
Introduction to Linux

A Hands on Guide

Machtelt Garrels

Garrels.be

<tille wants no spam _at_ garrels dot be>

1.27 Edition

Copyright © 2002, 2003, 2004, 2005, 2006, 2007, 2008 Machtelt Garrels

20080606

mailto:tille wants no spam _at_ garrels dot be

Table of Contents
Introduction...1

1. Why this guide?...1

2. Who should read this book?...1

3. New versions and availability..1

4. Revision History..2

5. Contributions...3

6. Feedback..3

7. Copyright information...3

8. What do you need?...4

9. Conventions used in this document...4

10. Organization of this document...5

Chapter 1. What is Linux?...7

1.1. History..7

1.1.1. UNIX...7

1.1.2. Linus and Linux...8

1.1.3. Current application of Linux systems...9

1.2. The user interface..9

1.2.1. Is Linux difficult?..9

1.2.2. Linux for non-experienced users...10

1.3. Does Linux have a future?..10

1.3.1. Open Source..10

1.3.2. Ten years of experience at your service..11

1.4. Properties of Linux...12

1.4.1. Linux Pros...12

1.4.2. Linux Cons..13

1.5. Linux Flavors..14

1.5.1. Linux and GNU...14

1.5.2. GNU/Linux..15

1.5.3. Which distribution should I install?..15

1.6. Summary...16

1.7. Exercises...16

Chapter 2. Quickstart...18

2.1. Logging in, activating the user interface and logging out..18

2.1.1. Introduction...18

2.1.2. Graphical mode...18

2.1.3. Text mode..20

2.2. Absolute basics...21

2.2.1. The commands..21

2.2.2. General remarks..21

2.2.3. Using Bash features...22

2.3. Getting help...23

2.3.1. Be warned..23

2.3.2. The man pages...23

2.3.3. More info...25

2.4. Summary...28

2.5. Exercises...29

Introduction to Linux

i

Table of Contents
Chapter 2. Quickstart

2.5.1. Connecting and disconnecting...29

2.5.2. Passwords..29

2.5.3. Directories...30

2.5.4. Files...30

2.5.5. Getting help...31

Chapter 3. About files and the file system..32

3.1. General overview of the Linux file system...32

3.1.1. Files...32

3.1.2. About partitioning...33

3.1.3. More file system layout...37

3.2. Orientation in the file system..40

3.2.1. The path...40

3.2.2. Absolute and relative paths...41

3.2.3. The most important files and directories...41

3.2.4. The most important configuration files...44

3.2.5. The most common devices..46

3.2.6. The most common variable files...47

3.3. Manipulating files...48

3.3.1. Viewing file properties..48

3.3.2. Creating and deleting files and directories..50

3.3.3. Finding files...53

3.3.4. More ways to view file content...57

3.3.5. Linking files..58

3.4. File security...60

3.4.1. Access rights: Linux's first line of defense..60

3.4.2. The tools..62

3.5. Summary...67

3.6. Exercises...68

3.6.1. Partitions..68

3.6.2. Paths..68

3.6.3. Tour of the system...69

3.6.4. Manipulating files..69

3.6.5. File permissions...69

Chapter 4. Processes...71

4.1. Processes inside out..71

4.1.1. Multi-user and multi-tasking...71

4.1.2. Process types...71

4.1.3. Process attributes...73

4.1.4. Displaying process information...74

4.1.5. Life and death of a process..76

4.1.6. SUID and SGID...78

4.2. Boot process, Init and shutdown...80

4.2.1. Introduction...80

4.2.2. The boot process..80

4.2.3. GRUB features..80

Introduction to Linux

ii

Table of Contents
Chapter 4. Processes

4.2.4. Init...81

4.2.5. Init run levels...83

4.2.6. Shutdown...84

4.3. Managing processes..84

4.3.1. Work for the system admin...84

4.3.2. How long does it take?..85

4.3.3. Performance...86

4.3.4. Load...86

4.3.5. Can I do anything as a user?..86

4.4. Scheduling processes..91

4.4.1. Use that idle time!...91

4.4.2. The sleep command...91

4.4.3. The at command..92

4.4.4. Cron and crontab...92

4.5. Summary...94

4.6. Exercises...95

4.6.1. General..95

4.6.2. Booting, init etc...95

4.6.3. Scheduling...96

Chapter 5. I/O redirection..97

5.1. Simple redirections...97

5.1.1. What are standard input and standard output?..97

5.1.2. The redirection operators...97

5.2. Advanced redirection features..100

5.2.1. Use of file descriptors..100

5.2.2. Examples...101

5.3. Filters..101

5.3.1. More about grep..102

5.3.2. Filtering output..102

5.4. Summary...103

5.5. Exercises...103

Chapter 6. Text editors...105

6.1. Text editors...105

6.1.1. Why should I use an editor?..105

6.1.2. Which editor should I use?..105

6.2. Using the Vim editor...106

6.2.1. Two modes..106

6.2.2. Basic commands..107

6.2.3. The easy way...108

6.3. Linux in the office...108

6.3.1. History...108

6.3.2. Suites and programs..108

6.3.3. Remarks...109

6.4. Summary...109

6.5. Exercises...110

Introduction to Linux

iii

Table of Contents
Chapter 7. Home sweet /home...111

7.1. General good housekeeping..111

7.1.1. Introduction...111

7.1.2. Make space..111

7.2. Your text environment..114

7.2.1. Environment variables...114

7.2.2. Shell setup files...116

7.2.3. A typical set of setup files...117

7.2.4. The Bash prompt...120

7.2.5. Shell scripts...121

7.3. The graphical environment...123

7.3.1. Introduction...123

7.3.2. The X Window System...124

7.3.3. X server configuration...125

7.4. Region specific settings..126

7.4.1. Keyboard setup..126

7.4.2. Fonts..126

7.4.3. Date and time zone..127

7.4.4. Language...127

7.4.5. Country-specific Information..128

7.5. Installing new software...128

7.5.1. General..128

7.5.2. Package formats..128

7.5.3. Automating package management and updates..131

7.5.4. Upgrading your kernel...132

7.5.5. Installing extra packages from the installation CDs..133

7.6. Summary...134

7.7. Exercises...135

7.7.1. Shell environment..135

7.7.2. Graphical environment..136

Chapter 8. Printers and printing...137

8.1. Printing files..137

8.1.1. Command line printing..137

8.1.2. Formatting...138

8.2. The server side..139

8.2.1. General..139

8.2.2. Graphical printer configuration...140

8.2.3. Buying a printer for Linux...140

8.3. Print problems...140

8.3.1. Wrong file..140

8.3.2. My print hasn't come out...140

8.4. Summary...142

8.5. Exercises...142

Chapter 9. Fundamental Backup Techniques..144

9.1. Introduction...144

9.1.1. Preparing your data...144

Introduction to Linux

iv

Table of Contents
Chapter 9. Fundamental Backup Techniques

9.2. Moving your data to a backup device...148

9.2.1. Making a copy on a floppy disk..148

9.2.2. Making a copy with a CD-writer...150

9.2.3. Backups on/from jazz drives, USB devices and other removables.....................................151

9.2.4. Backing up data using a tape device...151

9.2.5. Tools from your distribution...151

9.3. Using rsync...152

9.3.1. Introduction...152

9.3.2. An example: rsync to a USB storage device...152

9.4. Encryption...152

9.4.1. General remarks..152

9.4.2. Generate a key...153

9.4.3. About your key..154

9.4.4. Encrypt data...154

9.4.5. Decrypting files...155

9.5. Summary...155

9.6. Exercises...156

Chapter 10. Networking...157

10.1. Networking Overview...157

10.1.1. The OSI Model..157

10.1.2. Some popular networking protocols..158

10.2. Network configuration and information...160

10.2.1. Configuration of network interfaces..160

10.2.2. Network configuration files...161

10.2.3. Network configuration commands..161

10.2.4. Network interface names...163

10.2.5. Checking the host configuration with netstat..164

10.2.6. Other hosts...164

10.3. Internet/Intranet applications..167

10.3.1. Server types...167

10.3.2. Mail...168

10.3.3. Web...170

10.3.4. File Transfer Protocol..171

10.3.5. Chatting and conferencing...172

10.3.6. News services..173

10.3.7. The Domain Name System..174

10.3.8. DHCP..174

10.3.9. Authentication services...174

10.4. Remote execution of applications...176

10.4.1. Introduction...176

10.4.2. Rsh, rlogin and telnet...176

10.4.3. The X Window System...177

10.4.4. The SSH suite..178

10.4.5. VNC...182

10.4.6. The rdesktop protocol..182

10.4.7. Cygwin..182

Introduction to Linux

v

Table of Contents
Chapter 10. Networking

10.5. Security...183

10.5.1. Introduction...183

10.5.2. Services...183

10.5.3. Update regularly..184

10.5.4. Firewalls and access policies...184

10.5.5. Intrusion detection...185

10.5.6. More tips..186

10.5.7. Have I been hacked?..186

10.5.8. Recovering from intrusion...187

10.6. Summary...187

10.7. Exercises...188

10.7.1. General networking...188

10.7.2. Remote connections..188

10.7.3. Security..188

Chapter 11. Sound and Video..189

11.1. Audio Basics...189

11.1.1. Installation...189

11.1.2. Drivers and Architecture...189

11.2. Sound and video playing...190

11.2.1. CD playing and copying..190

11.2.2. Playing music files..190

11.2.3. Recording..192

11.3. Video playing, streams and television watching...192

11.4. Internet Telephony..193

11.4.1. What is it?..193

11.4.2. What do you need?..193

11.5. Summary...194

11.6. Exercises...195

Appendix A. Where to go from here?...196

A.1. Useful Books..196

A.1.1. General Linux...196

A.1.2. Editors...196

A.1.3. Shells..196

A.1.4. X Window..196

A.1.5. Networking...197

A.2. Useful sites...197

A.2.1. General information..197

A.2.2. Architecture Specific References...197

A.2.3. Distributions...197

A.2.4. Software..198

Appendix B. DOS versus Linux commands...199

Introduction to Linux

vi

Table of Contents
Appendix C. Shell Features..200

C.1. Common features...200

C.2. Differing features...201

Glossary...204

A...204

B...204

C...205

D...205

E...206

F...206

G...207

H...207

I..207

J..208

K...208

L...208

M..209

N...210

O...210

P...210

Q...211

R...211

S...212

T...212

U...213

V...214

W..214

X...214

Y...215

Z...215

Index..215

Introduction to Linux

vii

Introduction

1. Why this guide?

Many people still believe that learning Linux is difficult, or that only experts can understand how a Linux

