS_STYLE_BINDING_WIDTH

Label/Attribute binding MS_LABEL_BINDING_SIZE, MS_LABEL_BINDING_ANGLE,
MS_LABEL_BINDING_COLOR, MS_LABEL_BINDING_OUTLINECOLOR,

MS_LABEL_BINDING_FONT, MS_LABEL_BINDING_PRIORITY, MS_LABEL_BINDING_POSITION,
MS_LABEL_BINDING_SHADOWSIZEX, MS_LABEL_BINDING_SHADOWSIZEY

Alignment MS_ALIGN_LEFT, MS_ALIGN_CENTER, MS_ALIGN_RIGHT
OwsRequest MS_GET_REQUEST, MS_POST_REQUEST

Functions

string ms_GetVersion() Returns the MapServer version and options in a string. This string can be parsed to find out
which modules were compiled in, etc.

int ms_GetVersionInt() Returns the MapServer version number (x.y.z) as an integer (x*10000 + y*100 + z). (New
in v5.0) e.g. V5.4.3 would return 50403.

int ms_iogetStdoutBufferBytes() Writes the current buffer to stdout. The PHP header() function should be used to
set the documents’s content-type prior to calling the function. Returns the number of bytes written if output is
sent to stdout. See MapScript Wrappers for WxS Services for more info.

void ms_iogetstdoutbufferstring() Fetch the current stdout buffer contents as a string. This method does not clear
the buffer.

5.1. MapScript 311

MapServer Documentation, Release 7.0.7

void ms_ioinstallstdinfrombuffer() Installs a mapserver IO handler directing future stdin reading (ie. post request
capture) to come from a buffer.

void ms_ioinstallstdouttobuffer() Installs a mapserver IO handler directing future stdout output to a memory buffer.
void ms_ioresethandlers() Resets the default stdin and stdout handlers in place of “buffer” based handlers.

string ms_iostripstdoutbuffercontenttype() Strip the Content-type header off the stdout buffer if it has one, and if a
content type is found it is return. Otherwise return false.

void ms_iostripstdoutbuffercontentheaders() Strip all the Content-* headers off the stdout buffer if it has some.

array ms_TokenizeMap(string map_file_name) Preparses a mapfile through the MapServer parser and return an ar-
ray with one item for each token from the mapfile. Strings, logical expressions, regex expressions and comments
are returned as individual tokens.

errorObj ms_GetErrorObj() Returns a reference to the head of the list of errorOb;.

void ms_ResetErrorList() Clear the current error list. Note that clearing the list invalidates any errorObj handles
obtained via the $error->next() method.

Classes

The following class objects are available through PHP MapScript.

classObj
Constructor

Class Objects can be returned by the layerObj class, or can be created using:

’new classObj(layerObj layer [, classObj class])

or using the old constructor

’classObj ms_newClassObj(layerObj layer [, classObj class])

The second argument class is optional. If given, the new class created will be a copy of this class.

5.1. MapScript 312

MapServer Documentation, Release 7.0.7

Members
Type Name Note
string group
string keyimage
labelObj label Removed (6.2) - use addLabel, getLabel, ...
double maxscaledenom
hashTableObj | metadata
double minscaledenom
string name
int numlabels read-only (since 6.2)
int numstyles read-only
int status MS_ON, MS_OFF or MS_DELETE
string template
string title
int type
Methods

int addLabel(labelObj label) Add a labelObj to the classObj and return its index in the labels array.
New in version 6.2.

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

imageObj createLegendIcon(int width, int height) Draw the legend icon and return a new imageObj.

int deletestyle(int index) Delete the style specified by the style index. If there are any style that follow the deleted
style, their index will decrease by 1.

int drawLegendIcon(int width, int height, imageObj im, int dstX, int dstY) Draw the legend icon on im object at
dstX, dstY. Returns MS_SUCCESS/MS_FAILURE.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

string getExpressionString() Returns the expression string for the class object.

labelObj getLabel(int index) Return a reference to the labelObj at index in the labels array.
See the labelObj section for more details on multiple class labels.
New in version 6.2.

[3H

int getMetaData(string name) Fetch class metadata entry by name. Returns
that the search is case sensitive.

if no entry matches the name. Note

Note: getMetaData’s query is case sensitive.

styleObj getStyle(int index) Return the style object using an index. index >= 0 && index < class->numstyles.
string getTextString() Returns the text string for the class object.

int movestyledown(int index) The style specified by the style index will be moved down into the array of classes.
Returns MS_SUCCESS or MS_FAILURE. ex class->movestyledown(0) will have the effect of moving style O
up to position 1, and the style at position 1 will be moved to position 0.

5.1. MapScript 313

MapServer Documentation, Release 7.0.7

int movestyleup(int index) The style specified by the style index will be moved up into the array of classes. Returns
MS_SUCCESS or MS_FAILURE. ex class->movestyleup(1) will have the effect of moving style 1 up to position

0, and the style at position 0 will be moved to position 1.

labelObj removeLabel(int index) Remove the labelObj at index from the labels array and return a reference to the

labelObj. numlabels is decremented, and the array is updated.

New in version 6.2.

int removeMetaData(string name) Remove a metadata entry for the class. Returns MS_SUCCESS/MS_FAILURE.

int set(string property_name, new_value) Set object property to a new value.

int setExpression(string expression) Set the expression string for the class object.

int setMetaData(string name, string value) Set a metadata entry for the class. Returns
MS_SUCCESS/MS_FAILURE.
int settext(string text) Set the text string for the class object.
int updateFromString(string snippet) Update a class from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.
/*set the color =/
$oClass—->updateFromString ('CLASS STYLE COLOR 255 0 255 END END');
clusterObj
Constructor
Instance of clusterObj is always embedded inside the layerObj.
Members
Type Name
double | buffer
double | maxdistance
string | region
Methods
string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.
string getFilterString() Returns the expression for this cluster filter or NULL on error.
string getGroupString() Returns the expression for this cluster group or NULL on error.
int setFilter(string expression) Set layer filter expression.
int setGroup(string expression) Set layer group expression.
colorObj
5.1. MapScript 314

MapServer Documentation, Release 7.0.7

Constructor

Instances of colorObj are always embedded inside other classes.

Members
Type | Name
int red
int green
int blue
int alpha

Methods

int setRGB(int red, int green, int blue, int alpha = 255) Set red, green, blue and alpha values. Returns
MS_SUCCESS.

string toHex() Get the color as a hex string “#rrggbb” or (if alpha is not 255) “#rrggbbaa”.

int setHex(string hex) Set red, green, blue and alpha values. The hex string should have the form “#rrggbb” (alpha
will be set to 255) or “#rrggbbaa”. Returns MS_SUCCESS.

errorObj

Instances of errorObj are created internally by MapServer as errors happen. Errors are managed as a chained list with
the first item being the most recent error. The head of the list can be fetched using ms_GetErrorObj(), and the list can
be cleared using ms_ResetErrorList()

Members
Type | Name
int code //See error code constants above

string | message
string | routine

Method

errorObj next() Returns the next errorObj in the list, or NULL if we reached the end of the list.

Example

This example draws a map and reports all errors generated during the draw() call, errors can potentially come from
multiple layers.

ms_ResetErrorList ();

$img = S$map->draw();
Serror = ms_GetErrorObj();
while (Serror && Serror—->code != MS_NOERR)

5.1. MapScript 315

MapServer Documentation, Release 7.0.7

{
printf ("Error in %s: %$s
\n", Serror->routine, Serror->message);
Serror = $error->next ()

’

gridObj
Constructor

The grid is always embedded inside a layer object defined as a grid (layer->connectiontype = MS_GRATICULE) (for
more docs : https://github.com/mapserver/mapserver/wiki/MapServerGrid)

A layer can become a grid layer by adding a grid object to it using : ms_newGridObj(layerObj layer)

SoLayer = ms_newlayerob]j ($oMap) ;
SoLayer->set ("name", "GRID");

ms_newgridobj ($SolLayer) ;

SoLayer->grid->set ("labelformat", "DDMMSS");

Members

Type Name

string | labelformat
double | maxacrs
double | maxinterval
double | maxsubdivide
double | minarcs
double | mininterval
double | minsubdivide

Methods

int set(string property_name, new_value) Set object property to a new value.

hashTableObj

Constructor

Instance of hashTableObj is always embedded inside the classObj, layerObj, mapObj and webObj. It is uses a read
only.

ShashTable = $olayer->metadata;
Skey = null;
while (Skey = ShashTable->nextkey (Skey))
echo "Key: ".Skey." value: ".ShashTable->get ($key) ."
";

5.1. MapScript 316

https://github.com/mapserver/mapserver/wiki/MapServerGrid

MapServer Documentation, Release 7.0.7

Methods

void clear() Clear all items in the hashTable (To NULL).

732

string get(string key) Fetch class metadata entry by name. Returns
search is case sensitive.

if no entry matches the name. Note that the

string nextkey(string previousKey) Return the next key or first key if previousKey = NULL. Return NULL if no
item is in the hashTable or end of hashTable is reached

int remove(string key) Remove a metadata entry in the hashTable. Returns MS_SUCCESS/MS_FAILURE.
int set(string key, string value) Set a metadata entry in the hashTable. Returns MS_SUCCESS/MS_FAILURE.

imageObj
Constructor

Instances of imageObj are always created by the mapObj class methods.

Members
Type | Name Note
int width read-only
int height read-only
int resolution read-only
int resolutionfactor | read-only
string | imagepath
string | imageurl

Methods

void pasteImage(imageObj srcImg, int transparentColorHex [[, int dstX, int dstY], int angle]) Copy srcImg on
top of the current imageObj. transparentColorHex is the color (in Oxrrggbb format) from srcImg that should
be considered transparent (i.e. those pixels won’t be copied). Pass -1 if you don’t want any transparent color.
If optional dstx,dsty are provided then it defines the position where the image should be copied (dstx,dsty =
top-left corner position). The optional angle is a value between 0 and 360 degrees to rotate the source image
counterclockwise. Note that if an angle is specified (even if its value is zero) then the dstx and dsty coordinates
specify the CENTER of the destination area. Note: this function works only with 8 bits GD images (PNG or
GIF).

int saveImage([string filename, MapObj oMap]) Writes image object to specified filename. Passing no filename
or an empty filename sends output to stdout. In this case, the PHP header() function should be used to set the
document’s content-type prior to calling savelmage(). The output format is the one that is currently selected
in the map file. The second argument oMap is not manadatory. It is usful when saving to formats like GTIFF
that needs georeference information contained in the map file. On success, it returns either MS_SUCCESS if
writing to an external file, or the number of bytes written if output is sent to stdout.

string saveWebImage() Writes image to temp directory. Returns image URL. The output format is the one that is
currently selected in the map file.

5.1. MapScript 317

MapServer Documentation, Release 7.0.7

labelcacheMemberObj

Accessible only through the mapObj (map->getLabel()).

Members
Type | Name Note
int classindex | read-only
int featuresize | read-only
int layerindex | read-only
int markerid read-only
int numstyles | read-only
int shapeindex | read-only
int status read-only
string | text read-only
int tileindex read-only

Method

None

labelcacheObj

Accessible only through the mapObj (map->labelcache). This object is only used to give the possibility to free the
label cache (map->labelcache->freeCache())

Methods

boolean freeCache() Free the label cache. Always returns MS_SUCCESS. Ex : map->labelcache->freeCache();

labelObj
Constructor

labelObj are always embedded inside other classes.

new labelOb ()

Members

Type Name
int align
double angle
int anglemode
int antialias
Continued on next page

5.1. MapScript 318

MapServer Documentation, Release 7.0.7

Table 5.2 — continued from previous page

Type Name

int autominfeaturesize

colorObj | backgroundcolor (deprecated since 6.0)
colorObj | backgroundshadowcolor (deprecated since 6.0)
int backgroundshadowsizex (deprecated since 6.0)
int backgroundshadowsizey (deprecated since 6.0)
int buffer

colorObj | color

string encoding

string font

int force

int maxlength

int maxsize

int mindistance

int minfeaturesize

int minlength

int minsize

int numstyles

int offsetx

int offsety

colorObj | outlinecolor

int outlinewidth

int partials

int position

int priority

int repeatdistance

colorObj | shadowcolor

int shadowsizex

int shadowsizey

int size

int wrap

Methods

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

int deleteStyle(int index) Delete the style specified by the style index. If there are any style that follow the deleted
style, their index will decrease by 1.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

string getBinding(mixed labelbinding) Get the attribute binding for a specified label property. Returns NULL if
there is no binding for this property.

Example:

$oLabel->setbinding (MS_LABEL_BINDING_COLOR, "FIELD_NAME_COLOR");
echo $oLabel->getbinding (MS_LABEL_BINDING_COLOR); // FIELD_NAME_COLOR

string getExpressionString() Returns the label expression string.

styleObj getStyle(int index) Return the style object using an index. index >= 0 && index < label->numstyles.

5.1. MapScript 319

MapServer Documentation, Release 7.0.7

string getTextString() Returns the label text string.

int moveStyleDown(int index) The style specified by the style index will be moved down into the array of classes.
Returns MS_SUCCESS or MS_FAILURE. ex label->movestyledown(0) will have the effect of moving style O
up to position 1, and the style at position 1 will be moved to position 0.

int moveStyleUp(int index) The style specified by the style index will be moved up into the array of classes. Returns
MS_SUCCESS or MS_FAILURE. ex label->movestyleup(1) will have the effect of moving style 1 up to position
0, and the style at position 0 will be moved to position 1.

int removeBinding(mixed labelbinding) Remove the attribute binding for a specfiled style property.

Example:

SoStyle->removebinding (MS_LABEL_BINDING_COLOR) ;

int set(string property_name, new_value) Set object property to a new value.
int setBinding(mixed labelbinding, string value) Set the attribute binding for a specified label property.

Example:

SoLabel->setbinding (MS_LABEL_BINDING_COLOR, "FIELD_NAME_COLOR");

This would bind the color parameter with the data (ie will extract the value of the color from the field called
“FIELD_NAME_COLOR”

int setExpression(string expression) Set the label expression.
int setText(string text) Set the label text.

int updateFromString(string snippet) Update a label from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

layerObj
Constructor

Layer Objects can be returned by the mapObj class, or can be created using:

layerObj ms_newLayerObj (MapObj map [, layerObj layer])

A second optional argument can be given to ms_newLayerObj() to create the new layer as a copy of an existing layer.
If a layer is given as argument then all members of a this layer will be copied in the new layer created.

Members
Type Name Note
int annotate
hashTableObj | bindvals
string classgroup
string classitem
clusterObj cluster
string connection
int connectiontype read-only, use setConnectionType() to set it
Continued on next page

5.1. MapScript 320

MapServer Documentation, Release 7.0.7

Table 5.3 — continued from previous page

Type Name Note
string data
int debug
int dump deprecated since 6.0
string filteritem
string footer
gridObj grid only available on a layer defined as grid (MS_GRATICULE)
string group
string header
int index read-only
int labelcache
string labelitem
double labelmaxscaledenom
double labelminscaledenom
string labelrequires
string mask
int maxfeatures
double maxscaledenom
hashTableObj | metadata
double minscaledenom
string name
int num_processing
int numclasses read-only
colorObj offsite
int opacity
projectionObj | projection
int postlabelcache
string requires
int sizeunits
int startindex
int status MS_ON, MS_OFF, MS_DEFAULT or MS_DELETE
string styleitem
double symbolscaledenom
string template
string tileindex
string tileitem
double tolerance
int toleranceunits
int transform
int type
Methods

int addFeature(shapeObj shape) Add a new feature in a layer. Returns MS_SUCCESS or MS_FAILURE on error.

int applySLD(string sldxml, string namedlayer) Apply the SLD document to the layer object. The matching be-
tween the sld document and the layer will be done using the layer’s name. If a namedlayer argument is passed
(argument is optional), the NamedLayer in the sld that matchs it will be used to style the layer. See SLD HowTo

for more information on the SLD support.

int applySLDURL(string sldurl, string namedlayer) Apply the SLD document pointed by the URL to the layer ob-
ject. The matching between the sld document and the layer will be done using the layer’s name. If a namedlayer

5.1. MapScript

321

MapServer Documentation, Release 7.0.7

argument is passed (argument is optional), the NamedLayer in the sld that matchs it will be used to style the
layer. See SLD HowTo for more information on the SLD support.

void clearProcessing() Clears all the processing strings.
void close() Close layer previously opened with open().
string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

int draw(imageObj image) Draw a single layer, add labels to cache if required. Returns MS_SUCCESS or
MS_FAILURE on error.

int drawQuery(imageObj image) Draw query map for a single layer.

string executeWFSGetfeature() Executes a GetFeature request on a WFS layer and returns the name of the tempo-
rary GML file created. Returns an empty string on error.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

string generateSLD() Returns an SLD XML string based on all the classes found in the layer (the layer must have
STATUS on).

classObj getClass(int classIndex) Returns a classObj from the layer given an index value (O=first class)

int getClassIndex(shape [, classgroup, numclasses]) Get the class index of a shape for a given scale. Returns -1 if
no class matches. classgroup is an array of class ids to check (Optional). numclasses is the number of classes
that the classgroup array contains. By default, all the layer classes will be checked.

rectObj getExtent() Returns the layer’s data extents or NULL on error. If the layer’s EXTENT member is set then
this value is used, otherwise this call opens/closes the layer to read the extents. This is quick on shapefiles, but
can be an expensive operation on some file formats or data sources. This function is safe to use on both opened
or closed layers: it is not necessary to call open()/close() before/after calling it.

string getFilterString() Returns the expression for this layer or NULL on error.

array getGridIntersectionCoordinates() Returns an array containing the grid intersection coordinates. If there are
no coordinates, it returns an empty array.

array getltems() Returns an array containing the items. Must call open function first. If there are no items, it returns
an empty array.

30

int getMetaData(string name) Fetch layer metadata entry by name. Returns
that the search is case sensitive.

if no entry matches the name. Note

Note: getMetaData’s query is case sensitive.

int getNumResults() Returns the number of results in the last query.

array getProcessing() Returns an array containing the processing strings. If there are no processing strings, it returns
an empty array.

string getProjection() Returns a string representation of the projection. Returns NULL on error or if no projection is
set.

resultObj getResult(int index) Returns a resultObj by index from a layer object with index in the range O to
numresults-1. Returns a valid object or FALSE(0) if index is invalid.

rectObj getResultsBounds() Returns the bounding box of the latest result.

shapeObj getShape(resultObj result]) If the resultObj passed has a valid resultindex, retrieve shapeObj from a
layer’s resultset. (You get it from the resultObj returned by getResult() for instance). Otherwise, it will do
a single query on the layer to fetch the shapeindex

5.1. MapScript 322

MapServer Documentation, Release 7.0.7

Smap = new mapObj ("gmap75.map");

$1 = $map->getLayerByName ("popplace");

$1->queryByRect ($map->extent) ;

for ($1i=0; $i<$l->getNumResults ();$i++) {
$s = $1->getShape ($1->getResult ($i));
echo $s->getValue ($1, "Name") ;
echo "\n";

}

string get WMSFeatureInfoURL (int clickX, int clickY, int featureCount, string infoFormat) Returns a WMS
GetFeatureInfo URL (works only for WMS layers) clickX, clickY is the location of to query in pixel coor-
dinates with (0,0) at the top left of the image. featureCount is the number of results to return. infoFormat is the
format the format in which the result should be requested. Depends on remote server’s capabilities. MapServer
WMS servers support only “MIME” (and should support “GML.1” soon). Returns ‘“”’ and outputs a warning if
layer is not a WMS layer or if it is not queriable.

boolean isVisible() Returns MS_TRUE/MS_FALSE depending on whether the layer is currently visible in the map
(i.e. turned on, in scale, etc.).

int moveclassdown(int index) The class specified by the class index will be moved down into the array of layers.
Returns MS_SUCCESS or MS_FAILURE. ex layer->moveclassdown(0) will have the effect of moving class 0
up to position 1, and the class at position 1 will be moved to position 0.

int moveclassup(int index) The class specified by the class index will be moved up into the array of layers. Re-
turns MS_SUCCESS or MS_FAILURE. ex layer->moveclassup(1) will have the effect of moving class 1 up to
position 0, and the class at position 0 will be moved to position 1.

int open() Open the layer for use with getShape(). Returns MS_SUCCESS/MS_FAILURE.

shapeObj nextShape() Called after msWhichShapes has been called to actually retrieve shapes within a given area.
Returns a shape object or NULL on error.

Smap = ms_newmapobj ("d:/msapps/gmap-ms40/htdocs/gmap75.map") ;
$layer = $map->getLayerByName ('road');
$Sstatus = S$layer—->open|();
$status = $layer->whichShapes ($Smap->extent);
while ($Sshape = $layer->nextShape())
{
echo $shape->index ."
\n";
}

$layer->close () ;

int queryByAttributes(string gitem, string qstring, int mode) Query layer for shapes that intersect current map ex-
tents. gitem is the item (attribute) on which the query is performed, and gstring is the expression to match. The
query is performed on all the shapes that are part of a CLASS that contains a TEMPLATE value or that match
any class in a layer that contains a LAYER TEMPLATE value. Note that the layer’s FILTER/FILTERITEM are
ignored by this function. Mode is MS_SINGLE or MS_MULTIPLE depending on number of results you want.
Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other error
happened (note that the error message in case nothing was found can be avoided in PHP using the ‘@’ control
operator).

int queryByFeatures(int slayer) Perform a query set based on a previous set of results from another layer. At present
the results MUST be based on a polygon layer. Returns MS_SUCCESS if shapes were found or MS_FAILURE
if nothing was found or if some other error happened (note that the error message in case nothing was found can
be avoided in PHP using the ‘@’ control operator).

int queryByPoint(pointObj point, int mode, double buffer) Query layer at point location specified in georefer-
enced map coordinates (i.e. not pixels). The query is performed on all the shapes that are part of a CLASS

5.1. MapScript 323

MapServer Documentation, Release 7.0.7

that contains a TEMPLATE value or that match any class in a layer that contains a LAYER TEMPLATE value.
Mode is MS_SINGLE or MS_MULTIPLE depending on number of results you want. Passing buffer -1 defaults
to tolerances set in the map file (in pixels) but you can use a constant buffer (specified in ground units) instead.
Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other error
happened (note that the error message in case nothing was found can be avoided in PHP using the ‘@’ control
operator).

int queryByRect(rectObj rect) Query layer using a rectangle specified in georeferenced map coordinates (i.e. not
pixels). The query is performed on all the shapes that are part of a CLASS that contains a TEMPLATE value
or that match any class in a layer that contains a LAYER TEMPLATE value. Returns MS_SUCCESS if shapes
were found or MS_FAILURE if nothing was found or if some other error happened (note that the error message
in case nothing was found can be avoided in PHP using the ‘@’ control operator).

int queryByShape(shapeObj shape) Query layer based on a single shape, the shape has to be a polygon at this
point. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other
error happened (note that the error message in case nothing was found can be avoided in PHP using the ‘@’
control operator).

classObj removeClass(int index) Removes the class indicated and returns a copy, or NULL in the case of a failure.
Note that subsequent classes will be renumbered by this operation. The numclasses field contains the number
of classes available.

int removeMetaData(string name) Remove a metadata entry for the layer. Returns MS_SUCCESS/MS_FAILURE.
int set(string property_name, new_value) Set object property to a new value.

int setConnectionType(int connectiontype [,string plugin_library]) Changes the connectiontype of the layer and
recreates the vtable according to the new connection type. This method should be used instead of setting the
connectiontype parameter directly. In the case when the layer.connectiontype = MS_PLUGIN the plugin_library
parameter should also be specified so as to select the library to load by MapServer. For the other connection
types this parameter is not used.

int setFilter(string expression) Set layer filter expression.

int setMetaData(string name, string value) Set a metadata entry for the layer Returns
MS_SUCCESS/MS_FAILURE.

int setProcessing(string) Add the string to the processing string list for the layer. The layer->num_processing is
incremented by 1. Returns MS_SUCCESS or MS_FAILURE on error.

SoLayer—->setprocessing ("SCALE_1=AUTO") ;
SolLayer->setprocessing ("SCALE_2=AUTO") ;

int setProjection(string proj_params) Set layer projection and coordinate system. Parameters are given as a single
string of comma-delimited PROJ.4 parameters. Returns MS_SUCCESS or MS_FAILURE on error.

int set WKTProjection(string proj_params) Same as setProjection(), but takes an OGC WKT projection definition
string as input.

Note: setWKTProjection requires GDAL support

int updateFromString(string snippet) Update a layer from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

/+modify the name =*/

SoLayer->updateFromString ('LAYER NAME land_fn2 END');

/*add a new classx*/

SoLayer->updateFromString ('LAYER CLASS STYLE COLOR 255 255 0 END END END');

5.1. MapScript 324

MapServer Documentation, Release 7.0.7

int whichshapes(rectobj) Performs a spatial, and optionally an attribute based feature search. The function basically
prepares things so that candidate features can be accessed by query or drawing functions (eg using nextshape
function). Returns MS_SUCCESS, MS_FAILURE or MS_DONE. MS_DONE is returned if the layer extent
does not overlap the rectOb;.

legendObj
Constructor

Instances of legendObj are always are always embedded inside the mapObj.

Members
Type Name Note
int height
colorObj | imagecolor
int keysizex
int keysizey
int keyspacingx
int keyspacingy
labelObj | label
colorObj | outlinecolor Color of outline of box, -1 for no outline
int position for embedded legends, MS_UL, MS_UC, ...
int postlabelcache | MS_TRUE, MS_FALSE
int status MS_ON, MS_OFF, MS_EMBED
string template
int width
Methods

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

int set(string property_name, new_value) Set object property to a new value.

int updateFromString(string snippet) Update a legend from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

lineObj

Constructor

’new 1ineObij ()

or using the old constructor

’Lineobj ms_newLineOb7j ()

5.1. MapScript 325

MapServer Documentation, Release 7.0.7

Members

Type | Name Note

int numpoints | read-only

Methods

int add(pointObj point) Add a point to the end of line. Returns MS_SUCCESS/MS_FAILURE.
int addXY(double x, double y [, double m]) Add a point to the end of line. Returns MS_SUCCESS/MS_FAILURE.

Note: the 3rd parameter m is used for measured shape files only. It is not mandatory.

int addX'YZ(double x, double y, double z [, double m]) Add a point to the end of line. Returns
MS_SUCCESS/MS_FAILURE.

Note: the 4th parameter m is used for measured shape files only. It is not mandatory.