system works. Though there is a lot of free documentation available, the documentation is widely scattered on

the Web, and often confusing, since it is usually oriented toward experienced UNIX or Linux users. Today,

thanks to the advancements in development, Linux has grown in popularity both at home and at work. The

goal of this guide is to show people of all ages that Linux can be simple and fun, and used for all kinds of

purposes.

2. Who should read this book?

This guide was created as an overview of the Linux Operating System, geared toward new users as an

exploration tour and getting started guide, with exercises at the end of each chapter. For more advanced

trainees it can be a desktop reference, and a collection of the base knowledge needed to proceed with system

and network administration. This book contains many real life examples derived from the author's experience

as a Linux system and network administrator, trainer and consultant. We hope these examples will help you to

get a better understanding of the Linux system and that you feel encouraged to try out things on your own.

Everybody who wants to get a "CLUE", a Command Line User Experience, with Linux (and UNIX in

general) will find this book useful.

3. New versions and availability

This document is published in the Guides section of the Linux Documentation Project collection at

http://www.tldp.org/guides.html; you can also download PDF and PostScript formatted versions here.

The most recent edition is available at http://tille.garrels.be/training/tldp/.

The second edition of this guide is available in print from Fultus.com Books as paperback Print On Demand

(POD) book. Fultus distributes this document through Ingram and Baker & Taylor to many bookstores,

including Amazon.com, Amazon.co.uk, BarnesAndNoble.com and Google's Froogle global shopping portal

and Google Book Search.

Figure 1. Introduction to Linux front cover

Introduction 1

http://www.tldp.org/guides.html
http://tille.garrels.be/training/tldp/
http://fultus.com/
http://store.fultus.com/product_info.php?products_id=140
http://www.amazon.com/exec/obidos/ASIN/1596821124
http://www.amazon.co.uk/exec/obidos/ASIN/1596821124
http://search.barnesandnoble.com/booksearch/isbninquiry.asp?ISBN=1596821124
http://froogle.google.com/froogle?q=1596821124
http://books.google.com/books?isbn=1596821124

The guide has been translated into Hindi by:

Alok Kumar•

Dhananjay Sharma•

Kapil•

Puneet Goel•

Ravikant Yuyutsu•

Andrea Montagner translated the guide into Italian.

4. Revision History

Revision History

Revision 1.27 20080606 Revised by: MG

updates.

Revision 1.26 20070919 Revised by: MG

Comments from readers, license.

Revision 1.25 20070511 Revised by: MG

Comments from readers, minor updates, E-mail etiquette, updated info about availability (thanks Oleg).

Revision 1.24 2006-11-01 Revised by: MG

added index terms, prepared for second printed edition, added gpg and proxy info.

Revision 1.23 2006-07-25 Revised by: MG and FK

Updates and corrections, removed app5 again, adapted license to enable inclusion in Debian docs.

Revision 1.22 2006-04-06 Revised by: MG

chap8 revised completely, chap10: clarified examples, added ifconfig and cygwin info, revised network apps.

Revision 1.21 2006-03-14 Revised by: MG

Added exercises in chap11, corrected newline errors, command overview completed for chapter 9, minor

corrections in chap10.

Revision 1.20 2006-01-06 Revised by: MG

Split chap7: audio stuff is now in separate chapter, chap11.xml. Small revisions, updates for commands like

aptitude, more on USB storage, Internet telephony, corrections from readers.

Revision 1.13 2004-04-27 Revised by: MG

Introduction to Linux

Introduction 2

http://www.geocities.com/linuxparichay/
http://www.codex.altervista.org/introlinux.html

Last read-through before sending everything to Fultus for printout. Added Fultus referrence in New Versions

section, updated Conventions and Organization sections. Minor changes in chapters 4, 5, 6 and 8, added

rdesktop info in chapter 10, updated glossary, replaced references to fileutils with coreutils, thankyou to

Hindi translators.

5. Contributions

Many thanks to all the people who shared their experiences. And especially to the Belgian Linux users for

hearing me out every day and always being generous in their comments.

Also a special thought for Tabatha Marshall for doing a really thorough revision, spell check and styling, and

to Eugene Crosser for spotting the errors that we two overlooked.

And thanks to all the readers who notified me about missing topics and who helped to pick out the last errors,

unclear definitions and typos by going through the trouble of mailing me all their remarks. These are also the

people who help me keep this guide up to date, like Filipus Klutiero who did a complete review in 2005 and

2006 and helps me getting the guide into the Debian docs collection, and Alexey Eremenko who sent me the

foundation for chapter 11.

In 2006, Suresh Rajashekara created a Debian package of this documentation.

Finally, a big thank you for the volunteers who are currently translating this document in French, Swedish,

German, Farsi, Hindi and more. It is a big work that should not be underestimated; I admire your courage.

6. Feedback

Missing information, missing links, missing characters? Mail it to the maintainer of this document:

<tille wants no spam _at_ garrels dot be>

Don't forget to check with the latest version first!

7. Copyright information

* Copyright (c) 2002-2007, Machtelt Garrels

* All rights reserved.

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions are met:

*

* * Redistributions of source code must retain the above copyright

* notice, this list of conditions and the following disclaimer.

* * Redistributions in binary form must reproduce the above copyright

* notice, this list of conditions and the following disclaimer in the

* documentation and/or other materials provided with the distribution.

* * Neither the name of the author, Machtelt Garrels, nor the

* names of its contributors may be used to endorse or promote products

* derived from this software without specific prior written permission.

*

* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND ANY

Introduction to Linux

Introduction 3

mailto:tille wants no spam _at_ garrels dot be
http://tille.garrels.be/training/tldp/

* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED

* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE FOR ANY

* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND

* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The logos, trademarks and symbols used in this book are the properties of their respective owners.

8. What do you need?

You will require a computer and a medium containing a Linux distribution. Most of this guide applies to all

Linux distributions - and UNIX in general. Apart from time, there are no further specific requirements.

The Installation HOWTO contains helpful information on how to obtain Linux software and install it on your

computer. Hardware requirements and coexistence with other operating systems are also discussed.

CD images can be downloaded from linux-iso.com and many other locations, see Appendix A.

An interesting alternative for those who don't dare to take the step of an actual Linux installation on their

machine are the Linux distributions that you can run from a CD, such as the Knoppix distribution.

9. Conventions used in this document

The following typographic and usage conventions occur in this text:

Table 1. Typographic and usage conventions

Text type Meaning

"Quoted text" Quotes from people, quoted computer output.

terminal view
Literal computer input and output captured from the terminal, usually rendered with

a light grey background.

command Name of a command that can be entered on the command line.

VARIABLE Name of a variable or pointer to content of a variable, as in $VARNAME.

option Option to a command, as in "the -a option to the ls command".

argument Argument to a command, as in "read man ls ".

prompt
User prompt, usually followed by a command that you type in a terminal window,

like in hilda@home> ls -l

command options

arguments
Command synopsis or general usage, on a separated line.

filename Name of a file or directory, for example "Change to the /usr/bin directory."

Key Keys to hit on the keyboard, such as "type Q to quit".

Button Graphical button to click, like the OK button.

Menu->Choice
Choice to select from a graphical menu, for instance: "SelectHelp->About Mozilla

in your browser."

Introduction to Linux

Introduction 4

http://www.tldp.org/HOWTO/Installation-HOWTO/
http://www.linux-iso.com/
http://www.knoppix.com/

Terminology Important term or concept: "The Linux kernel is the heart of the system."

\

The backslash in a terminal view or command synopsis indicates an unfinished line.

In other words, if you see a long command that is cut into multiple lines, \ means

"Don't press Enter yet!"

See Chapter 1 link to related subject within this guide.

The author Clickable link to an external web resource.

The following images are used:

This is a note

It contains additional information or remarks.

This is a caution

It means be careful.

This is a warning

Be very careful.

This is a tip

Tips and tricks.

10. Organization of this document

This guide is part of the Linux Documentation Project and aims to be the foundation for all other materials

that you can get from the Project. As such, it provides you with the fundamental knowledge needed by anyone

who wants to start working with a Linux system, while at the same time it tries to consciously avoid

re-inventing the hot water. Thus, you can expect this book to be incomplete and full of links to sources of

additional information on your system, on the Internet and in your system documentation.