PointObj point(int i) Returns a reference to point number i.

o9

int project(projectionObj in, projectionObj out) Project the line from “in” projection (1st argument) to “out” pro-
jection (2nd argument). Returns MS_SUCCESS/MS_FAILURE.

mapObj

Constructor

new mapObj(string map_file_name [, string new_map_path])

or using the old constructors

mapObj ms_newMapODbj(string map_file_name [, string new_map_path]) Returns a new object to deal with a
MapServer map file.

mapObj ms_newMapObjFromString(string map_file_string [, string new_map_path]) Construct a new
mapObj from a mapfile string. Returns a new object to deal with a MapServer map file.

Note: By default, the SYMBOLSET, FONTSET, and other paths in the mapfile are relative to the mapfile location.
If new_map_path is provided then this directory will be used as the base path for all the rewlative paths inside the
mapfile.

Members
Type Name Note
double cellsize
int debug
Continued on next page

5.1. MapScript 326

MapServer Documentation, Release 7.0.7

Table 5.4 — continued from previous page

Type Name Note
double defresolution pixels per inch, defaults to 72
rectObj extent;
string fontsetfilename read-only, set by setFontSet()
int height see setSize()
colorObj imagecolor
int keysizex
int keysizey
int keyspacingx
int keyspacingy
labelcacheObj labelcache no members. Used only to free the label cache (map->labelcache->free()
legendObyj legend
string mappath
int maxsize
hashTableObj metadata
string name
int numlayers read-only
outputformatObj | outputformat
int numoutputformats | read-only
projectionObyj projection
querymapObj querymap
referenceMapObj | reference
double resolution pixels per inch, defaults to 72
scalebarObj scalebar
double scaledenom read-only, set by drawMap()
string shapepath
int status
string symbolsetfilename | read-only, set by setSymbolSet()
int units map units type
webQObj web
int width see setSize()
Methods

int applyconfigoptions() Applies the config options set in the map file. For example setting the PROJ_LIB using
the setconfigoption only modifies the value in the map object. applyconfigoptions will actually change the
PROJ_LIB value that will be used when dealing with projection.

int applySLD(string sldxml) Apply the SLD document to the map file. The matching between the sld document and
the map file will be done using the layer’s name. See SLD How7To for more information on the SLD support.

int applySLDURL(string sldurl) Apply the SLD document pointed by the URL to the map file. The matching
between the sld document and the map file will be done using the layer’s name. See SLD HowTo for more
information on the SLD support.

string convertToString() Saves the object to a string.

Note: The inverse method updateFromString does not exist for the mapObj

New in version 6.4.

imageObj draw() Render map and return an image object or NULL on error.

5.1. MapScript

327

MapServer Documentation, Release 7.0.7

int drawLabelCache(imageObj image) Renders the labels for a map. Returns MS_SUCCESS or MS_FAILURE on
error.

imageObj drawLegend() Render legend and return an image object.

imageObj drawQuery() Render a query map and return an image object or NULL on error.
imageObj drawReferenceMap() Render reference map and return an image object.
imageObj drawScaleBar() Render scale bar and return an image object.

int embedLegend(imageObj image) embeds a legend. Actually the legend is just added to the label cache so you
must invoke drawLabelCache() to actually do the rendering (unless postlabelcache is set in which case it is
drawn right away). Returns MS_SUCCESS or MS_FAILURE on error.

int embedScalebar(imageObj image) embeds a scalebar. Actually the scalebar is just added to the label cache so
you must invoke drawLabelCache() to actually do the rendering (unless postlabelcache is set in which case it is
drawn right away). Returns MS_SUCCESS or MS_FAILURE on error.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

void freeQuery(layerindex) Frees the query result on a specified layer. If the layerindex is -1, all queries on layers
will be freed.

string generateSLD() Returns an SLD XML string based on all the classes found in all the layers that have STATUS
on.

array getAllGroupNames() Return an array containing all the group names used in the layers. If there are no groups,
it returns an empty array.

array getAllLayerNames() Return an array containing all the layer names. If there are no layers, it returns an empty
array.

colorObj getColorbyIndex(int iCloIndex) Returns a colorObj corresponding to the color index in the palette.

string getConfigOption(string key) Returns the config value associated with the key. Returns an empty sting if key
not found.

labelcacheMemberObj getLabel(int index) Returns a labelcacheMemberObj from the map given an index value
(O=first label). Labelcache has to be enabled.

while ($oLabelCacheMember = S$oMap->getLabel ($1)) {
/+ do something with the labelcachemember =/
++81;

}

layerObj getLayer(int index) Returns a layerObj from the map given an index value (O=first layer)

layerObj getLayerByName(string layer_name) Returns a layerObj from the map given a layer name. Returns
NULL if layer doesn’t exist.

array getLayersDrawingOrder() Return an array containing layer’s index in the order which they are drawn. If
there are no layers, it returns an empty array.

array getLayersIndexByGroup(string groupname) Return an array containing all the layer’s indexes given a group
name. If there are no layers, it returns an empty array.

[332]

int getMetaData(string name) Fetch metadata entry by name (stored in the WEB object in the map file). Returns
if no entry matches the name.

Note: getMetaData’s query is case sensitive.

5.1. MapScript 328

MapServer Documentation, Release 7.0.7

int getNumSymbols() Return the number of symbols in map.

string getProjection() Returns a string representation of the projection. Returns NULL on error or if no projection is
set.

int getSymbolByName(string symbol_name) Returns the symbol index using the name.

symbolObj getSymbolObjectBylId(int symbolid) Returns the symbol object using a symbol id. Refer to the symbol
object reference section for more details.

int insertLayer(layerObj layer [, int nIndex=-1]) Insert a copy of layer into the Map at index n/ndex. The default
value of nindex is -1, which means the last possible index. Returns the index of the new Layer, or -1 in the case
of a failure.

int loadMapContext(string filename [, boolean unique_layer_name]) Available only if WMS support is enabled.
Load a WMS Map Context XML file into the current mapObj. If the map already contains some layers then
the layers defined in the WMS Map context document are added to the current map. The 2nd argument
unique_layer_name is optional and if set to MS_TRUE layers created will have a unique name (unique pre-
fix added to the name). If set to MS_FALSE the layer name will be the the same name as in the context. The
default value is MS_FALSE. Returns MS_SUCCESS/MS_FAILURE.

int loadOWSParameters(OwsrequestObj request, string version) Load OWS request parameters (BBOX, LAY-
ERS, &c.) into map. Returns MS_SUCCESS or MS_FAILURE. 2nd argument version is not mandatory. If not
given, the version will be set to 1.1.1

int loadQuery(filename) Loads a query from a file. Returns MS_SUCCESS or MS_FAILURE. To be used with
savequery.

int moveLayerDown(int layerindex) Move layer down in the hierarchy of drawing. Returns MS_SUCCESS or
MS_FAILURE on error.

int moveLayerUp(int layerindex) Move layer up in the hierarchy of drawing. Returns MS_SUCCESS or
MS_FAILURE on error.

int offsetExtent(double x, double y) Offset the map extent based on the given distances in map coordinates. Returns
MS_SUCCESS or MS_FAILURE.

int owsDispatch(OwsrequestObj request) Processes and executes the passed OpenGIS Web Services request on the
map. Returns MS_DONE (2) if there is no valid OWS request in the req object, MS_SUCCESS (0) if an OWS
request was successfully processed and MS_FAILURE (1) if an OWS request was not successfully processed.
OWS requests include WMS, WES, WCS and SOS requests supported by MapServer. Results of a dispatched
request are written to stdout and can be captured using the msIO services (ie. ms_ioinstallstdouttobuffer() and
ms_iogetstdoutbufferstring())

imageObj preparelmage() Return a blank image object.

void prepareQuery() Calculate the scale of the map and set map->scaledenom.

string processLegendTemplate(array params) Process legend template files and return the result in a buffer.
See also:
processtemplate

string processQueryTemplate(array params, boolean generateimages) Process query template files and return the
result in a buffer. Second argument generateimages is not mandatory. If not given it will be set to TRUE.

See also:
processtemplate

string processTemplate(array params, boolean generateimages) Process the template file specified in the web ob-
ject and return the result in a buffer. The processing consists of opening the template file and replace all the tags

5.1. MapScript 329

MapServer Documentation, Release 7.0.7

found in it. Only tags that have an equivalent element in the map object are replaced (ex [scaledenom]). The are
two exceptions to the previous statement :

* [img], [scalebar], [ref], [legend] would be replaced with the appropriate url if the parameter generateimages
is set to MS_TRUE. (Note : the images corresponding to the different objects are generated if the object is
set to MS_ON in the map file)

¢ the user can use the params parameter to specify tags and their values. For example if the user have a
specific tag call [my_tag] and would like it to be replaced by “value_of_my_tag” he would do

Stmparray["my_tag"] = "value_of_my_tag";
Smap->processtemplate ($tmparray, MS_FALSE) ;

int queryByFeatures(int slayer) Perform a query based on a previous set of results from a layer. At present the
results MUST be based on a polygon layer. Returns MS_SUCCESS if shapes were found or MS_FAILURE if
nothing was found or if some other error happened (note that the error message in case nothing was found can
be avoided in PHP using the ‘@’ control operator).

int queryByIndex(layerindex, tileindex, shapeindex[, addtoquery]) Add a specific shape on a given layer to the
query result. If addtoquery (which is a non mandatory argument) is set to MS_TRUE, the shape will be added
to the existing query list. Default behavior is to free the existing query list and add only the new shape.

int queryByPoint(pointObj point, int mode, double buffer) Query all selected layers in map at point location spec-
ified in georeferenced map coordinates (i.e. not pixels). The query is performed on all the shapes that are part of
a CLASS that contains a Templating value or that match any class in a layer that contains a LAYER TEMPLATE
value. Mode is MS_SINGLE or MS_MULTIPLE depending on number of results you want. Passing buffer -1
defaults to tolerances set in the map file (in pixels) but you can use a constant buffer (specified in ground units)
instead. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other
error happened (note that the error message in case nothing was found can be avoided in PHP using the ‘@’
control operator).

int queryByRect(rectObj rect) Query all selected layers in map using a rectangle specified in georeferenced map
coordinates (i.e. not pixels). The query is performed on all the shapes that are part of a CLASS that con-
tains a Templating value or that match any class in a layer that contains a LAYER TEMPLATE value. Returns
MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found or if some other error happened
(note that the error message in case nothing was found can be avoided in PHP using the ‘@’ control operator).

int queryByShape(shapeObj shape) Query all selected layers in map based on a single shape, the shape has to be
a polygon at this point. Returns MS_SUCCESS if shapes were found or MS_FAILURE if nothing was found
or if some other error happened (note that the error message in case nothing was found can be avoided in PHP
using the ‘@’ control operator).

layerObj removeLayer(int nIndex) Remove a layer from the mapObj. The argument is the index of the layer to be
removed. Returns the removed layerObj on success, else null.

int removeMetaData(string name) Remove a metadata entry for the map (stored in the WEB object in the map file).
Returns MS_SUCCESS/MS_FAILURE.

int save(string filename) Save current map object state to a file. Returns -1 on error. Use absolute path. If a relative
path is used, then it will be relative to the mapfile location.

int saveMapContext(string filename) Available only if WMS support is enabled. Save current map object state
in WMS Map Context format. Only WMS layers are saved in the WMS Map Context XML file. Returns
MS_SUCCESS/MS_FAILURE.

int saveQuery(string filenamel[, int results]) Save the current query in a file. Results determines the save format -
MS_TRUE (or 1/true) saves the query results (tile index and shape index), MS_FALSE (or 0O/false) the query
parameters (and the query will be re-run in loadquery). Returns MS_SUCCESS or MS_FAILURE. Either save
format can be used with loadquery. See RFC 65 and ticket #3647 for details of different save formats.

5.1. MapScript 330

MapServer Documentation, Release 7.0.7

int scaleExtent(double zoomfactor, double minscaledenom, double maxscaledenom) Scale the map extent using
the zoomfactor and ensure the extent within the minscaledenom and maxscaledenom domain. If minscale-
denom and/or maxscaledenom is O then the parameter is not taken into account. Returns MS_SUCCESS or
MS_FAILURE.

int selectOutputFormat(string type) Selects the output format to be wused in the map. Returns
MS_SUCCESS/MS_FAILURE.

Note: the type used should correspond to one of the output formats declared in the map file. The type argument
passed is compared with the mimetype parameter in the output format structure and then to the name parameter
in the structure.

int appendOutputFormat(outputFormatObj outputFormat) Appends outputformat object in the map object. Re-
turns the new numoutputformats value.

int removeOutputFormat(string name) Remove outputformat from the map. Returns
MS_SUCCESS/MS_FAILURE.

outputFormatObj getOutputFormat(int index) Returns the outputformat at index position.
int set(string property_name, new_value) Set map object property to new value.

int setCenter(pointObj center) Set the map center to the given map point. Returns MS_SUCCESS or
MS_FAILURE.

int setConfigOption(string Kkey, string value) Sets a config parameter using the key and the value passed

void setExtent(double minx, double miny, double maxx, double maxy) Set the map extents using the georef ex-
tents passed in argument. Returns MS_SUCCESS or MS_FAILURE on error.

int setFontSet(string fileName) Load and set a new FONTSET.

boolean setLayersDrawingOrder(array layeryindex) Set the layer’s order array. The argument passed must be a
valid array with all the layer’s index. Returns MS_SUCCESS or MS_FAILURE on error.

int setMetaData(string name, string value) Set a metadata entry for the map (stored in the WEB object in the map
file). Returns MS_SUCCESS/MS_FAILURE.

int setProjection(string proj_params, boolean bSetUnitsAndExtents) Set map projection and coordinate system.
Returns MS_SUCCESS or MS_FAILURE on error.

Parameters are given as a single string of comma-delimited PROJ.4 parameters. The argument : bSetUnit-
sAndExtents is used to automatically update the map units and extents based on the new projection. Possible
values are MS_TRUE and MS_FALSE. By default it is set at MS_FALSE.

int setRotation(double rotation_angle) Set map rotation angle. The map view rectangle (specified in EXTENTS)
will be rotated by the indicated angle in the counter- clockwise direction. Note that this implies the rendered
map will be rotated by the angle in the clockwise direction. Returns MS_SUCCESS or MS_FAILURE.

int setSize(int width, int height) Set the map width and height. This method updates the internal geotransform and
other data structures required for map rotation so it should be used instead of setting the width and height
members directly. Returns MS_SUCCESS or MS_FAILURE.

int setSymbolSet(string fileName) Load and set a symbol file dynamically.

int setWKTProjection(string proj_params, boolean bSetUnitsAndExtents) Same as setProjection(), but takes an
OGC WKT projection definition string as input. Returns MS_SUCCESS or MS_FAILURE on error.

Note: setWKTProjection requires GDAL support

5.1. MapScript 331

MapServer Documentation, Release 7.0.7

int zoomPoint(int nZoomFactor, pointObj oPixelPos, int nImageWidth, int nImageHeight, rectObj oGeorefExt)
Zoom to a given XY position. Returns MS_SUCCESS or MS_FAILURE on error.

Parameters are
* Zoom factor : positive values do zoom in, negative values zoom out. Factor of 1 will recenter.
* Pixel position (pointObj) : x, y coordinates of the click, with (0,0) at the top-left
* Width : width in pixel of the current image.
* Height : Height in pixel of the current image.
* Georef extent (rectObj) : current georef extents.

¢ MaxGeoref extent (rectObj) : (optional) maximum georef extents. If provided then it will be impossible
to zoom/pan outside of those extents.

int zoomRectangle(rectObj oPixelExt, int nlmageWidth, int nImageHeight, rectObj oGeorefExt) Set the map
extents to a given extents. Returns MS_SUCCESS or MS_FAILURE on error.

Parameters are :
» oPixelExt (rect object) : Pixel Extents
* Width : width in pixel of the current image.
* Height : Height in pixel of the current image.
* Georef extent (rectObj) : current georef extents.

int zoomScale(double nScaleDenom, pointObj oPixelPos, int nImageWidth, int nImageHeight, rectObj oGeorefExt [, rectObj ol
Zoom in or out to a given XY position so that the map is displayed at specified scale. Returns MS_SUCCESS
or MS_FAILURE on error.

Parameters are :
» ScaleDenom : Scale denominator of the scale at which the map should be displayed.
* Pixel position (pointObj) : x, y coordinates of the click, with (0,0) at the top-left
* Width : width in pixel of the current image.
* Height : Height in pixel of the current image.
» Georef extent (rectObj) : current georef extents.

* MaxGeoref extent (rectObj) : (optional) maximum georef extents. If provided then it will be impossible
to zoom/pan outside of those extents.

outputformatObj
Constructor

Instance of outputformatObj is always embedded inside the mapObj. It is uses a read only.

No constructor available (coming soon, see ticket 979)

5.1. MapScript 332

MapServer Documentation, Release 7.0.7

Members

Type | Name Note
string | driver
string | extension
int imagemode | MS_IMAGEMODE_* value.
string | mimetype
string | name

int renderer
int transparent
Methods

string getOption(string property_name) Returns the associated value for the format option property passed as ar-
gument. Returns an empty string if property not found.

int set(string property_name, new_value) Set object property to a new value.

void setOption(string property_name, string new_value) Add or Modify the format option list. return true on suc-
cess.

SoMap->output format->setOption ("OUTPUT_TYPE", "RASTER");

int validate() Checks some internal consistency issues, Returns MS_SUCCESS or MS_FAILURE. Some problems
are fixed up internally. May produce debug output if issues encountered.

OwsrequestObj

Constructor

’new OWSRequestObij ()

or using the old constructor

’request = ms_newOwsrequestObj () ;

Create a new ows request object.

Members
Type | Name
int numparams (read-only)
int type (read-only): MS_GET_REQUEST or MS_POST_REQUEST

Methods

int addParameter(string name, string value) Add a request parameter, even if the parameter key was previousely
set. This is useful when multiple parameters with the same key are required. For example :

5.1. MapScript 333

MapServer Documentation, Release 7.0.7

Srequest->addparameter ('SIZE', 'x(100)"');
Srequest->addparameter ('SIZE', 'y (100)'");

string getName(int index) Return the name of the parameter at index in the request’s array of parameter names.
string getValue(int index) Return the value of the parameter at index in the request’s array of parameter values.
string getValueByName(string name) Return the value associated with the parameter name.

int loadParams() Initializes the OWSRequest object from the cgi environment variables REQUEST_METHOD,
QUERY_STRING and HTTP_COOKIE. Returns the number of name/value pairs collected.

int setParameter(string name, string value) Set a request parameter. For example :

Srequest->setparameter ('REQUEST', 'GetMap');

pointObj

Constructor

’new pointObj ()

or using the old constructor

’PointObj ms_newPointObj ()

Members

Type Name | Note
double | x
double | y
double | z used for 3d shape files. set to O for other types

double | m used only for measured shape files - set to 0 for other types

Methods

double distanceToLine(pointObj p1, pointObj p2) Calculates distance between a point ad a lined defined by the
two points passed in argument.

double distanceToPoint(pointObj poPoint) Calculates distance between two points.
double distanceToShape(shapeObj shape) Calculates the minimum distance between a point and a shape.

int draw(mapObj map, layerObj layer, imageObj img, int class_index [, string text]) Draws the individual point
using layer. The class_index is used to classify the point based on the classes defined for the layer. The text
string is used to annotate the point. (Optional) Returns MS_SUCCESS/MS_FAILURE.

int project(projectionObj in, projectionObj out) Project the point from “in” projection (1st argument) to “out” pro-
jection (2nd argument). Returns MS_SUCCESS/MS_FAILURE.

int setXY(double x, double y [, double m]) Set X,Y coordinate values.

Note: the 3rd parameter m is used for measured shape files only. It is not mandatory.

5.1. MapScript 334

MapServer Documentation, Release 7.0.7

int setXYZ(double x, double y, double z [, double m]) Set X,Y,Z coordinate values.

Note: the 4th parameter m is used for measured shape files only. It is not mandatory.

projectionObj

Constructor

’new projectionObj(string projectionString)

or using the old constructor

’Projectionobj ms_newProjectionObj(string projectionString)

Creates a projection object based on the projection string passed as argument.

’$proj1n0bj = ms_newprojectionobj ("proj=latlong")

will create a geographic projection class.

The following example will convert a lat/long point to an LCC projection:

SprojInObj = ms_newprojectionobj("proj=latlong");

SprojOutObj = ms_newprojectionobj ("proj=lcc,ellps=GRS80,lat_0=49,".
"lon_0=-95,1lat_1=49,lat_2=77");

SpoPoint = ms_newpointobi();

SpoPoint->setXY (-92.0, 62.0);

$SpoPoint->project ($projInObj, S$projoutObj);

Methods

int getUnits() Returns the units of a projection object. Returns -1 on error.

querymapObj
Constructor

Instances of querymapObj are always are always embedded inside the mapObj.

Members

Type Name | Note
colorObj | color

int height
int width
int style MS_NORMAL, MS_HILITE, MS_SELECTED

5.1. MapScript

335

MapServer Documentation, Release 7.0.7

Methods

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

int set(string property_name, new_value) Set object property to a new value.

int updateFromString(string snippet) Update a queryMap object from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

rectObj
Constructor

rectObj are sometimes embedded inside other objects. New ones can also be created with:

’new rectObij ()

or using the old constructor

’RectObj ms_newRectObj ()

Note: the members (minx, miny, maxx ,maxy) are initialized to -1;

Members

Type Name
double | minx
double | miny
double | maxx
double | maxy

Methods

int draw(mapObj map, layerObj layer, imageObj img, int class_index [, string text]) Draws the individual rect-
angle using layer. The class_index is used to classify the rectangle based on the classes defined for the layer.
The text string is used to annotate the rectangle. (Optional) Returns MS_SUCCESS/MS_FAILURE.

double fit(int width, int height) Adjust extents of the rectangle to fit the width/height specified.

3]

int project(projectionObj in, projectionObj out) Project the rectangle from “in” projection (1st argument) to “out”
projection (2nd argument). Returns MS_SUCCESS/MS_FAILURE.

int set(string property_name, new_value) Set object property to a new value.

void setextent(double minx, double miny, double maxx, double maxy) Set the rectangle extents.

5.1. MapScript 336

MapServer Documentation, Release 7.0.7

referenceMapObij
Constructor

Instances of referenceMapObj are always embedded inside the mapObj.

Members
Type Name
ColorObj | color
int height
rectObj extent
string image
int marker
string markername
int markersize
int maxboxsize
int minboxsize
ColorObj | outlinecolor
int status
int width
Methods

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

int set(string property_name, new_value) Set object property to a new value.

int updateFromString(string snippet) Update a referenceMap object from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

resultObj

Constructor

new resultObj(int shapeindex)

or using the /ayerObj‘s getResult() method.

Members
Type | Name Note
int classindex | read-only
int resultindex | read-only
int shapeindex | read-only
int tileindex read-only

5.1. MapScript 337

MapServer Documentation, Release 7.0.7

Method

None

scalebarObj
Constructor

Instances of scalebarObj are always embedded inside the mapObj.

Members
Type Name Note
int align

colorObj | backgroundcolor
colorObj | color

int height
colorObj | imagecolor
int intervals

labelObj | label
colorObj | outlinecolor

int position for embedded scalebars, MS_UL, MS_UC, ...
int postlabelcache
int status MS_ON, MS_OFF, MS_EMBED
int style
int units
int width
Methods

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

int set(string property_name, new_value) Set object property to a new value.

int setlmageColor(int red, int green, int blue) Sets the imagecolor property (baclground) of the object. Returns
MS_SUCCESS or MS_FAILURE on error.

int updateFromString(string snippet) Update a scalebar from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

shapefileObj

Constructor

new shapeFileObj(string filename, int type)

or using the old constructor

5.1. MapScript 338

MapServer Documentation, Release 7.0.7

shapefileObj ms_newShapefileObj(string filename, int type)

Opens a shapefile and returns a new object to deal with it. Filename should be passed with no extension.
To create a new file (or overwrite an existing one), type should be one of MS_SHP_POINT, MS_SHP_ARC,
MS_SHP_POLYGON or MS_SHP_MULTIPOINT. Pass type as -1 to open an existing file for read-only access, and
type=-2 to open an existing file for update (append).

Members
Type Name Note
rectObj | bounds read-only
int numshapes | read-only
string source read-only
int type read-only
Methods

int addPoint(pointObj point) Appends a point to an open shapefile.
int addShape(shapeObj shape) Appends a shape to an open shapefile.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

Note: The shape file is closed (and changes committed) when the object is destroyed. You can explicitly close
and save the changes by calling $shapefile->free(); unset($shapefile), which will also free the php object.

rectObj getExtent(int i) Retrieve a shape’s bounding box by index.
shapeObj getPoint(int i) Retrieve point by index.

shapeObj getShape(int i) Retrieve shape by index.

shapeObj getTransformed(mapObj map, int i) Retrieve shape by index.

shapeObj

Constructor

’new shapeObj (int type)

or using the old constructor

’ShapeObj ms_newShapeObj (int type)

‘type’ is one of MS_SHAPE_POINT, MS_SHAPE_LINE, MS_SHAPE_POLYGON or MS_SHAPE NULL

’ShapeObj ms_shapeObjFromWkt (string wkt)

Creates new shape object from WKT string.

5.1. MapScript 339

MapServer Documentation, Release 7.0.7

Members
Type Name Note
rectObj | bounds read-only
int classindex
int index
int numlines read-only
int numvalues | read-only
int tileindex read-only
string text
int type read-only
array values read-only

The values array is an associative array with the attribute values for this shape. It is set only on shapes obtained from
layer->getShape(). The key to the values in the array is the attribute name, e.g.

Spopulation = $shape->values["Population"];

Methods

int add(lineObj line) Add a line (i.e. a part) to the shape.
shapeObj boundary() Returns the boundary of the shape. Only available if php/mapscript is built with GEOS library.

shapeObj buffer(width) Returns a new buffered shapeObj based on the supplied distance (given in the coordinates
of the existing shapeObj). Only available if php/mapscript is built with GEOS library.

int containsShape(shapeObj shape2) Returns true if shape2 passed as argument is entirely within the shape. Else
return false. Only available if php/mapscript is built with GEOS library.

shapeObj convexhull() Returns a shape object representing the convex hull of shape. Only available if php/mapscript
is built with GEOS library.

boolean contains(pointObj point) Returns MS_TRUE if the point is inside the shape, MS_FALSE otherwise.

int crosses(shapeObj shape) Returns true if the shape passed as argument crosses the shape. Else return false. Only
available if php/mapscript is built with GEOS library.

shapeObj difference(shapeObj shape) Returns a shape object representing the difference of the shape object with
the one passed as parameter. Only available if php/mapscript is built with GEOS library.

int disjoint(shapeObj shape) Returns true if the shape passed as argument is disjoint to the shape. Else return false.
Only available if php/mapscript is built with GEOS library.

int draw(mapObj map, layerObj layer, imageObj img) Draws the individual shape using layer. Returns
MS_SUCCESS/MS_FAILURE.

int equals(shapeObj shape) Returns true if the shape passed as argument is equal to the shape (geometry only). Else
return false. Only available if php/mapscript is built with GEOS library.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

double getArea() Returns the area of the shape (if applicable). Only available if php/mapscript is built with GEOS
library.

pointObj getCentroid() Returns a point object representing the centroid of the shape. Only available if php/mapscript
is built with GEOS library.