The first chapter is an introduction to the subject on Linux; the next two discuss absolute basic commands.

Chapters 4 and 5 discuss some more advanced but still basic topics. Chapter 6 is needed for continuing with

the rest, since it discusses editing files, an ability you need to pass from Linux newbie to Linux user. The

following chapters discuss somewhat more advanced topics that you will have to deal with in everyday Linux

use.

All chapters come with exercises that will test your preparedness for the next chapter.

Chapter 1: What is Linux, how did it come into existence, advantages and disadvantages, what does

the future hold for Linux, who should use it, installing your computer.

•

Chapter 2: Getting started, connecting to the system, basic commands, where to find help.•

Chapter 3: The filesystem, important files and directories, managing files and directories, protecting

your data.

•

Chapter 4: Understanding and managing processes, boot and shutdown procedures, postponing tasks,

repetitive tasks.

•

Chapter 5: What are standard input, output and error and how are these features used from the

command line.

•

Chapter 6: Why you should learn to work with an editor, discussion of the most common editors.•

Introduction to Linux

Introduction 5

http://tille.garrels.be

Chapter 7: Configuring your graphical, text and audio environment, settings for the non-native

English speaking Linux user, tips for adding extra software.

•

Chapter 8: Converting files to a printable format, getting them out of the printer, hints for solving

print problems.

•

Chapter 9: Preparing data to be backed up, discussion of various tools, remote backup.•

Chapter 10: Overview of Linux networking tools and user applications, with a short discussion of the

underlying service daemon programs and secure networking.

•

Chapter 11: Sound and video, including Voice over IP and sound recording is discussed in this

chapter.

•

Appendix A: Which books to read and sites to visit when you have finished reading this one.•

Appendix B: A comparison.•

Appendix C: If you ever get stuck, these tables might be an outcome. Also a good argument when

your boss insists that YOU should use HIS favorite shell.

•

Introduction to Linux

Introduction 6

Chapter 1. What is Linux?

We will start with an overview of how Linux became the operating system it is today. We

will discuss past and future development and take a closer look at the advantages and

disadvantages of this system. We will talk about distributions, about Open Source in general

and try to explain a little something about GNU.

This chapter answers questions like:

What is Linux?♦

Where and how did Linux start?♦

Isn't Linux that system where everything is done in text mode?♦

Does Linux have a future or is it just hype?♦

What are the advantages of using Linux?♦

What are the disadvantages?♦

What kinds of Linux are there and how do I choose the one that fits me?♦

What are the Open Source and GNU movements?♦

1.1. History

1.1.1. UNIX

In order to understand the popularity of Linux, we need to travel back in time, about 30 years ago...

Imagine computers as big as houses, even stadiums. While the sizes of those computers posed substantial

problems, there was one thing that made this even worse: every computer had a different operating system.

Software was always customized to serve a specific purpose, and software for one given system didn't run on

another system. Being able to work with one system didn't automatically mean that you could work with

another. It was difficult, both for the users and the system administrators.

Computers were extremely expensive then, and sacrifices had to be made even after the original purchase just

to get the users to understand how they worked. The total cost per unit of computing power was enormous.

Technologically the world was not quite that advanced, so they had to live with the size for another decade. In

1969, a team of developers in the Bell Labs laboratories started working on a solution for the software

problem, to address these compatibility issues. They developed a new operating system, which was

Simple and elegant.1.

Written in the C programming language instead of in assembly code.2.

Able to recycle code.3.

The Bell Labs developers named their project "UNIX."

The code recycling features were very important. Until then, all commercially available computer systems

were written in a code specifically developed for one system. UNIX on the other hand needed only a small

piece of that special code, which is now commonly named the kernel. This kernel is the only piece of code

that needs to be adapted for every specific system and forms the base of the UNIX system. The operating

system and all other functions were built around this kernel and written in a higher programming language, C.

Chapter 1. What is Linux? 7

This language was especially developed for creating the UNIX system. Using this new technique, it was much

easier to develop an operating system that could run on many different types of hardware.

The software vendors were quick to adapt, since they could sell ten times more software almost effortlessly.

Weird new situations came in existence: imagine for instance computers from different vendors

communicating in the same network, or users working on different systems without the need for extra

education to use another computer. UNIX did a great deal to help users become compatible with different

systems.

Throughout the next couple of decades the development of UNIX continued. More things became possible to

do and more hardware and software vendors added support for UNIX to their products.

UNIX was initially found only in very large environments with mainframes and minicomputers (note that a

PC is a "micro" computer). You had to work at a university, for the government or for large financial

corporations in order to get your hands on a UNIX system.

But smaller computers were being developed, and by the end of the 80's, many people had home computers.

By that time, there were several versions of UNIX available for the PC architecture, but none of them were

truly free and more important: they were all terribly slow, so most people ran MS DOS or Windows 3.1 on

their home PCs.

1.1.2. Linus and Linux

By the beginning of the 90s home PCs were finally powerful enough to run a full blown UNIX. Linus

Torvalds, a young man studying computer science at the university of Helsinki, thought it would be a good

idea to have some sort of freely available academic version of UNIX, and promptly started to code.

He started to ask questions, looking for answers and solutions that would help him get UNIX on his PC.

Below is one of his first posts in comp.os.minix, dating from 1991:

From: torvalds@klaava.Helsinki.FI (Linus Benedict Torvalds)

Newsgroups: comp.os.minix

Subject: Gcc-1.40 and a posix-question

Message-ID: <1991Jul3.100050.9886@klaava.Helsinki.FI>

Date: 3 Jul 91 10:00:50 GMT

Hello netlanders,

Due to a project I'm working on (in minix), I'm interested in the posix

standard definition. Could somebody please point me to a (preferably)

machine-readable format of the latest posix rules? Ftp-sites would be

nice.

From the start, it was Linus' goal to have a free system that was completely compliant with the original UNIX.

That is why he asked for POSIX standards, POSIX still being the standard for UNIX.

In those days plug-and-play wasn't invented yet, but so many people were interested in having a UNIX system

of their own, that this was only a small obstacle. New drivers became available for all kinds of new hardware,

at a continuously rising speed. Almost as soon as a new piece of hardware became available, someone bought

it and submitted it to the Linux test, as the system was gradually being called, releasing more free code for an

ever wider range of hardware. These coders didn't stop at their PC's; every piece of hardware they could find

was useful for Linux.

Back then, those people were called "nerds" or "freaks", but it didn't matter to them, as long as the supported

hardware list grew longer and longer. Thanks to these people, Linux is now not only ideal to run on new PC's,

Introduction to Linux

Chapter 1. What is Linux? 8

but is also the system of choice for old and exotic hardware that would be useless if Linux didn't exist.

Two years after Linus' post, there were 12000 Linux users. The project, popular with hobbyists, grew steadily,

all the while staying within the bounds of the POSIX standard. All the features of UNIX were added over the

next couple of years, resulting in the mature operating system Linux has become today. Linux is a full UNIX

clone, fit for use on workstations as well as on middle-range and high-end servers. Today, a lot of the

important players on the hard- and software market each have their team of Linux developers; at your local

dealer's you can even buy pre-installed Linux systems with official support - eventhough there is still a lot of

hard- and software that is not supported, too.

1.1.3. Current application of Linux systems

Today Linux has joined the desktop market. Linux developers concentrated on networking and services in the

beginning, and office applications have been the last barrier to be taken down. We don't like to admit that

Microsoft is ruling this market, so plenty of alternatives have been started over the last couple of years to

make Linux an acceptable choice as a workstation, providing an easy user interface and MS compatible office

applications like word processors, spreadsheets, presentations and the like.

On the server side, Linux is well-known as a stable and reliable platform, providing database and trading

services for companies like Amazon, the well-known online bookshop, US Post Office, the German army and

many others. Especially Internet providers and Internet service providers have grown fond of Linux as

firewall, proxy- and web server, and you will find a Linux box within reach of every UNIX system

administrator who appreciates a comfortable management station. Clusters of Linux machines are used in the

creation of movies such as "Titanic", "Shrek" and others. In post offices, they are the nerve centers that route

mail and in large search engine, clusters are used to perform internet searches.These are only a few of the

thousands of heavy-duty jobs that Linux is performing day-to-day across the world.

It is also worth to note that modern Linux not only runs on workstations, mid- and high-end servers, but also

on "gadgets" like PDA's, mobiles, a shipload of embedded applications and even on experimental

wristwatches. This makes Linux the only operating system in the world covering such a wide range of

hardware.

1.2. The user interface

1.2.1. Is Linux difficult?

Whether Linux is difficult to learn depends on the person you're asking. Experienced UNIX users will say no,

because Linux is an ideal operating system for power-users and programmers, because it has been and is being

developed by such people.

Everything a good programmer can wish for is available: compilers, libraries, development and debugging

tools. These packages come with every standard Linux distribution. The C-compiler is included for free - as

opposed to many UNIX distributions demanding licensing fees for this tool. All the documentation and

manuals are there, and examples are often included to help you get started in no time. It feels like UNIX and

switching between UNIX and Linux is a natural thing.

In the early days of Linux, being an expert was kind of required to start using the system. Those who mastered

Linux felt better than the rest of the "lusers" who hadn't seen the light yet. It was common practice to tell a

beginning user to "RTFM" (read the manuals). While the manuals were on every system, it was difficult to

Introduction to Linux

Chapter 1. What is Linux? 9

find the documentation, and even if someone did, explanations were in such technical terms that the new user

became easily discouraged from learning the system.

The Linux-using community started to realize that if Linux was ever to be an important player on the

operating system market, there had to be some serious changes in the accessibility of the system.

1.2.2. Linux for non-experienced users

Companies such as RedHat, SuSE and Mandriva have sprung up, providing packaged Linux distributions

suitable for mass consumption. They integrated a great deal of graphical user interfaces (GUIs), developed by

the community, in order to ease management of programs and services. As a Linux user today you have all the

means of getting to know your system inside out, but it is no longer necessary to have that knowledge in order

to make the system comply to your requests.

Nowadays you can log in graphically and start all required applications without even having to type a single

character, while you still have the ability to access the core of the system if needed. Because of its structure,

Linux allows a user to grow into the system: it equally fits new and experienced users. New users are not

forced to do difficult things, while experienced users are not forced to work in the same way they did when

they first started learning Linux.

While development in the service area continues, great things are being done for desktop users, generally

considered as the group least likely to know how a system works. Developers of desktop applications are

making incredible efforts to make the most beautiful desktops you've ever seen, or to make your Linux

machine look just like your former MS Windows or an Apple workstation. The latest developments also

include 3D acceleration support and support for USB devices, single-click updates of system and packages,

and so on. Linux has these, and tries to present all available services in a logical form that ordinary people can

understand. Below is a short list containing some great examples; these sites have a lot of screenshots that will

give you a glimpse of what Linux on the desktop can be like:

http://www.gnome.org•

http://kde.org/screenshots/•

http://www.openoffice.org•

http://www.mozilla.org•

1.3. Does Linux have a future?

1.3.1. Open Source

The idea behind Open Source software is rather simple: when programmers can read, distribute and change

code, the code will mature. People can adapt it, fix it, debug it, and they can do it at a speed that dwarfs the

performance of software developers at conventional companies. This software will be more flexible and of a

better quality than software that has been developed using the conventional channels, because more people

have tested it in more different conditions than the closed software developer ever can.

The Open Source initiative started to make this clear to the commercial world, and very slowly, commercial

vendors are starting to see the point. While lots of academics and technical people have already been

convinced for 20 years now that this is the way to go, commercial vendors needed applications like the

Internet to make them realize they can profit from Open Source. Now Linux has grown past the stage where it

was almost exclusively an academic system, useful only to a handful of people with a technical background.

Introduction to Linux

Chapter 1. What is Linux? 10

http://www.gnome.org
http://kde.org/screenshots/
http://www.openoffice.org
http://www.mozilla.org

Now Linux provides more than the operating system: there is an entire infrastructure supporting the chain of

effort of creating an operating system, of making and testing programs for it, of bringing everything to the

users, of supplying maintenance, updates and support and customizations, etcetera. Today, Linux is ready to

accept the challenge of a fast-changing world.

1.3.2. Ten years of experience at your service

While Linux is probably the most well-known Open Source initiative, there is another project that contributed

enormously to the popularity of the Linux operating system. This project is called SAMBA, and its

achievement is the reverse engineering of the Server Message Block (SMB)/Common Internet File System

(CIFS) protocol used for file- and print-serving on PC-related machines, natively supported by MS Windows

NT and OS/2, and Linux. Packages are now available for almost every system and provide interconnection

solutions in mixed environments using MS Windows protocols: Windows-compatible (up to and

includingWinXP) file- and print-servers.

Maybe even more successful than the SAMBA project is the Apache HTTP server project. The server runs on

UNIX, Windows NT and many other operating systems. Originally known as "A PAtCHy server", based on

existing code and a series of "patch files", the name for the matured code deserves to be connoted with the

native American tribe of the Apache, well-known for their superior skills in warfare strategy and inexhaustible

endurance. Apache has been shown to be substantially faster, more stable and more feature-full than many

other web servers. Apache is run on sites that get millions of visitors per day, and while no official support is

provided by the developers, the Apache user community provides answers to all your questions. Commercial

support is now being provided by a number of third parties.

In the category of office applications, a choice of MS Office suite clones is available, ranging from partial to

full implementations of the applications available on MS Windows workstations. These initiatives helped a

great deal to make Linux acceptable for the desktop market, because the users don't need extra training to

learn how to work with new systems. With the desktop comes the praise of the common users, and not only

their praise, but also their specific requirements, which are growing more intricate and demanding by the day.

The Open Source community, consisting largely of people who have been contributing for over half a decade,

assures Linux' position as an important player on the desktop market as well as in general IT application. Paid

employees and volunteers alike are working diligently so that Linux can maintain a position in the market.

The more users, the more questions. The Open Source community makes sure answers keep coming, and

watches the quality of the answers with a suspicious eye, resulting in ever more stability and accessibility.

Listing all the available Linux software is beyond the scope of this guide, as there are tens of thousands of

packages. Throughout this course we will present you with the most common packages, which are almost all

freely available. In order to take away some of the fear of the beginning user, here's a screenshot of one of

your most-wanted programs. You can see for yourself that no effort has been spared to make users who are

switching from Windows feel at home:

Figure 1-1. OpenOffice MS-compatible Spreadsheet

Introduction to Linux

Chapter 1. What is Linux? 11

1.4. Properties of Linux

1.4.1. Linux Pros

A lot of the advantages of Linux are a consequence of Linux' origins, deeply rooted in UNIX, except for the

first advantage, of course:

Linux is free:

As in free beer, they say. If you want to spend absolutely nothing, you don't even have to pay the

price of a CD. Linux can be downloaded in its entirety from the Internet completely for free. No

registration fees, no costs per user, free updates, and freely available source code in case you want to

change the behavior of your system.

Most of all, Linux is free as in free speech:

The license commonly used is the GNU Public License (GPL). The license says that anybody who

may want to do so, has the right to change Linux and eventually to redistribute a changed version, on

the one condition that the code is still available after redistribution. In practice, you are free to grab a

kernel image, for instance to add support for teletransportation machines or time travel and sell your

new code, as long as your customers can still have a copy of that code.

•

Linux is portable to any hardware platform:

A vendor who wants to sell a new type of computer and who doesn't know what kind of OS his new

machine will run (say the CPU in your car or washing machine), can take a Linux kernel and make it

•

Introduction to Linux

Chapter 1. What is Linux? 12

work on his hardware, because documentation related to this activity is freely available.

Linux was made to keep on running:

As with UNIX, a Linux system expects to run without rebooting all the time. That is why a lot of

tasks are being executed at night or scheduled automatically for other calm moments, resulting in

higher availability during busier periods and a more balanced use of the hardware. This property

allows for Linux to be applicable also in environments where people don't have the time or the

possibility to control their systems night and day.

•

Linux is secure and versatile:

The security model used in Linux is based on the UNIX idea of security, which is known to be robust

and of proven quality. But Linux is not only fit for use as a fort against enemy attacks from the

Internet: it will adapt equally to other situations, utilizing the same high standards for security. Your

development machine or control station will be as secure as your firewall.

•

Linux is scalable:

From a Palmtop with 2 MB of memory to a petabyte storage cluster with hundreds of nodes: add or

remove the appropriate packages and Linux fits all. You don't need a supercomputer anymore,

because you can use Linux to do big things using the building blocks provided with the system. If you

want to do little things, such as making an operating system for an embedded processor or just

recycling your old 486, Linux will do that as well.

•

The Linux OS and most Linux applications have very short debug-times:

Because Linux has been developed and tested by thousands of people, both errors and people to fix

them are usually found rather quickly. It sometimes happens that there are only a couple of hours

between discovery and fixing of a bug.

•

1.4.2. Linux Cons

There are far too many different distributions:

"Quot capites, tot rationes", as the Romans already said: the more people, the more opinions. At first

glance, the amount of Linux distributions can be frightening, or ridiculous, depending on your point

of view. But it also means that everyone will find what he or she needs. You don't need to be an

expert to find a suitable release.

When asked, generally every Linux user will say that the best distribution is the specific version he is

using. So which one should you choose? Don't worry too much about that: all releases contain more

or less the same set of basic packages. On top of the basics, special third party software is added

making, for example, TurboLinux more suitable for the small and medium enterprise, RedHat for

servers and SuSE for workstations. However, the differences are likely to be very superficial. The best

strategy is to test a couple of distributions; unfortunately not everybody has the time for this. Luckily,

there is plenty of advice on the subject of choosing your Linux. A quick search on Google, using the

keywords "choosing your distribution" brings up tens of links to good advise. The Installation

HOWTO also discusses choosing your distribution.

•

Linux is not very user friendly and confusing for beginners:

It must be said that Linux, at least the core system, is less userfriendly to use than MS Windows and

certainly more difficult than MacOS, but... In light of its popularity, considerable effort has been

made to make Linux even easier to use, especially for new users. More information is being released

•

Introduction to Linux

Chapter 1. What is Linux? 13

http://www.google.com/linux
http://www.tldp.org/HOWTO/Installation-HOWTO/
http://www.tldp.org/HOWTO/Installation-HOWTO/

daily, such as this guide, to help fill the gap for documentation available to users at all levels.

Is an Open Source product trustworthy?