5.1. MapScript 340

MapServer Documentation, Release 7.0.7

pointObj getLabelPoint() Returns a point object with coordinates suitable for labelling the shape.

double getLength() Returns the length (or perimeter) of the shape. Only available if php/mapscript is built with
GEOS library.

pointObj getMeasureUsingPoint(pointObj point) Apply only on Measured shape files. Given an XY Location,
find the nearest point on the shape object. Return a point object of this point with the m value set.

pointObj getPointUsingMeasure(double m) Apply only on Measured shape files. Given a measure m, retun the
corresponding XY location on the shapeobject.

string getValue(layerObj layer, string filedname) Returns the value for a given field name.

shapeObj intersection(shapeObj shape) Returns a shape object representing the intersection of the shape object
with the one passed as parameter. Only available if php/mapscript is built with GEOS library.

boolean intersects(shapeObj shape) Returns MS_TRUE if the two shapes intersect, MS_FALSE otherwise.
LineObj line(int i) Returns a reference to line number i.

int overlaps(shapeObj shape) Returns true if the shape passed as argument overlaps the shape. Else returns false.
Only available if php/mapscript is built with GEOS library.

[3P)

int project(projectionObj in, projectionObj out) Project the shape from “in” projection (1st argument) to “out”
projection (2nd argument). Returns MS_SUCCESS/MS_FAILURE.

int set(string property_name, new_value) Set object property to a new value.

int setBounds() Updates the bounds property of the shape. Must be called to calculate new bounding box after new
parts have been added.

shapeObj simplify(double tolerance) Given a tolerance, returns a simplified shape object or NULL on error. Only
available if php/mapscript is built with GEOS library (>=3.0).

shapeObj symdifference(shapeObj shape) Returns the computed symmetric difference of the supplied and existing
shape. Only available if php/mapscript is built with GEOS library.

shapeObj topologyPreservingSimplify(double tolerance) Given a tolerance, returns a simplified shape object or
NULL on error. Only available if php/mapscript is built with GEOS library (>=3.0).

int touches(shapeObj shape) Returns true if the shape passed as argument touches the shape. Else return false. Only
available if php/mapscript is built with GEOS library.

string toWkt() Returns WKT representation of the shape’s geometry.

shapeObj union(shapeObj shape) Returns a shape object representing the union of the shape object with the one
passed as parameter. Only available if php/mapscript is built with GEOS library

int within(shapeObj shape2) Returns true if the shape is entirely within the shape2 passed as argument. Else returns
false. Only available if php/mapscript is built with GEOS library.

styleObj
Constructor

Instances of styleObj are always embedded inside a classObj or labelObj.

new styleObj(classObj class [, styleObj stylel])
// or
new styleObj(labelObj label [, styleObj style])

or using the old constructor (do not support a labelObj at first argument)

5.1. MapScript 341

MapServer Documentation, Release 7.0.7

styleObj ms_newStyleObj(classObj class [, styleObj style])

The second argument ‘style’ is optional. If given, the new style created will be a copy of the style passed as argument.

Members
Type Name Note
double angle
int antialias
colorObj | backgroundcolor
colorObj | color
double maxsize
double maxvalue
double maxwidth
double minsize
double minvalue
double minwidth
int offsetx
int offsety
int opacity only supported for the AGG driver
colorObj | outlinecolor
string rangeitem
double size
int symbol
string symbolname
double width

Methods

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

string getBinding(mixed stylebinding) Get the attribute binding for a specfiled style property. Returns NULL if
there is no binding for this property.

$oStyle—>setbinding (MS_STYLE_BINDING_COLOR, "FIELD_NAME_COLOR") ;
echo S$oStyle->getbinding (MS_STYLE_BINDING_COLOR); // FIELD_NAME_COLOR

string getGeomTransform()

int removeBinding(mixed stylebinding) Remove the attribute binding for a specfiled style property. Added in
MapServer 5.0.

$SoStyle->removebinding (MS_STYLE_BINDING_COLOR) ;

int set(string property_name, new_value) Set object property to a new value.

int setBinding(mixed stylebinding, string value) Set the attribute binding for a specfiled style property. Added in
MapServer 5.0.

5.1. MapScript 342

MapServer Documentation, Release 7.0.7

SoStyle->setbinding (MS_STYLE_BINDING_COLOR, "FIELD_NAME_COLOR");

This would bind the color parameter with the data (ie will extract the value of the color from the field called
“FIELD_NAME_COLOR”

int setGeomTransform(string value)

int updateFromString(string snippet) Update a style from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

symbolObj

Constructor

’new symbolObj (mapObj map, string symbolname)

or using the old constructor

int ms_newSymbolObj (mapObj map, string symbolname)

Creates a new symbol with default values in the symbolist.

Note: Using the new constructor, the symbol is automatically returned. The old constructor returns the id of the new
symbol.

If a symbol with the same name exists, it (or its id) will be returned. To get a symbol object using the old constructor,
you need to use a method on the map object:

$nId = ms_newSymbolObj ($map, "symbol-test");
$oSymbol = S$map->getSymbolObjectById($nId);

Members
Type Name Note
int antialias
string | character
int filled
string | font
string | imagepath read-only
int inmapfile If set to TRUE, the symbol will be saved inside the mapfile.
int patternlength read-only
int position
string | name
int numpoints read-only
double | sizex
double | sizey
int transparent
int transparentcolor

5.1. MapScript 343

MapServer Documentation, Release 7.0.7

Methods

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

array getPatternArray() Returns an array containing the pattern. If there is no pattern, it returns an empty array.

array getPointsArray() Returns an array containing the points of the symbol. Refer to setpoints to see how the array
should be interpreted. If there are no points, it returns an empty array.

int set(string property_name, new_value) Set object property to a new value.

int setImagePath(string filename) Loads a pixmap symbol specified by the filename. The file should be of either
Gif or Png format.

int setPattern(array int) Set the pattern of the symbol (used for dash patterns). Returns
MS_SUCCESS/MS_FAILURE.

int setPoints(array double) Set the points of the symbol. Note that the values passed is an array containing the x and
y values of the points. Returns MS_SUCCESS/MS_FAILURE. Example:

Sarray[0] 1 # x value of the first point
Sarray[1l] = 0 # y values of the first point
Sarray[2] = 1 # x value of the 2nd point

Example of usage

1. create a symbol to be used as a dash line

$nId = ms_newsymbolobj ($gpoMap, "mydash");
SoSymbol = $gpoMap->getsymbolobjectbyid ($nId);
SoSymbol->set ("filled", MS_TRUE) ;
SoSymbol->set ("sizex", 1);

SoSymbol->set ("sizey", 1);

SoSymbol->set ("inmapfile", MS_TRUE);

v
v

$aPoints[0] = 1;
SaPoints[1] 1;
SoSymbol->setpoints ($aPoints);

SaPattern[0] = 10;
SaPattern[l] = 5;
SaPattern([2] = 5;
SaPattern([3] = 10;

SoSymbol->setpattern ($aPattern) ;

S$style->set ("symbolname", "mydash");

2. Create a TrueType symbol

$nId = ms_newSymbolObj ($SgpoMap, "ttfSymbol");
SoSymbol = S$gpoMap->getSymbolObjectById($nId);
SoSymbol->set ("type", MS_SYMBOL_TRUETYPE) ;
SoSymbol->set ("filled", true);
$oSymbol->set ("character", "D");
SoSymbol->set ("font", "ttfFontName");

5.1. MapScript 344

MapServer Documentation, Release 7.0.7

webODbj
Constructor

Instances of webObj are always are always embedded inside the mapObj.

Members
Type Name Note
string browseformat
string empty read-only
string error read-only
rectObj extent read-only
string footer
string header
string imagepath
string imageurl
string legendformat
string log
double maxscaledenom
string maxtemplate
hashTableObj | metadata
double minscaledenom
string mintemplate
string queryformat
string template
string temppath
Methods

string convertToString() Saves the object to a string. Provides the inverse option for updateFromString.

void free() Free the object properties and break the internal references. Note that you have to unset the php variable
to free totally the resources.

int set(string property_name, new_value) Set object property to a new value.

int updateFromString(string snippet) Update a web object from a string snippet. Returns
MS_SUCCESS/MS_FAILURE.

PHP MapScript Migration Guide

Author Alan Boudreault

Contact aboudreault at mapgears.com

Revision $Revision: 10033 $

Date $Date: 2010-03-30 15:58:30 -0400 (Tue, 30 Mar 2010) $

5.1. MapScript 345

MapServer Documentation, Release 7.0.7

Table of Contents

* PHP MapScript Migration Guide
— Introduction
— Migrating 5.6 to 6.0
* PHP Version Required
* Error Reporting
* Manipulating Objects
* Class Properties
* Class Methods
* layerObj
* mapObj
% referenceMapObj
* shapeFileObj
* labelCacheObj
* Methods that now return MS_SUCCESS/MS_FAILURE

* Methods that now return NULL on failure

* Methods that now return an empty array

Introduction

This document describes the changes that must be made to PHP MapScript applications when migrating from one
MapServer version to another (i.e. backwards incompatibilities), as well as information on some of the new features.

Migrating 5.6 t0 6.0
PHP Version Required

PHP 5.2.0 or more recent is required. The support for earlier versions has been dropped.

Error Reporting

PHP MapScript now uses exceptions for error reports. All errors are catchable. There are no more fatal errors reported
via the standard uncatchable PHP system (Only Warnings).

Manipulating Objects

* Object properties can be set like all other PHP objects.

Smap->scaledenom = 25000;

5.1. MapScript 346

MapServer Documentation, Release 7.0.7

Note: The set/setProperty methods are still available.

¢ Objects can be created with the PHP “new” operator.

$myShape = ms_newShapeObj (MS_SHAPE_LINE); // or
SmyShape = new shapeObj (MS_SHAPE_LINE) ;

Note: All object constructors throw an exception on failure.

Note: ms_newSymbolObj() and new symbolObj() are different
* ms_newSymbolObj() returns the id of the new/existing symbol.

* new symbolObj() returns the symbolObj. You don’t need to get it with getSymbolObjectById().

* Cloneable objects should be cloned with the PHP clone keyword. There is no more clone methods.

Class Properties

Class properties that have been removed:

¢ classObj: maxscale, minscale

* layerObj: labelsizeitem, labelangleitem, labelmaxscale, labelminscale, maxscale, minscale, symbolscale, trans-

parency
¢ legendObj: interlace, transparent

* mapObj: imagetype, imagequality, interlace, scale, transparent
* scalebarObj: interlace, transparent

¢ symbolObj: gap, stylelength

* webObj: minscale, maxscale

Class Methods

Class methods that have been removed:
* imageObj: free
¢ layerObj: getFilter, getShape
¢ lineObj: free
e pointObj: free
* projectionObj: free
* rectObj: free
* shapeObj: union_geos
* symbolObj: getstylearray

* classObj: clone

5.1. MapScript

347

MapServer Documentation, Release 7.0.7

* styleObj: clone
* mapObj: clone

* outputFormatObj: getformatoption, setformatoption

layerObj

layerObj->clearProcessing() method now returns void.

mapObj

mapObj->queryByIndex(): default behavior for the addToQuery parameter was not ok, now it is.

referenceMapObj

referenceMapObj has new properties: marker, markername, markersize, maxboxsize, minboxsize.

shapeFileObj

shapeFileObj is automatically closed/writed on destroy. (At the end of the script or with an explicit free(), unset())

labelCacheObj

To free the cache, you’ll have to call the method freeCache() rather than free().

Methods that now return MS_SUCCESS/MS_FAILURE

* layerObj: setProcessing, addFeature, draw

* mapObj: moveLayerUp, moveLayerDown, zoomRectangle, zoomScale, setProjection, setWKTProjection, set-
LayersDrawingOrder

* outputFormatObj: validate
* scalebarObj: setImageColor

¢ symbolObj: setPoints, setPattern

Methods that now return NULL on failure

¢ classObj: clone
* mapObj: clone, draw, drawQuery getLayerByName, getProjection

* layerObj: nextShape, getExtent

styleObj: clone

5.1. MapScript 348

MapServer Documentation, Release 7.0.7

Methods that now return an empty array

¢ layerObj: getltems, getProcessing, getGridIntersectionCoordinates
* mapObj: getLayersIndexByGroup, getAllGroupNames, getLayersDrawingOrder, getAllLayerNames
* symbolObj: getPatternArray

By Example

Author Vinko Vrsalovic
Contact el at vinko.cl

Last Updated 2005/12/12

Contents

* By Example

Introduction

MapScript overview

Our first application

Conclusions

Introduction

The purpose of this document is to be a step by step explanation of the PHP MapScript API with practical examples
for each of them. It is assumed a basic knowledge of MAP and MapServer, and familiarity with the PHP (scripting)
and HTML (markup) languages . This document was originally created for MapServer v4.0, but the examples still
apply to more recent versions.

Let’s Begin...

Hello, kind reader. I am Tut, thank you for downloading me. I am sorry, but I am just a technical manual so I cannot
answer any questions. The maintainer, a handsome, very nice and lazy guy according to what I saw from the other
side of the screen, maybe will be able to answer your question(s). I am currently here to tell you about MapScript in
its PHP incarnation. At my current age, I will be more useful to beginners than advanced users, even though I hope
that some day I will be sufficiently old to be useful to advanced MapScript programmers.

Let’s hope I live long enough... sigh.

But enough with my personal problems, let myself begin. My duty is to familiarize you with MapScript, and in
particular with PHP MapScript. When I end, you are expected to understand what MapScript is, and to be able to
write applications to display and navigate that is, zooming and panning over shapefiles via a web browser.

What follows are the questions you must answer affirmatively before accompanying me through the rest of this journey
(I apologize for my maintainer’s lack of literary taste).

Do you have running somewhere...

* a web server capable of running PHP as a CGI (Apache will do)?

* the PHP language configured as a CGI, version 4.1.2 or higher? I recommend 4.3 onwards.

5.1. MapScript 349

http://www.php.net
http://www.w3.org/MarkUp/

MapServer Documentation, Release 7.0.7

* PHP MapScript, version 4.0 or later? PHP MapScript Installation

Can you...

* code PHP or are willing to learn how to?
* write and understand HTML documents? (Note that Javascript is a plus)

* tell somebody what on earth is a shapefile [or a PostGIS table]?

Outline of this Document

* A general overview of MapScript, in a language independent way
* A trivial example

* A simple example

 Conclusion

You can also go to each part directly through my table of contents located at the top, if you wish to skip some sections.

MapScript overview

Ok, now I’'m at last arriving at a point I will enjoy. This overview intends to clear some common misconceptions
beginners encounter when first facing MapScript and to give a general overview about MapScript’s internals. For now,
just look at the following diagram (I apologize again for the maintainer’s lack of graphic design taste).

5.1. MapScript 350

http://php.net/tut.php
http://www.w3.org/MarkUp/
http://shapelib.maptools.org/
http://postgis.net/

MapServer Documentation, Release 7.0.7

It all starts as everything on the Web. A browser requests a certain URL through HTTP. The request arrives at the web
server, which, in turn, delivers a file or executes a program and then delivers its output back to the browser. Yes, |
know you knew that, but I have been told to be as complete as possible, and I will try to.

In MapScript’s case, the server executes a certain script, which contains standard language functionality, that is, the
same functionality you would have in that language without MapScript, plus access to almost all of the MapServer C
API, the level of completeness of MapServer API support varies a bit with the language you choose, but I think it is my
duty to tell you almost every available flavor of MapScript is usable. This API, exposed now in your scripting language
through the MapScript module, allows you to do many GIS-like operations on spatial data, including read-write access
to shapefiles, reprojection of data, and many others. For more information on the API, click over the link above. For
other flavors, you can check their own documentation, you will see there is not much difference.

The CGI version of MapServer is not required to run MapScript applications, just as you don’t need a particular
MapScript module to run the CGI. The CGI version has many features out-of-the-box, MapScript is just an API,
so with MapScript you must start from scratch or with some of the examples available. Think of the CGI as of a
MapScript application written directly in C, with direct access to the MapServer C API. Sometimes the out-of-the-box
functionality has some limits which can be surpassed by MapScript, but not embedded within the CGI. In other words,
the CGI is not scriptable, but you can program all the CGI and more with MapScript. This may seem a strange thing
to clarify, but is a common misconception, just check the list archives if you are not inclined to believe me.

As with MapServer itself, MapScript can be configured using only map files, but, unlike the CGI, also includes the

5.1. MapScript 351

http://lists.osgeo.org/pipermail/mapserver-users/

24

25

26

27

28

MapServer Documentation, Release 7.0.7

possibility of dynamically create maps or modify existing ones and to (and here is the key to the flexibility that
MapScript has) mix this information with other sources of non GIS data, such as user input, non spatial and spatial
databases, text files, etc. and that you can use every single module your language provides. The power of this
approach is tremendous, and the most restrictive limit is your imagination. As always, flexibility comes with a price,
performance. It’s generally slower to use a scripting language instead of C, but nowadays this shouldn’t be a big worry.
And you can still program directly in C (there are not much documents about how to do it, though you might want to
check the mapserver-dev list) if you would like to.

The input and output formats MapScript can handle are exactly the same as the ones configured when you build
MapServer/MapScript. But one of the most important things to remember is that, basically, you feed geographic data
and relevant user input (for instance clicks over the map image) to MapScript and as a result get one or more file(s),
typically standard image files such as a PNG or JPEG. So you can apply anything you’ve seen in any server side
scripted web application, DHTML, Java applets, CSS, HTML templates, sessions, you name it.

Our first application

In this first example, I will tell you how to display a shapefile on a web page using a map file.

The Map File

Here’s the map file:

NAME "Europe in purple"

SIZE 400 400

STATUS ON

SYMBOLSET " /var/www/html/maps/symbols/symbols.sym"
EXTENT -5696501 1923039 5696501 11022882

UNITS METERS

SHAPEPATH "/var/www/html/maps/data"

WEB
IMAGEPATH "/var/www/html/maps/tmp/"
IMAGEURL "/tmp/"

END

LAYER
NAME "Europe"
TYPE POLYGON
STATUS ON
DATA "europe"
CLASS
STYLE
COLOR 110 50 100
OUTLINECOLOR 200 200 200
SYMBOL 0
END
END
END

END

Here I have shown a map with a single layer, where the europe.shp, europe.shx and europe.dbf files must be located in
the subdirectory called data. The symbols are located in the symbols subdirectory. All this locations are relative from
the place the map file is, but better safe than sorry, I guess. The web section is used to define where will the images be
saved and in what URL will they be available.

5.1. MapScript 352

http://lists.osgeo.org/mailman/listinfo/mapserver-dev/

MapServer Documentation, Release 7.0.7

Displaying the map with MapScript

To display a map the following MapScript objects and methods will be used:
* MapObj object
* imageQObj object
MapObj methods:
* The constructor method: MapObj ms_newMapObj(string map_file_name[,string new_map_path])
e The draw method: imageObj draw()
imageObj methods:
* The saveWebImage method: string saveWeblImage()
The code looks like this:

<?php
dl ('php_mapscript.so');

Smap_path="/var/www/html/ms/map_files/";

Smap = ms_newMapObj (Smap_path."europe.map") ;
Simage=Smap->draw() ;
Simage_url=S$image->saveWebImage () ;
2>
<HTML>
<HEAD>
<TITLE>Example 1: Displaying a map</TITLE>
</HEAD>
<BODY>
<IMG SRC=<?php echo S$image url; ?> >
</BODY>
</HTML>

The code I will present through the rest of this document will follow the following rule:
* Every non empty line is numbered

This code will render an image corresponding to the shapefile europe and display it on a HTML page.

Code Explanation

cally load it).

Line 3 declares a variable that holds the absolute path for the mapfile.

 Line 4 creates an instance of the MapObj object using the constructor. As you can see, the constructor receives

the location of the map file as its only required parameter, and the map file received the europe.map name.

result (an imageObj) is saved in the $image variable.

as defined in the mapfile (in this case, /tmp/filename.png).

In line 2 it is loaded the MapScript extension (you may not need it if your php.ini file is configured to automati-

Afterwards the draw method of the map object is called to render the image defined by the map file (line 5). The

Line 6 calls the saveWebImage method to generate the image file, it returns a string which represents the URL

5.1. MapScript

MapServer Documentation, Release 7.0.7

* The rest of the lines are pure HTML, except line 13, that defines the source URL of the image will be the value
stored in $image_url.

You should test the application on your system, to check that it really works and to solve the problems that may arise
on your particular configuration before moving on to the more complex examples.

Output

The output (using the europe shapefile) should look like this:

Zooming and Panning

Now I will tell you how to add zoom and pan capabilities to the code.
Here goes the list of new methods and objects called.
New Objects:

* pointObj

5.1. MapScript 354

20

21

22

23

24

25

26

27

28

29

MapServer Documentation, Release 7.0.7

* rectObj
New Methods and Members called:

* The zoompoint method of the map object: void zoompoint(int nZoomFactor, pointObj oPixelPos, int nIm-
ageWidth, int nlmageHeight, rectObj oGeorefExt).

* The setextent method of the map object: $map->setextent(double minx, double miny, double maxx, double
maxy);.

* The extent, width and height members of the map object.
* The constructors of RectObj and PointObj: $point = ms_newPointObj(); $rect = ms_newRectODbj();
* The setXY method of the point object: $point->setXY (double x_coord, double y_coord);

* The setextent method of the rectangle object: $rect->setextent(double minx, double miny, double maxx, double
maxy);

The .map file remains the same as the one presented in the previous example.

PHP/MapScript Code

Here I present the new code.

<?php

dl ('php_mapscript.so');

// Default values and configuration
_zsize=3;

1eck_pan="CHECKED";
_path="/var/www/html/ms/map_files/";

o_file="europe.map";

Smap = ms_newMapObj (Smap_path.Smap_file);

if (isset ($_POST["mapa_x"]) && isset ($_POST["mapa_y"])
&& l!isset (S_POST["full"])) {

extent_to_set = explode(" ",$_POST["extent"]);

Smap->setextent (Sextent_to_se

Sextent_to_se

Smy_point = ms_newpointObij();
Smy_point->setXY ($S_POST["mapa_x"],$_POST["mapa_y"]1);

Smy_extent = ms_newrectObj();

Smy_extent->setextent (Sextent_to_set[0], Sextent_to_set[1],
Sextent_to_set[2], Sextent_to_set[3]);

$zoom_factor = $_POST["zoom"]x$_POST["zsize"];

if ($zoom_factor

Szoom_fac
Scheck_pan = "CHECKED";
Scheck_zout = "";

5.1. MapScript 355

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

MapServer Documentation, Release 7.0.7

Scheck_zin = "";

} else if ($Szoom _factor < 0) {
Scheck_pan = "";
Scheck_zout = "CHECKED";
Scheck_zin = "";

} else {

Scheck_pan = "";
Scheck_zout = "";
Scheck_zin = "CHECKED";

}

Sval_zsize = abs($zoom_factor);

Smap->zoompoint ($zoom_factor, Smy_point, Smap->width, $Smap->height,
Smy_extent) ;

Simage=Smap—->draw () ;
Simage_url=S$image->saveWebImage () ;

Sextent_to_html = S$map->extent->minx." ".Smap->extent->miny." "
.$map->extent->maxx." ".S$map->extent->maxy;

?>

<HTML>

<HEAD>

<TITLE>Map 2</TITLE>

</HEAD>

<BODY>

<CENTER>

<FORM METHOD=POST ACTION=<?php echo SHTTP_ SERVER VARS['PHP_SELF'] ?>>
<TABLE>

<TR>
<TD>
<INPUT TYPE=IMAGE NAME="mapa" SRC="<?php echo Simage url?>">
</TD>
</TR>
<TR>
<TD>
Pan
</TD>
<TD>
<INPUT TYPE=RADIO NAME="zoom" VALUE=0 <?php echo Scheck pan?>>
</TD>
</TR>
<TR>
<TD>
Zoom In
</TD>
<TD>
<INPUT TYPE=RADIO NAME="zoom" VALUE=1 <?php echo Scheck_ zin?>>
</TD>
</TR>
<TR>
<TD>

Zoom Out

5.1. MapScript

356

9%

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

MapServer Documentation, Release 7.0.7

</TD>
<TD>
<INPUT TYPE=RADIO NAME="zoom" VALUE=-1 <?php echo Scheck_ zout?>>
</TD>
</TR>
<TR>
<TD>
Zoom Size
</TD>
<TD>
<INPUT TYPE=TEXT NAME="zsize" VALUE="<?php echo Sval_zsize?>"
SIZE=2>
</TD>
</TR>
<TR>
<TD>
Full Extent
</TD>
<TD>
<INPUT TYPE=SUBMIT NAME="full" VALUE="Go"
SIZE=2>
</TD>
</TABLE>
<INPUT TYPE=HIDDEN NAME="extent" VALUE="<?php echo Sextent_ to_html?>">
</FORM>
</CENTER>
</BODY>
</HMTL>

This code will zoom out, zoom in, pan, and restore to full extent the image displayed in the previous example.

It looks much more complicated than it really is, much of the lines are the HTML code, and much of the remaining
PHP code is just to deal with the forms and such.

You should try it and look at how it works first. Try it in your own server by copying and pasting the code.
Now it’s time for you to play with it a little and look at the source in your browser to check how it changes.

Done?, now let’s start the explanation with the HTML part.

Code Explanation - HTML

Line 49 declares a form, and line 53 declares the image generated by MapScript to be part of that form, so when you
click on it, the X and Y coordinates of the click (in pixels) will be sent along with the other data for the PHP code to
process.

If you are familiar with HTML and PHP, the rest of the HTML code should be straightforward for you to understand
with the exception of line 98, that will be explained in due time.

Code Explanation - PHP

Now look at the PHP code, it’s almost the same code used in example 1, with the addition of lines 9 to 37. What do
these lines do?

Line 9 checks the relevant variables from the form have been set. ‘mapa_x’ and ‘mapa_y’ represent the X and Y
coordinates of the click over the image, and ‘full’ represents the click on the ‘Full Extent’ button.