How can something that is free also be reliable? Linux users have the choice whether to use Linux or

not, which gives them an enormous advantage compared to users of proprietary software, who don't

have that kind of freedom. After long periods of testing, most Linux users come to the conclusion that

Linux is not only as good, but in many cases better and faster that the traditional solutions. If Linux

were not trustworthy, it would have been long gone, never knowing the popularity it has now, with

millions of users. Now users can influence their systems and share their remarks with the community,

so the system gets better and better every day. It is a project that is never finished, that is true, but in

an ever changing environment, Linux is also a project that continues to strive for perfection.

•

1.5. Linux Flavors

1.5.1. Linux and GNU

Although there are a large number of Linux implementations, you will find a lot of similarities in the different

distributions, if only because every Linux machine is a box with building blocks that you may put together

following your own needs and views. Installing the system is only the beginning of a longterm relationship.

Just when you think you have a nice running system, Linux will stimulate your imagination and creativeness,

and the more you realize what power the system can give you, the more you will try to redefine its limits.

Linux may appear different depending on the distribution, your hardware and personal taste, but the

fundamentals on which all graphical and other interfaces are built, remain the same. The Linux system is

based on GNU tools (Gnu's Not UNIX), which provide a set of standard ways to handle and use the system.

All GNU tools are open source, so they can be installed on any system. Most distributions offer pre-compiled

packages of most common tools, such as RPM packages on RedHat and Debian packages (also called deb or

dpkg) on Debian, so you needn't be a programmer to install a package on your system. However, if you are

and like doing things yourself, you will enjoy Linux all the better, since most distributions come with a

complete set of development tools, allowing installation of new software purely from source code. This setup

also allows you to install software even if it does not exist in a pre-packaged form suitable for your system.

A list of common GNU software:

Bash: The GNU shell•

GCC: The GNU C Compiler•

GDB: The GNU Debugger•

Coreutils: a set of basic UNIX-style utilities, such as ls, cat and chmod•

Findutils: to search and find files•

Fontutils: to convert fonts from one format to another or make new fonts•

The Gimp: GNU Image Manipulation Program•

Gnome: the GNU desktop environment•

Emacs: a very powerful editor•

Ghostscript and Ghostview: interpreter and graphical frontend for PostScript files.•

GNU Photo: software for interaction with digital cameras•

Octave: a programming language, primarily intended to perform numerical computations and image

processing.

•

GNU SQL: relational database system•

Radius: a remote authentication and accounting server•

...•

Introduction to Linux

Chapter 1. What is Linux? 14

Many commercial applications are available for Linux, and for more information about these packages we

refer to their specific documentation. Throughout this guide we will only discuss freely available software,

which comes (in most cases) with a GNU license.

To install missing or new packages, you will need some form of software management. The most common

implementations include RPM and dpkg. RPM is the RedHat Package Manager, which is used on a variety of

Linux systems, eventhough the name does not suggest this. Dpkg is the Debian package management system,

which uses an interface called apt-get, that can manage RPM packages as well. Novell Ximian Red Carpet is

a third party implementation of RPM with a graphical front-end. Other third party software vendors may have

their own installation procedures, sometimes resembling the InstallShield and such, as known on MS

Windows and other platforms. As you advance into Linux, you will likely get in touch with one or more of

these programs.

1.5.2. GNU/Linux

The Linux kernel (the bones of your system, see Section 3.2.3.1) is not part of the GNU project but uses the

same license as GNU software. A great majority of utilities and development tools (the meat of your system),

which are not Linux-specific, are taken from the GNU project. Because any usable system must contain both

the kernel and at least a minimal set of utilities, some people argue that such a system should be called a

GNU/Linux system.

In order to obtain the highest possible degree of independence between distributions, this is the sort of Linux

that we will discuss throughout this course. If we are not talking about a GNU/Linux system, the specific

distribution, version or program name will be mentioned.

1.5.3. Which distribution should I install?

Prior to installation, the most important factor is your hardware. Since every Linux distribution contains the

basic packages and can be built to meet almost any requirement (because they all use the Linux kernel), you

only need to consider if the distribution will run on your hardware. LinuxPPC for example has been made to

run on Apple and other PowerPCs and does not run on an ordinary x86 based PC. LinuxPPC does run on the

new Macs, but you can't use it for some of the older ones with ancient bus technology. Another tricky case is

Sun hardware, which could be an old SPARC CPU or a newer UltraSparc, both requiring different versions of

Linux.

Some Linux distributions are optimized for certain processors, such as Athlon CPUs, while they will at the

same time run decent enough on the standard 486, 586 and 686 Intel processors. Sometimes distributions for

special CPUs are not as reliable, since they are tested by fewer people.

Most Linux distributions offer a set of programs for generic PCs with special packages containing optimized

kernels for the x86 Intel based CPUs. These distributions are well-tested and maintained on a regular basis,

focusing on reliant server implementation and easy installation and update procedures. Examples are Debian,

Ubuntu, Fedora, SuSE and Mandriva, which are by far the most popular Linux systems and generally

considered easy to handle for the beginning user, while not blocking professionals from getting the most out

of their Linux machines. Linux also runs decently on laptops and middle-range servers. Drivers for new

hardware are included only after extensive testing, which adds to the stability of a system.

While the standard desktop might be Gnome on one system, another might offer KDE by default. Generally,

both Gnome and KDE are available for all major Linux distributions. Other window and desktop managers

are available for more advanced users.

Introduction to Linux

Chapter 1. What is Linux? 15

The standard installation process allows users to choose between different basic setups, such as a workstation,

where all packages needed for everyday use and development are installed, or a server installation, where

different network services can be selected. Expert users can install every combination of packages they want

during the initial installation process.

The goal of this guide is to apply to all Linux distributions. For your own convenience, however, it is strongly

advised that beginners stick to a mainstream distribution, supporting all common hardware and applications

by default. The following are very good choices for novices:

Fedora Core•

Debian•

SuSE Linux•

Mandriva (former MandrakeSoft)•

Knoppix: an operating system that runs from your CD-ROM, you don't need to install anything.•

Downloadable ISO-images can be obtained from LinuxISO.org. The main distributions can be purchased in

any decent computer shop.

1.6. Summary

In this chapter, we learned that:

Linux is an implementation of UNIX.•

The Linux operating system is written in the C programming language.•

"De gustibus et coloribus non disputandum est": there's a Linux for everyone.•

Linux uses GNU tools, a set of freely available standard tools for handling the operating system.•

1.7. Exercises

A practical exercise for starters: install Linux on your PC. Read the installation manual for your distribution

and/or the Installation HOWTO and do it.

Read the docs!

Most errors stem from not reading the information provided during the install. Reading the

installation messages carefully is the first step on the road to success.

Things you must know BEFORE starting a Linux installation:

Will this distribution run on my hardware?

Check with http://www.tldp.org/HOWTO/Hardware-HOWTO/index.html when in doubt about

compatibility of your hardware.

•

What kind of keyboard do I have (number of keys, layout)? What kind of mouse (serial/parallel,

number of buttons)? How many MB of RAM?

•

Will I install a basic workstation or a server, or will I need to select specific packages myself?•

Will I install from my hard disk, from a CD-ROM, or using the network? Should I adapt the BIOS for

any of this? Does the installation method require a boot disk?

•

Will Linux be the only system on this computer, or will it be a dual boot installation? Should I make a

large partition in order to install virtual systems later on, or is this a virtual installation itself?

•

Introduction to Linux

Chapter 1. What is Linux? 16

http://fedora.redhat.com
http://www.debian.org
http://www.suse.de
http://www.mandrake.com
http://www.knoppix.com
http://www.linuxiso.org
http://www.tldp.org/HOWTO/Hardware-HOWTO/index.html

Is this computer in a network? What is its hostname, IP address? Are there any gateway servers or

other important networked machines my box should communicate with?

Linux expects to be networked

Not using the network or configuring it incorrectly may result in slow startup.

•

Is this computer a gateway/router/firewall? (If you have to think about this question, it probably isn't.)•

Partitioning: let the installation program do it for you this time, we will discuss partitions in detail in

Chapter 3. There is system-specific documentation available if you want to know everything about it.

If your Linux distribution does not offer default partitioning, that probably means it is not suited for

beginners.

•

Will this machine start up in text mode or in graphical mode?•

Think of a good password for the administrator of this machine (root). Create a non-root user account

(non-privileged access to the system).

•

Do I need a rescue disk? (recommended)•

Which languages do I want?•

The full checklist can be found at http://www.tldp.org/HOWTO/Installation-HOWTO/index.html.

In the following chapters we will find out if the installation has been successful.

Introduction to Linux

Chapter 1. What is Linux? 17

http://www.tldp.org/HOWTO/Installation-HOWTO/index.html

Chapter 2. Quickstart

In order to get the most out of this guide, we will immediately start with a practical chapter on

connecting to the Linux system and doing some basic things.

We will discuss:

Connecting to the system♦

Disconnecting from the system♦

Text and graphic mode♦

Changing your password♦

Navigating through the file system♦

Determining file type♦

Looking at text files♦

Finding help♦

2.1. Logging in, activating the user interface and logging
out

2.1.1. Introduction

In order to work on a Linux system directly, you will need to provide a user name and password. You always

need to authenticate to the system. As we already mentioned in the exercise from Chapter 1, most PC-based

Linux systems have two basic modes for a system to run in: either quick and sober in text console mode,

which looks like DOS with mouse, multitasking and multi-user features, or in graphical mode, which looks

better but eats more system resources.

2.1.2. Graphical mode

This is the default nowadays on most desktop computers. You know you will connect to the system using

graphical mode when you are first asked for your user name, and then, in a new window, to type your

password.

To log in, make sure the mouse pointer is in the login window, provide your user name and password to the

system and click OK or press Enter.

Careful with that root account!

It is generally considered a bad idea to connect (graphically) using the root user name, the system

adminstrator's account, since the use of graphics includes running a lot of extra programs, in root's case

with a lot of extra permissions. To keep all risks as low as possible, use a normal user account to connect

graphically. But there are enough risks to keep this in mind as a general advice, for all use of the root

account: only log in as root when extra privileges are required.

After entering your user name/password combination, it can take a little while before the graphical

environment is started, depending on the CPU speed of your computer, on the software you use and on your

personal settings.

Chapter 2. Quickstart 18

To continue, you will need to open a terminal window or xterm for short (X being the name for the underlying

software supporting the graphical environment). This program can be found in the Applications->Utilities,

System Tools or Internet menu, depending on what window manager you are using. There might be icons that

you can use as a shortcut to get an xterm window as well, and clicking the right mouse button on the desktop

background will usually present you with a menu containing a terminal window application.

While browsing the menus, you will notice that a lot of things can be done without entering commands via the

keyboard. For most users, the good old point-'n'-click method of dealing with the computer will do. But this

guide is for future network and system administrators, who will need to meddle with the heart of the system.

They need a stronger tool than a mouse to handle all the tasks they will face. This tool is the shell, and when

in graphical mode, we activate our shell by opening a terminal window.

The terminal window is your control panel for the system. Almost everything that follows is done using this

simple but powerful text tool. A terminal window should always show a command prompt when you open

one. This terminal shows a standard prompt, which displays the user's login name, and the current working

directory, represented by the twiddle (~):

Figure 2-1. Terminal window

Another common form for a prompt is this one:

[user@host dir]

In the above example, user will be your login name, hosts the name of the machine you are working on, and

dir an indication of your current location in the file system.

Later we will discuss prompts and their behavior in detail. For now, it suffices to know that prompts can

display all kinds of information, but that they are not part of the commands you are giving to your system.

To disconnect from the system in graphical mode, you need to close all terminal windows and other

applications. After that, hit the logout icon or find Log Out in the menu. Closing everything is not really

necessary, and the system can do this for you, but session management might put all currently open

applications back on your screen when you connect again, which takes longer and is not always the desired

effect. However, this behavior is configurable.

When you see the login screen again, asking to enter user name and password, logout was successful.

Gnome or KDE?

Introduction to Linux

Chapter 2. Quickstart 19

We mentioned both the Gnome and KDE desktops already a couple of times. These are the two most

popular ways of managing your desktop, although there are many, many others. Whatever desktop you

chose to work with is fine - as long as you know how to open a terminal window. However, we will

continue to refer to both Gnome and KDE for the most popular ways of achieving certain tasks.

2.1.3. Text mode

You know you're in text mode when the whole screen is black, showing (in most cases white) characters. A

text mode login screen typically shows some information about the machine you are working on, the name of

the machine and a prompt waiting for you to log in:

RedHat Linux Release 8.0 (Psyche)

blast login: _

The login is different from a graphical login, in that you have to hit the Enter key after providing your user

name, because there are no buttons on the screen that you can click with the mouse. Then you should type

your password, followed by another Enter. You won't see any indication that you are entering something, not

even an asterisk, and you won't see the cursor move. But this is normal on Linux and is done for security

reasons.

When the system has accepted you as a valid user, you may get some more information, called the message of

the day, which can be anything. Additionally, it is popular on UNIX systems to display a fortune cookie,

which contains some general wise or unwise (this is up to you) thoughts. After that, you will be given a shell,

indicated with the same prompt that you would get in graphical mode.

Don't log in as root

Also in text mode: log in as root only to do setup and configuration that absolutely requires administrator

privileges, such as adding users, installing software packages, and performing network and other system

configuration. Once you are finished, immediately leave the special account and resume your work as a

non-privileged user. Alternatively, some systems, like Ubuntu, force you to use sudo, so that you do not

need direct access to the administrative account.

Logging out is done by entering the logout command, followed by Enter. You are successfully disconnected

from the system when you see the login screen again.

The power button

While Linux was not meant to be shut off without application of the proper procedures for halting

the system, hitting the power button is equivalent to starting those procedures on newer systems.

However, powering off an old system without going through the halting process might cause

severe damage! If you want to be sure, always use the Shut down option when you log out from

the graphical interface, or, when on the login screen (where you have to give your user name and

password) look around for a shutdown button.

Now that we know how to connect to and disconnect from the system, we're ready for our first commands.

Introduction to Linux

Chapter 2. Quickstart 20

2.2. Absolute basics

2.2.1. The commands

These are the quickies, which we need to get started; we will discuss them later in more detail.

Table 2-1. Quickstart commands

Command Meaning

ls
Displays a list of files in the current working directory, like the dir command in

DOS

cd directory change directories

passwd change the password for the current user

file filename display file type of file with name filename

cat textfile throws content of textfile on the screen

pwd display present working directory

exit or logout leave this session

man command read man pages on command

info command read Info pages on command

apropos string search the whatis database for strings

2.2.2. General remarks

You type these commands after the prompt, in a terminal window in graphical mode or in text mode, followed

by Enter.

Commands can be issued by themselves, such as ls. A command behaves different when you specify an

option, usually preceded with a dash (-), as in ls -a. The same option character may have a different meaning

for another command. GNU programs take long options, preceded by two dashes (--), like ls --all. Some

commands have no options.

The argument(s) to a command are specifications for the object(s) on which you want the command to take

effect. An example is ls /etc, where the directory /etc is the argument to the ls command. This indicates

that you want to see the content of that directory, instead of the default, which would be the content of the

current directory, obtained by just typing ls followed by Enter. Some commands require arguments,

sometimes arguments are optional.

You can find out whether a command takes options and arguments, and which ones are valid, by checking the

online help for that command, see Section 2.3.

In Linux, like in UNIX, directories are separated using forward slashes, like the ones used in web addresses

(URLs). We will discuss directory structure in-depth later.

The symbols . and .. have special meaning when directories are concerned. We will try to find out about those

during the exercises, and more in the next chapter.

Introduction to Linux

Chapter 2. Quickstart 21

Try to avoid logging in with or using the system administrator's account, root. Besides doing your normal

work, most tasks, including checking the system, collecting information etc., can be executed using a normal

user account with no special permissions at all. If needed, for instance when creating a new user or installing

new software, the preferred way of obtaining root access is by switching user IDs, see Section 3.2.1 for an

example.

Almost all commands in this book can be executed without system administrator privileges. In most cases,

when issuing a command or starting a program as a non-privileged user, the system will warn you or prompt

you for the root password when root access is required. Once you're done, leave the application or session that

gives you root privileges immediately.

Reading documentation should become your second nature. Especially in the beginning, it is important to read

system documentation, manuals for basic commands, HOWTOs and so on. Since the amount of

documentation is so enormous, it is impossible to include all related documentation. This book will try to

guide you to the most appropriate documentation on every subject discussed, in order to stimulate the habit of

reading the man pages.

2.2.3. Using Bash features

Several special key combinations allow you to do things easier and faster with the GNU shell, Bash, which is

the default on almost any Linux system, see Section 3.2.3.2. Below is a list of the most commonly used

features; you are strongly suggested to make a habit out of using them, so as to get the most out of your Linux

experience from the very beginning.

Table 2-2. Key combinations in Bash

Key or key combination Function

Ctrl+A Move cursor to the beginning of the command line.

Ctrl+C End a running program and return the prompt, see Chapter 4.

Ctrl+D Log out of the current shell session, equal to typing exit or logout.

Ctrl+E Move cursor to the end of the command line.

Ctrl+H Generate backspace character.

Ctrl+L Clear this terminal.

Ctrl+R Search command history, see Section 3.3.3.4.

Ctrl+Z Suspend a program, see Chapter 4.

ArrowLeft and

ArrowRight

Move the cursor one place to the left or right on the command line, so that you can

insert characters at other places than just at the beginning and the end.

ArrowUp and

ArrowDown

Browse history. Go to the line that you want to repeat, edit details if necessary,

and press Enter to save time.

Shift+PageUp and

Shift+PageDown
Browse terminal buffer (to see text that has "scrolled off" the screen).

Tab

Command or filename completion; when multiple choices are possible, the system

will either signal with an audio or visual bell, or, if too many choices are possible,

ask you if you want to see them all.

Tab Tab Shows file or command completion possibilities.

Introduction to Linux

Chapter 2. Quickstart 22

The last two items in the above table may need some extra explanations. For instance, if you want to change

into the directory directory_with_a_very_long_name, you are not going to type that very long

name, no. You just type on the command line cd dir, then you press Tab and the shell completes the name for

you, if no other files are starting with the same three characters. Of course, if there are no other items starting

with "d", then you might just as wel type cd d and then Tab. If more than one file starts with the same

characters, the shell will signal this to you, upon which you can hit Tab twice with short interval, and the shell

presents the choices you have:

your_prompt> cd st

starthere stuff stuffit

In the above example, if you type "a" after the first two characters and hit Tab again, no other possibilities are

left, and the shell completes the directory name, without you having to type the string "rthere":

your_prompt> cd starthere

Of course, you'll still have to hit Enter to accept this choice.