5.1. MapScript 357

MapServer Documentation, Release 7.0.7

The first time the page is displayed the code between the if statement doesn’t get executed, but the rest of the code
does. Lines 40 and 41 set the ‘$extent_to_html’ variable with the values of the extent defined in the map file separated
by spaces; that value will be put in the HTML variable ‘extent’ in line 98.

Now look at line 11 and 12. We are inside the if statement, that means the form has been submitted at least once. We
grab the extent stored in the previous execution (the ‘extent” HTML variable) of the code and set the extent of the map
to be that last extent. This allows to zoom or pan with respect of the previous extent, not the extent that is set in the
map file.

From that last paragraph you can deduce that all the default values are set in the map file, and anything that you change
through MapScript and would like to remain in your code, must be stored somehow. In this case it is done through
hidden variables in a form. For more advanced applications you could use session variables or a database.

Now you should be able to see why the ‘Full Extent’ button works. If you check line 10, it says that if you haven’t
pressed the button, skip the code in the if statement, so the extent is reset to the value that the map file has. You should
also see that it isn’t necessarily a full extent (in case the extent in the map file is not full extent).

Lines 14 and 15 declare a new point object and initialize it with the values the user clicked on. You should not forget
that those values are in pixels, not in georeferenced coordinates.

Lines 16 through 18 create a new rectangle object and set it with the extent of the previous image, just like it is done
on line 12. In fact this would work too: $my_extent = $map->extent;.

To do all the zooming and panning, the zoompoint function in called on line 35, but first the arguments it receives must
be prepared. You can determine the point the user clicked on, and the extent of the image ($my_point and $my_extent,
respectively), but now you have to determine the zoom factor. That’s what lines 19 to 33 do. If you wondered why the
values of the radio buttons where 0, -1, and 1 for pan, zoom in and zoom out, now you will know the reason.

A zoom factor of 1 tells zoompoint that the operation is pan, a negative value indicates zoom out and a positive value
indicates zoom in. So, by means of multiplying the value received for the radio buttons (HTML variable ‘zoom’) by
the size of the zoom the user entered the zoom factor is calculated. If that value is 0, that means the user selected the
pan operation, so ‘$zoom_factor’ is set to 1, otherwise the result of the multiplication is the zoom factor zoompoint
needs to receive. The other lines are to preserve the button the user clicked on the next time. Line 34 tries to preserve
the value of the zoom size the user entered (It doesn’t do that all the time, when and why that line fails? That’s for you
to find out).

And finally, line 34 calls the zoompoint method with the zoom factor obtained, the point built from the pixel coordi-
nates (I insist on that issue because zoompoint is almost the only method that receives the coordinates in pixels, for the
other methods you must convert pixels to georeferenced coordinates on your own), the height and width of the image,
and the extent.

After calling zoompoint, the extent of the image is changed accordingly to the operation performed (or, better put, the
zoom factor). So then the image is drawn and the current extent saved (after the zooming) for use in the next iteration.

Conclusions

Well, it’s time for me to go recharge my batteries. So I will use this last energy to share some final words. The
examples I have managed to present here are very basic but you should now be able to devise ways to improve them
and suit things to your needs. Keep in mind that you can preprocess, store, read, write data from any source you
can usually read through PHP, plus all the sources MapServer can handle for GIS data. You can even process some
GIS data with PHP only if the need would arise (SQL sources are a good example of this). You can also do hybrid
approaches where some script prepares data which is then shown through the CGI interface to MapServer, or create
data on the fly based on input from a GPS, etc, etc. The possibilities are just too many to enumerate completely. As |
already said your imagination is the limit. The next version of this document will include examples that include more
than one layer, with different datasources (not just shapefiles) and creation of dynamic layers and classes. If you have
a better idea or would like to see some other thing here first, please drop a note to my maintainer.

5.1. MapScript 358

MapServer Documentation, Release 7.0.7

In the meantime, if you need bigger examples you can refer to the original “GMap demo” (you can download the source
here), or the MapTools site (for the older MapLab, Chameleon applications, which were built on PHPMapScript).
Goodbye, and thanks for reading this far.

5.1.4 Python MapScript Appendix

Author Sean Gillies

Contents

* Python MapScript Appendix
— Introduction

— Classes

— Exception Handling

Introduction

The Python MapScript module contains some class extension methods that have not yet been implemented for other
languages.

Classes

References to sections below will be added here as the documentation grows.

imageObj

The Python Imaging Library, http://www.pythonware.com/products/pil/, is an indispensable tool for image manipula-
tion. The extensions to imageQObj are all geared towards better integration of PIL in MapScript applications.

imageObj Methods

imageObj(PyObject argl, PyObject arg2 [, PyObject arg3]) [imageObj] Create a new instance which is either
empty or read from a Python file-like object that refers to a GD format image.

The constructor has 2 different modes. In the blank image mode, argl and arg2 should be the desired width and
height in pixels, and the optional arg3 should be either an instance of outputFormatObj or a GD driver name as
a shortcut to a format. In the image file mode, argl should be a filename or a Python file or file-like object. If
the file-like object does not have a “seek” attribute (such as a urllib resource handle), then a GD driver name
must be provided as arg?2.

Here’s an example of creating a 320 pixel wide by 240 pixel high JPEG using the constructor’s blank image
mode:

image = mapscript.imageObj (320, 240, 'GD/JPEG")

In image file mode, interesting values of arg! to try are instances of StringlO:

5.1. MapScript 359

http://dl.maptools.org/dl/
http://www.maptools.org/
http://www.pythonware.com/products/pil/

MapServer Documentation, Release 7.0.7

s = StringIO()
pil_image.save (s) # Save an image manipulated with PIL
ms_image = imageObj (s)

Or the file-like object returned from urlopen

url = urllib.urlopen('http://mapserver.gis.umn.edu/bugs/ant.jpg")
ms_image = imageObj(url, 'GD/JPEG")

write([PyObject file]) [void] Write image data to a Python file-like object. Default is stdout.

pointObj
pointObj Methods

__str__() [string] Return a string formatted like

{ '"x': £, 'yv': Sf }

with the coordinate values substituted appropriately. Usage example:

>>> p = mapscript.pointObj (1, 1)
>>> str(p)
{ 'x': 1.000000 , 'y': 1.000000 }

Note that the return value can be conveniently eval’d into a Python dictionary:

>>> p_dict = eval (str(p))
>>> p_dict['x"]
1.000000

rectODbj

rectObj Methods

__contains__(pointObj point) [boolean] Returns True if point is inside the rectangle, otherwise returns False.

>>> r = mapscript.rectObj(0, 0, 1, 1)

>>> p = mapscript.pointObj (2, 0) # outside
>>> p in r

False

>>> p not in r

True

__str__() [string] Return a string formatted like

{ 'minx': %f , 'miny': %$f , 'maxx': %$f , 'maxy': %f }

with the bounding values substituted appropriately. Usage example:

>>> r = mapscript.rectObj(0, 0, 1, 1)
>>> str(r)

{ "'minx': 0.000000 , 'miny': 0.000000 , 'maxx': 1.000000 , 'maxy':

1.000000 }

5.1. MapScript

360

MapServer Documentation, Release 7.0.7

Note that the return value can be conveniently eval’d into a Python dictionary:

>>> r_dict = eval(str(r))
>>> r_dict['minx']
0.000000

Exception Handling

The Python MapScript module maps a few MapServer errors into Python exceptions. Attempting to load a non-existent
mapfile raises an ‘IOError’, for example

>>> import mapscript
>>> mapfile = '/no/such/file.map'
>>> m = mapscript.mapObj (mapfile)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "/usr/lib/python2.3/site-packages/mapscript.py", line 799, in __init_
newobj = _mapscript.new_mapObj (xargs)
IOError: msLoadMap () : Unable to access file. (/no/such/file.map)
>>>

The message of the error is written by ‘msSetError’ and so is the same message that CGI mapserv users see in error
logs.

5.1.5 Python MapScript Image Generation

Author Sean Gillies
Last Updated 2008/07/15

Table of Contents

* Python MapScript Image Generation

Introduction

Imagery Overview

The imageObj Class

Image Output

Images and Symbols

Introduction

The MapScript HOWTO docs are intended to complement the API reference with examples of usage for specific
subjects. All examples in this document refer to the mapfile and testing layers distributed with MapServer 4.2+ and
found under mapserver/tests.

5.1. MapScript 361

MapServer Documentation, Release 7.0.7

Pseudocode

All examples will use a pseudocode that is consistent with the language independent API reference. Each line is a
statement. For object attributes and methods we use the dot, ‘., operator. Creation and deletion of objects will be
indicated by ‘new’ and ‘del’ keywords. Other than that, the pseudocode looks a lot like Python.

Imagery Overview
The most common use of MapServer and MapScript is to create map imagery using the built-in GD format drivers:

GD/GIF, GD/PNG, GD/PNG24, and GD/JPEG. This imagery might be saved to a file on disk or be streamed directly
to another device.

The imageObj Class

Imagery is represented in MapScript by the imageObj class. Please see the API Reference (MapScript.txt) for class
attribute and method details.

Creating imageObj from a mapObj

The mapObj class has two methods that return instances of imageObj: ‘draw’, and ‘preparelmage’. The first returns a
full-fledged map image just as one would obtain from the mapserv CGI program

test_map = MapScript.mapObj('tests/test.map')
map_image = test_map.draw ()

A properly sized and formatted blank image, without any layers, symbols, or labels, will be generated by ‘preparelm-

[l

age

blank_image = test_map.preparelmage ()

Creating a new imageObj

The imageObj class constructor creates new instances without need of a map

format = MapScript.outputFormatObj('GD/JPEG")
image = MapScript.imageObj (300, 200, format) # 300 wide, 200 high JPEG

and can even initialize from a file on disk

First three args are overridden by attributes of the disk image file
disk_image = MapScript.imageObj (-1, -1, NULL, 'tests/test.png')

Image Output

Creating files on disk

Imagery is saved to disk by using the ‘save’ method. By accessing the ‘extension’ attribute of an image’s format, the
proper file extension can be used without making any assumptions

5.1. MapScript 362

MapServer Documentation, Release 7.0.7

filename = 'test.' + map_image.format.extension
map_image.save (filename)

If the image is using a GDAL/GTiff-based format, a GeoTIFF file can be created on disk by adding a mapObj as a
second optional argument to ‘save’

map_image.save (filename, test_map)

Direct Output

An image can be dumped to an open filehandle using the ‘write’ method. By default, the filehandle is ‘stdout’

Send an image to a web browser
print "Content-type: " + map_image.format.mimetype + "\n\n"
map_image.write ()

This method is not fully functional for all SWIG MapScript languages. See the API Reference (MapScript.txt) for
details. The ‘write’ method is new in 4.4.

Images and Symbols

The symbolObj::getimage() method will return an instance of imageQObj for pixmap symbols

symbol = test_map.symbolset.getSymbolByName ('home—-png')
image = symbol.getImage ()

There is a symmetric ‘setlmage’ method which loads imagery into a symbol, allowing pixmap symbols to be created
dynamically

new_symbol = MapScript.symbolObj('from_image')
new_symbol.type = MapScript.MS_SYMBOL_PIXMAP
new_symbol.setImage (image)

index = test_map.symbolset.appendSymbol (new_symbol)

The get/setlmage methods are new in MapServer 4.4.

5.1.6 Mapfile Manipulation

Author Sean Gillies

Contents

* Mapfile Manipulation

Introduction

Mapfile Overview

The mapObj Class
Children of mapObj

Metadata

5.1. MapScript 363

MapServer Documentation, Release 7.0.7

Introduction

The MapScript HowTo docs are intended to complement the API reference with examples of usage for specific sub-
jects. All examples in this document refer to the mapfile and testing layers distributed with MapServer 4.2+ and found
under mapserver/tests.

Pseudocode

All examples will use a pseudocode that is consistent with the language independent API reference. Each line is a
statement. For object attributes and methods we use the dot, ‘., operator. Creation and deletion of objects will be
indicated by ‘new’ and ‘del’ keywords. Other than that, the pseudocode looks a lot like Python.

Mapfile Overview

By “Mapfile” here, I mean all the elements that can occur in (nearly) arbitrary numbers within a MapScript mapObj:
Layers, Classes, and Styles. MapServer 4.4 has greatly improved capability to manipulate these objects.

The mapObj Class

An instance of mapObj is a parent for zero to many layerObj children.

New instances

The mapfile path argument to the mapscript.mapObj constructor is now optional

empty_map = new mapscript.mapObj

generates a default mapObj with no layers. A mapObj is initialized from a mapfile on disk in the usual manner:

’test_map = new mapscript.mapObj('tests/test.map')

Cloning

An independent copy, less result and label caches, of a mapObj can be produced by the new mapObj.clone() method:

clone_map = test_map.clone()

Note: the Java MapScript module implements a “cloneMap” method to avoid conflict with the clone method of Java’s
Object class.

Saving

A mapObj can be saved to disk using the save method:

clone_map.save('clone.map')

Frankly, the msSaveMap() function which is the foundation for mapObj::save is incomplete. Your mileage may vary.

5.1. MapScript 364

MapServer Documentation, Release 7.0.7

Children of mapObj

There is a common parent/child object API for Layers, Classes, and Styles in MapServer 4.4.

Referencing a Child

References to Layer, Class, and Style children are obtained by “getChild”-like methods of their parent:

layer_1i = test_map.getlayer (i)
class_ij = layer_i.getClass(j)
style_ijk = class_ij.getStyle (k)

These references are for convenience only. MapScript doesn’t have any reference counting, and you are certain to run
into trouble if you try to use these references after the parent mapObj has been deleted and freed from memory.