In the same example, if you type "u", and then hit Tab, the shell will add the "ff" for you, but then it protests

again, because multiple choices are possible. If you type Tab Tab again, you'll see the choices; if you type

one or more characters that make the choice unambiguous to the system, and Tab again, or Enter when

you've reach the end of the file name that you want to choose, the shell completes the file name and changes

you into that directory - if indeed it is a directory name.

This works for all file names that are arguments to commands.

The same goes for command name completion. Typing ls and then hitting the Tab key twice, lists all the

commands in your PATH (see Section 3.2.1) that start with these two characters:

your_prompt> ls

ls lsdev lspci lsraid lsw

lsattr lsmod lspgpot lss16toppm

lsb_release lsof lspnp lsusb

2.3. Getting help

2.3.1. Be warned

GNU/Linux is all about becoming more self-reliant. And as usual with this system, there are several ways to

achieve the goal. A common way of getting help is finding someone who knows, and however patient and

peace-loving the Linux-using community will be, almost everybody will expect you to have tried one or more

of the methods in this section before asking them, and the ways in which this viewpoint is expressed may be

rather harsh if you prove not to have followed this basic rule.

2.3.2. The man pages

A lot of beginning users fear the man (manual) pages, because they are an overwhelming source of

documentation. They are, however, very structured, as you will see from the example below on: man man.

Reading man pages is usually done in a terminal window when in graphical mode, or just in text mode if you

prefer it. Type the command like this at the prompt, followed by Enter:

Introduction to Linux

Chapter 2. Quickstart 23

yourname@yourcomp ~> man man

The documentation for man will be displayed on your screen after you press Enter:

man(1) man(1)

NAME

 man - format and display the on-line manual pages

 manpath - determine user's search path for man pages

SYNOPSIS

 man [-acdfFhkKtwW] [--path] [-m system] [-p string] [-C config_file]

 [-M pathlist] [-P pager] [-S section_list] [section] name ...

DESCRIPTION

 man formats and displays the on-line manual pages. If you specify

 section, man only looks in that section of the manual.

 name is normally the name of the manual page, which is typically the

 name of a command, function, or file. However, if name contains a

 slash (/) then man interprets it as a file specification, so that you

 can do man ./foo.5 or even man /cd/foo/bar.1.gz.

 See below for a description of where man looks for the manual

 page files.

OPTIONS

 -C config_file

lines 1-27

Browse to the next page using the space bar. You can go back to the previous page using the b-key. When you

reach the end, man will usually quit and you get the prompt back. Type q if you want to leave the man page

before reaching the end, or if the viewer does not quit automatically at the end of the page.

Pagers

The available key combinations for manipulating the man pages depend on the pager used in your

distribution. Most distributions use less to view the man pages and to scroll around. See Section 3.3.4.2

for more info on pagers.

Each man page usually contains a couple of standard sections, as we can see from the man man example:

The first line contains the name of the command you are reading about, and the id of the section in

which this man page is located. The man pages are ordered in chapters. Commands are likely to have

multiple man pages, for example the man page from the user section, the man page from the system

admin section, and the man page from the programmer section.

•

The name of the command and a short description are given, which is used for building an index of

the man pages. You can look for any given search string in this index using the apropos command.

•

The synopsis of the command provides a technical notation of all the options and/or arguments this

command can take. You can think of an option as a way of executing the command. The argument is

what you execute it on. Some commands have no options or no arguments. Optional options and

arguments are put in between "[" and "]" to indicate that they can be left out.

•

A longer description of the command is given.•

Options with their descriptions are listed. Options can usually be combined. If not so, this section will

tell you about it.

•

Environment describes the shell variables that influence the behavior of this command (not all

commands have this).

•

Introduction to Linux

Chapter 2. Quickstart 24

Sometimes sections specific to this command are provided.•

A reference to other man pages is given in the "SEE ALSO" section. In between parentheses is the

number of the man page section in which to find this command. Experienced users often switch to the

"SEE ALSO" part using the / command followed by the search string SEE and press Enter.

•

Usually there is also information about known bugs (anomalies) and where to report new bugs you

may find.

•

There might also be author and copyright information.•

Some commands have multiple man pages. For instance, the passwd command has a man page in section 1

and another in section 5. By default, the man page with the lowest number is shown. If you want to see

another section than the default, specify it after the man command:

man 5 passwd

If you want to see all man pages about a command, one after the other, use the -a to man:

man -a passwd

This way, when you reach the end of the first man page and press SPACE again, the man page from the next

section will be displayed.

2.3.3. More info

2.3.3.1. The Info pages

In addition to the man pages, you can read the Info pages about a command, using the info command. These

usually contain more recent information and are somewhat easier to use. The man pages for some commands

refer to the Info pages.

Get started by typing info info in a terminal window:

File: info.info, Node: Top, Next: Getting Started, Up: (dir)

Info: An Introduction

 Info is a program, which you are using now, for reading

documentation of computer programs. The GNU Project distributes most

of its on-line manuals in the Info format, so you need a program called

"Info reader" to read the manuals. One of such programs you are using

now.

 If you are new to Info and want to learn how to use it, type the

command `h' now. It brings you to a programmed instruction sequence.

 To learn advanced Info commands, type `n' twice. This brings you to

`Info for Experts', skipping over the `Getting Started' chapter.

* Menu:

* Getting Started:: Getting started using an Info reader.

* Advanced Info:: Advanced commands within Info.

* Creating an Info File:: How to make your own Info file.

--zz-Info: (info.info.gz)Top, 24 lines --Top-------------------------------

Welcome to Info version 4.2. Type C-h for help, m for menu item.

Introduction to Linux

Chapter 2. Quickstart 25

Use the arrow keys to browse through the text and move the cursor on a line starting with an asterisk,

containing the keyword about which you want info, then hit Enter. Use the P and N keys to go to the previous

or next subject. The space bar will move you one page further, no matter whether this starts a new subject or

an Info page for another command. Use Q to quit. The info program has more information.

2.3.3.2. The whatis and apropos commands

A short index of explanations for commands is available using the whatis command, like in the examples

below:

[your_prompt] whatis ls

ls (1) - list directory contents

This displays short information about a command, and the first section in the collection of man pages that

contains an appropriate page.

If you don't know where to get started and which man page to read, apropos gives more information. Say that

you don't know how to start a browser, then you could enter the following command:

another prompt> apropos browser

Galeon [galeon](1) - gecko-based GNOME web browser

lynx (1) - a general purpose distributed information browser

 for the World Wide Web

ncftp (1) - Browser program for the File Transfer Protocol

opera (1) - a graphical web browser

pilot (1) - simple file system browser in the style of the

 Pine Composer

pinfo (1) - curses based lynx-style info browser

pinfo [pman] (1) - curses based lynx-style info browser

viewres (1x) - graphical class browser for Xt

After pressing Enter you will see that a lot of browser related stuff is on your machine: not only web

browsers, but also file and FTP browsers, and browsers for documentation. If you have development packages

installed, you may also have the accompanying man pages dealing with writing programs having to do with

browsers. Generally, a command with a man page in section one, so one marked with "(1)", is suitable for

trying out as a user. The user who issued the above apropos might consequently try to start the commands

galeon, lynx or opera, since these clearly have to do with browsing the world wide web.

2.3.3.3. The --help option

Most GNU commands support the --help, which gives a short explanation about how to use the command

and a list of available options. Below is the output of this option with the cat command:

userprompt@host: cat --help

Usage: cat [OPTION] [FILE]...

Concatenate FILE(s), or standard input, to standard output.

 -A, --show-all equivalent to -vET

 -b, --number-nonblank number nonblank output lines

 -e equivalent to -vE

 -E, --show-ends display $ at end of each line

 -n, --number number all output lines

 -s, --squeeze-blank never more than one single blank line

 -t equivalent to -vT

 -T, --show-tabs display TAB characters as ^I

 -u (ignored)

 -v, --show-nonprinting use ^ and M- notation,

Introduction to Linux

Chapter 2. Quickstart 26

 except for LFD and TAB

 --help display this help and exit

 --version output version information and exit

With no FILE, or when FILE is -, read standard input.

Report bugs to <bug-textutils@gnu.org>.

2.3.3.4. Graphical help

Don't despair if you prefer a graphical user interface. Konqueror, the default KDE file manager, provides

painless and colourful access to the man and Info pages. You may want to try "info:info" in the Location

address bar, and you will get a browsable Info page about the info command. Similarly, "man:ls" will present

you with the man page for the ls command. You even get command name completion: you will see the man

pages for all the commands starting with "ls" in a scroll-down menu. Entering "info:/dir" in the address

location toolbar displays all the Info pages, arranged in utility categories. Excellent Help content, including

the Konqueror Handbook. Start up from the menu or by typing the command konqueror in a terminal

window, followed by Enter; see the screenshot below.

Figure 2-2. Konqueror as help browser

Introduction to Linux

Chapter 2. Quickstart 27

The Gnome Help Browser is very user friendly as well. You can start it selecting Applications->Help from the

Gnome menu, by clicking the lifeguard icon on your desktop or by entering the command gnome-help in a

terminal window. The system documentation and man pages are easily browsable with a plain interface.

The nautilus file manager provides a searchable index of the man and Info pages, they are easily browsable

and interlinked. Nautilus is started from the command line, or clicking your home directory icon, or from the

Gnome menu.

The big advantage of GUIs for system documentation is that all information is completely interlinked, so you

can click through in the "SEE ALSO" sections and wherever links to other man pages appear, and thus browse

and acquire knowledge without interruption for hours at the time.