Cloning a Child

A completely independent Layer, Class, or Style can be created using the clone method of layerObj, classObj, and
styleObj:

clone_layer = layer_i.clone()

This instance has no parent, and is self-owned.

New Children

Uninitialized instances of layerObj, classObj, or styleObj can be created with the new constructors:

new_layer = new mapscript.layerObj
new_class = new mapscript.classObj
new_style = new mapscript.styleObj

and are added to a parent object using “insertChild”-like methods of the parent which returns the index at which the
child was inserted:

1i = test_map.insertlLayer (new_layer)
ci = test_map.getlayer (li).insertClass (new_class)
si = test_map.getlayer (li) .getClass(ci) .insertStyle (new_style)

The insert* methods create a completely new copy of the object and store it in the parent with all ownership taken on
by the parent.

see the API reference for more details.

Backwards Compatibility

The old style child object constructors with the parent object as a single argument:

new_layer = new mapscript.layerObj(test_map)
new_class = new mapscript.classObj(new_layer)
new_style = new mapscript.styleObj(new_class)

remain in MapServer 4.4.

5.1. MapScript 365

MapServer Documentation, Release 7.0.7

Removing Children

Child objects can be removed with “removeChild”-like methods of parents, which return independent copies of the
removed object:

following from the insertion example

remove the inserted style, returns a copy of the original new_style
removed_style test_map.getLayer (li) .getClass (ci) .removeStyle (si)
removed_class = test_map.getlLayer (li) .removeClass (ci)

removed_layer = test_map.removelayer (1i)

Metadata

Map, Layer, and Class metadata are the other arbitrarily numbered elements (well, up to the built-in limit of 41) of a
mapfile.

New API

In MapServer 4.4, the metadata attributes of mapObj.web, layerObj, and classObj are instances of hashTableObj, a
class which functions like a limited dictionary

layer.metadata.set ('wms_name', 'foo')
name = layer.metadata.get ('wms_name') # returns 'foo

You can iterate over all keys in a hashTableOb;j like

key = NULL
while (1):
key = layer.metadata.nextKey (key)
if key == NULL:
break
value = layer.metadata.get (key)

See the API Reference (mapscript.txt) for more details.
Backwards Compatibility for Metadata

The old getMetaData and setMetaData methods of mapObj, layerObj, and classObj remain for use by older programs.

5.1.7 Querying

Author Sean Gillies

Contents

* Querying

— Introduction

— Querying Overview

5.1. MapScript 366

MapServer Documentation, Release 7.0.7

— Attribute Queries

— Spatial Queries

Introduction

All examples in this document refer to the mapfile and testing layers distributed with MapServer 4.2+ and found under
mapserver/tests.

Pseudocode

All examples will use a pseudocode that is consistent with the language independent API reference. Each line is a
statement. For object attributes and methods we use the dot, ‘., operator. Creation and deletion of objects will be
indicated by ‘new’ and ‘del’ keywords. Other than that, the pseudocode looks a lot like Python.

Querying Overview
The Query Result Set

Map layers can be queried to select features using spatial query methods or the attribute query method. Ignoring for
the moment whether we are executing a spatial or attribute query, results are obtained like so:

layer.query () # not an actual method!
results = layer.getResults()

In the case of a failed query or query with zero results, ‘getResults’ returns NULL.

Result Set Members

Individual members of the query results are obtained like:

if results:
for i in range(results.numresults) : # iterate over results
result = results.getResult (i)

This result object is a handle, of sorts, for a feature of the layer, having ‘shapeindex’ and ‘tileindex’ attributes that can
be used as arguments to ‘getFeature’.

Resulting Features

The previous example code can now be extended to the case of obtaining all queried features:

layer.query ()

results = layer.getResults()

if results:
open layer in preparation of reading shapes
layer.open ()

5.1. MapScript 367

MapServer Documentation, Release 7.0.7

for i in range (results.numresults):
result = results.getResult (i)

layer.getFeature (result)
do something with this feature

Close when done
layer.close()

Backwards Compatibility

The API changed substantially with version 6.0 and backward compatibility was broken. Scripts will have to be
updated to work with the new APL

Attribute Queries

By Attributes

queryByAttributes()

Spatial Queries

By Rectangle

queryByRect()

By Point

queryByRect()

By Shape

queryByShape()

By Selection

queryByFeatures()

5.1. MapScript 368

CHAPTER 6

MapCache

6.1 MapCache 1.6.1

Author Thomas Bonfort
Contact tbonfort at terriscope.fr

MapCache is a server that implements tile caching to speed up access to WMS layers. The primary objectives are to
be fast and easily deployable, while offering the essential features (and more!) expected from a tile caching solution.

6.1.1 Compilation & Installation

Author Thomas Bonfort

Contact tbonfort at terriscope.fr

Author Alan Boudreault

Contact aboudreaut at magears.com

Author Jeff McKenna

Contact jmckenna at gatewaygeomatics.com
Author Mathieu Coudert

Contact mathieu.coudert at gmail.com

Last Updated 2016-02-02

Table of Contents

* Compilation & Installation
— Getting the Source
— Linux Instructions
* Apache Module Specific Instructions
* nginx Specific Instructions

* CGIl/FastCGlI Specific Instructions

* Customizing the Build, Or If Something Went Wrong

369

MapServer Documentation, Release 7.0.7

— Windows Instructions
* Dependencies
* Configure Your Makefile
* Compilation

* Move the Module Into the Apache Directory

*

Configure Your Installed Apache

*

Test Your MapCache Module

Getting the Source

The MapCache project is located at https://github.com/mapserver/mapcache, and can be checked out with either:

readonly

git clone git://github.com/mapserver/mapcache.git

ssh authenticated

git clone git@github.com:mapserver/mapcache.git

tarball

wget https://github.com/mapserver/mapcache/zipball/master

Linux Instructions

These instructions target a Debian/Ubuntu setup, but should apply with few modifications to any Linux installation.
MapCache requires a number of library headers in order to compile correctly:

 apache / apr / apr-util / apx2: these are included in the apache2-prefork-dev or apache2-threaded-dev pack-
ages, depending on which Apache MPM you are running. This package will pull in the necessary APR headers
that you would have to manually install if you are not buidling an Apache module (libaprutill-dev and libapri-
dev)

* png: libpngl2-dev
* jpeg: libjpeg62-dev
e curl: libcurl4-gnutls-dev
The following libraries are not required, but recommended:

* pcre: libpcre3-dev. This will give you more powerful regular expression syntax when creating validation ex-
pressions for dimensions

e pixman: [ibpixman-1-dev. The pixel manipulation library is used for scaling and alpha-compositing images.
MapCache ships with some code to perform these tasks, but Pixman is generally faster as it includes code
optimized for modern CPUs (SSE2, MMX, etc...)

The following libraries are not required, but needed to enable additional functionalities:
o fegi: libfcgi-dev. Needed to build a FastCGI program if you don’t want to run MapCache as an Apache module

» gdal / geos: libgdall-dev libgeos-dev. Needed to enable advanced seeding options (for only seeding tiles that
intersect a given geographical feature)

* sqlite: libsglite3-dev. For enabling the SQLite backend storages
o tiff: libtiff4-dev. For enabling the TIFF backend storages

6.1. MapCache 1.6.1 370

https://github.com/mapserver/mapcache

MapServer Documentation, Release 7.0.7

* berkeley db libdb4.8-dev : For enabling the Berkeley DB backend storages

Note: MapCache now builds with CMake.

For Unix users installing all packages to the default locations, the compilation process should continue with:

cd mapcache

mkdir build

cd build

cmake

follow instructions below if missing a dependency
make

v v vy

sudo make install

Apache Module Specific Instructions

The make install above installs the Apache module, but if you specifically need to install only the Apache module you
can do the following:

$ sudo make install-module
$ sudo ldconfig

The installation script takes care of putting the built module in the Apache module directory. The process for activating
a module is usually distro specific, but can be resumed by the following snippet that should be present in the Apache
configuration file (e.g. /usr/local/httpd/conf/httpd.conf or /etc/apache2/sites-available/default):

LoadModule mapcache_module modules/mod_mapcache.so

Next, a MapCache configuration is mapped to the server URL with the following snippet:
For Apache < 2.4:

<IfModule mapcache_module>
<Directory /path/to/directory>
Order Allow,Deny
Allow from all
</Directory>
MapCacheAlias /mapcache "/path/to/directory/mapcache.xml"
</IfModule>

For Apache >=2.4:

<IfModule mapcache_module>
<Directory /path/to/directory>
Require all granted
</Directory>
MapCacheAlias /mapcache "/path/to/directory/mapcache.xml"
</IfModule>

Before you restart, copy the example mapcache.xml file to the location specified in your Apache configuration:

$ cp mapcache.xml /path/to/directory/mapcache.xml

Finally, restart Apache to take the modified configuration into account

6.1. MapCache 1.6.1 371

MapServer Documentation, Release 7.0.7

$ sudo apachectl restart

If you have not disabled the demo service, you should now have access to it on http://myserver/mapcache/demo

nginx Specific Instructions

Warning: Working with nginx is still somewhat experimental. The following workflow has only been tested on
the development version, i.e. nginx-1.1.x

For nginx support you need to build MapCache’s nginx module against the nginx source. Download the nginx source
code:

cd /usr/local/src

mkdir nginx

cd nginx

wget http://nginx.org/download/nginx-1.1.19.tar.gz
tar -xzvf nginx-1.1.19.tar.gz

cd nginx-1.1.19/

v v v

Run the configure command with the flag ——add-module. This flag must point to MapCache’s nginx child directory.
Assuming that MapServer source was cloned or un tarred into to /usr/local/src, an example configure command
for nginx would look like this:

$./configure --add-module=/usr/local/src/mapcache/nginx

Then build nginx:

$ make
$ sudo make install

Due to nginx’s non-blocking architecture, the MapCache nginx module does not perform any operations that may lead
to a worker process being blocked by a long computation (i.e.: requesting a (meta)tile to be rendered if not in the
cache, proxying a request to an upstream WMS server, or waiting for a tile to be rendered by another worker): It will
instead issue a 404 error. This behavior is essential so as not to occupy all nginx worker threads, thereby preventing
it from responding to all other incoming requests. While this isn’t an issue for completely seeded tilesets, it implies
that these kinds of requests need to be proxied to another MapCache instance that does not suffer from these starvation
issues (i.e. either a FastCGI MapCache, or an internal proxied Apache server). In this scenario, both the nginx
MapCache instance and the Apache/FastCGI MapCache instance should be running with the same mapcache . xml
configuration file.

MapCache supplies an nginx . conf in its nginx child directory. The conf contains an example configuration to load
MapCache. The most relevant part of the configuration is the location directive that points the ~ /mapcache URI to
the mapcache . xml path. You will need to change this path to point to your own mapcache . xml in the MapCache
source.

The basic configuration without any proxying (which will return 404 errors on unseeded tile requests) is:

location ~ ”/mapcache (?<path_info>/.x[$) {
set Surl_prefix "/mapcache";
mapcache /usr/local/src/mapcache/mapcache.xml;

6.1. MapCache 1.6.1 372

http://myserver/mapcache/demo

MapServer Documentation, Release 7.0.7

If proxying unseeded tile requests to a MapCache instance running on an Apache server, we will proxy all 404 Map-
Cache errors to a mapcache.apache.tld server listening on port 8080, configured to respond to MapCache
requests on the /mapcache location.

location ~ " /mapcache (?<path_info>/.x[$) {
set Surl_prefix "/mapcache";
mapcache /usr/local/src/mapcache/mapcache.xml;
error_page 404 = (@apache_mapcache;

location (@apache_mapcache {
proxy_pass http://mapcache.apache.t1d:8080;

If using FastCGI instances of MapCache, spawned with e.g. spawn-fcgi or supervisord on port 9001 (make sure to
enable FastCGI when building MapCache, and to set the MAPCACHE_CONFIG_FILE environment variable before
spawning):

location ~ ”/mapcache (?<path_info>/.x|$) {
set Surl_prefix "/mapcache";
mapcache /usr/local/src/mapcache/mapcache.xml;
error_page 404 = (@fastcgi_mapcache;

location @fastcgi_mapcache {

fastcgi_pass localhost:9001;

fastcgi_param QUERY_STRING Juery_string;
fastcgi_param REQUEST_METHOD Srequest_method;
fastcgi_param CONTENT_TYPE Scontent_type;
fastcgi_param CONTENT_LENGTH Scontent_length;
fastcgi_param PATH_INFO Spath_info;
fastcgi_param SERVER_NAME Sserver_name;
fastcgi_param SERVER_PORT Sserver_port;
fastcgi_param SCRIPT_NAME "/mapcache";

Copy the relevant sections of nginx.conf from MapCache’s nginx directory into nginx’s conf file (in this
case /usr/local/nginx/conf/nginx.conf). You should now have access to the demo at http://myserver/
mapcache/demo

CGl/FastCGl Specific Instructions

A binary CGI/FastCGlI is located in the mapcache/ subfolder, and is named “mapcache”. Activating FastCGI for the
MapCache program on your web server is not part of these instructions; more details may be found on the FustCGI
page or on more general pages across the web.

The MapCache FastCGI program looks for its configuration file in the environment variable called MAP-
CACHE_CONFIG_FILE, which must be set by the web server before spawning the MapCache processes.

See also:
Configuration File

For Apache with mod_cgi:

SetEnv "MAPCACHE_CONFIG_FILE" "/pa