2.3.3.5. Exceptions

Some commands don't have separate documentation, because they are part of another command. cd, exit,

logout and pwd are such exceptions. They are part of your shell program and are called shell built-in

commands. For information about these, refer to the man or info page of your shell. Most beginning Linux

users have a Bash shell. See Section 3.2.3.2 for more about shells.

If you have been changing your original system configuration, it might also be possible that man pages are

still there, but not visible because your shell environment has changed. In that case, you will need to check the

MANPATH variable. How to do this is explained in Section 7.2.1.2.

Some programs or packages only have a set of instructions or references in the directory /usr/share/doc.

See Section 3.3.4 to display.

In the worst case, you may have removed the documentation from your system by accident (hopefully by

accident, because it is a very bad idea to do this on purpose). In that case, first try to make sure that there is

really nothing appropriate left using a search tool, read on in Section 3.3.3. If so, you may have to re-install

the package that contains the command to which the documentation applied, see Section 7.5.

2.4. Summary

Linux traditionally operates in text mode or in graphical mode. Since CPU power and RAM are not the cost

anymore these days, every Linux user can afford to work in graphical mode and will usually do so. This does

not mean that you don't have to know about text mode: we will work in the text environment throughout this

course, using a terminal window.

Linux encourages its users to acquire knowledge and to become independent. Inevitably, you will have to read

a lot of documentation to achieve that goal; that is why, as you will notice, we refer to extra documentation for

almost every command, tool and problem listed in this book. The more docs you read, the easier it will

become and the faster you will leaf through manuals. Make reading documentation a habit as soon as possible.

When you don't know the answer to a problem, refering to the documentation should become a second nature.

We already learned some commands:

Table 2-3. New commands in chapter 2: Basics

Command Meaning

Introduction to Linux

Chapter 2. Quickstart 28

apropos Search information about a command or subject.

cat Show content of one or more files.

cd Change into another directory.

exit Leave a shell session.

file Get information about the content of a file.

info Read Info pages about a command.

logout Leave a shell session.

ls List directory content.

man Read manual pages of a command.

passwd Change your password.

pwd Display the current working directory.

2.5. Exercises

Most of what we learn is by making mistakes and by seeing how things can go wrong. These exercises are

made to get you to read some error messages. The order in which you do these exercises is important.

Don't forget to use the Bash features on the command line: try to do the exercises typing as few characters as

possible!

2.5.1. Connecting and disconnecting

Determine whether you are working in text or in graphical mode.

I am working in text/graphical mode. (cross out what's not applicable)

•

Log in with the user name and password you made for yourself during the installation.•

Log out.•

Log in again, using a non-existent user name

-> What happens?

•

2.5.2. Passwords

Log in again with your user name and password.

Change your password into P6p3.aa! and hit the Enter key.

-> What happens?

•

Try again, this time enter a password that is ridiculously easy, like 123 or aaa.

-> What happens?

•

Try again, this time don't enter a password but just hit the Enter key.

-> What happens?

•

Try the command psswd instead of passwd

-> What happens?

•

Introduction to Linux

Chapter 2. Quickstart 29

New password

Unless you change your password back again to what it was before this exercise, it will be "P6p3.aa!".

Change your password after this exercise!

Note that some systems might not allow to recycle passwords, i.e. restore the original one within a

certain amount of time or a certain amount of password changes, or both.

2.5.3. Directories

These are some exercises to help you get the feel.

Enter the command cd blah

-> What happens?

•

Enter the command cd ..

Mind the space between "cd" and ".."! Use the pwd command.

-> What happens?

•

List the directory contents with the ls command.

-> What do you see?

-> What do you think these are?

-> Check using the pwd command.

•

Enter the cd command.

-> What happens?

•

Repeat step 2 two times.

-> What happens?

•

Display the content of this directory.•

Try the command cd root

-> What happens?

-> To which directories do you have access?

•

Repeat step 4.

Do you know another possibility to get where you are now?

•

2.5.4. Files

Change directory to / and then to etc. Type ls; if the output is longer than your screen, make the

window longer, or try Shift+PageUp and Shift+PageDown.

The file inittab contains the answer to the first question in this list. Try the file command on it.

•

Introduction to Linux

Chapter 2. Quickstart 30

-> The file type of my inittab is

Use the command cat inittab and read the file.

-> What is the default mode of your computer?

•

Return to your home directory using the cd command.•

Enter the command file .

-> Does this help to find the meaning of "."?

•

Can you look at "." using the cat command?•

Display help for the cat program, using the --help option. Use the option for numbering of output

lines to count how many users are listed in the file /etc/passwd.

•

2.5.5. Getting help

Read man intro•

Read man ls•

Read info passwd•

Enter the apropos pwd command.•

Try man or info on cd.

-> How would you find out more about cd?

•

Read ls --help and try it out.•

Introduction to Linux

Chapter 2. Quickstart 31

Chapter 3. About files and the file system

After the initial exploration in Chapter 2, we are ready to discuss the files and directories on a

Linux system in more detail. Many users have difficulties with Linux because they lack an

overview of what kind of data is kept in which locations. We will try to shine some light on

the organization of files in the file system.

We will also list the most important files and directories and use different methods of viewing

the content of those files, and learn how files and directories can be created, moved and

deleted.

After completion of the exercises in this chapter, you will be able to:

Describe the layout of a Linux file system♦

Display and set paths♦

Describe the most important files, including kernel and shell♦

Find lost and hidden files♦

Create, move and delete files and directories♦

Display contents of files♦

Understand and use different link types♦

Find out about file properties and change file permissions♦

3.1. General overview of the Linux file system

3.1.1. Files

3.1.1.1. General

A simple description of the UNIX system, also applicable to Linux, is this:

"On a UNIX system, everything is a file; if something is not a file, it is a process."

This statement is true because there are special files that are more than just files (named pipes and sockets, for

instance), but to keep things simple, saying that everything is a file is an acceptable generalization. A Linux

system, just like UNIX, makes no difference between a file and a directory, since a directory is just a file

containing names of other files. Programs, services, texts, images, and so forth, are all files. Input and output

devices, and generally all devices, are considered to be files, according to the system.

In order to manage all those files in an orderly fashion, man likes to think of them in an ordered tree-like

structure on the hard disk, as we know from MS-DOS (Disk Operating System) for instance. The large

branches contain more branches, and the branches at the end contain the tree's leaves or normal files. For now

we will use this image of the tree, but we will find out later why this is not a fully accurate image.

3.1.1.2. Sorts of files

Most files are just files, called regular files; they contain normal data, for example text files, executable files

or programs, input for or output from a program and so on.

Chapter 3. About files and the file system 32

While it is reasonably safe to suppose that everything you encounter on a Linux system is a file, there are

some exceptions.

Directories: files that are lists of other files.•

Special files: the mechanism used for input and output. Most special files are in /dev, we will

discuss them later.

•

Links: a system to make a file or directory visible in multiple parts of the system's file tree. We will

talk about links in detail.

•

(Domain) sockets: a special file type, similar to TCP/IP sockets, providing inter-process networking

protected by the file system's access control.

•

Named pipes: act more or less like sockets and form a way for processes to communicate with each

other, without using network socket semantics.

•

The -l option to ls displays the file type, using the first character of each input line:

jaime:~/Documents> ls -l

total 80

-rw-rw-r-- 1 jaime jaime 31744 Feb 21 17:56 intro Linux.doc

-rw-rw-r-- 1 jaime jaime 41472 Feb 21 17:56 Linux.doc

drwxrwxr-x 2 jaime jaime 4096 Feb 25 11:50 course

This table gives an overview of the characters determining the file type:

Table 3-1. File types in a long list

Symbol Meaning

- Regular file

d Directory

l Link

c Special file

s Socket

p Named pipe

b Block device

In order not to always have to perform a long listing for seeing the file type, a lot of systems by default don't

issue just ls, but ls -F, which suffixes file names with one of the characters "/=*|@" to indicate the file type.

To make it extra easy on the beginning user, both the -F and --color options are usually combined, see

Section 3.3.1.1. We will use ls -F throughout this document for better readability.

As a user, you only need to deal directly with plain files, executable files, directories and links. The special

file types are there for making your system do what you demand from it and are dealt with by system

administrators and programmers.

Now, before we look at the important files and directories, we need to know more about partitions.

3.1.2. About partitioning

Introduction to Linux

Chapter 3. About files and the file system 33

3.1.2.1. Why partition?

Most people have a vague knowledge of what partitions are, since every operating system has the ability to

create or remove them. It may seem strange that Linux uses more than one partition on the same disk, even

when using the standard installation procedure, so some explanation is called for.

One of the goals of having different partitions is to achieve higher data security in case of disaster. By

dividing the hard disk in partitions, data can be grouped and separated. When an accident occurs, only the data

in the partition that got the hit will be damaged, while the data on the other partitions will most likely survive.

This principle dates from the days when Linux didn't have journaled file systems and power failures might

have lead to disaster. The use of partitions remains for security and robustness reasons, so a breach on one

part of the system doesn't automatically mean that the whole computer is in danger. This is currently the most

important reason for partitioning. A simple example: a user creates a script, a program or a web application

that starts filling up the disk. If the disk contains only one big partition, the entire system will stop functioning

if the disk is full. If the user stores the data on a separate partition, then only that (data) partition will be

affected, while the system partitions and possible other data partitions keep functioning.

Mind that having a journaled file system only provides data security in case of power failure and sudden

disconnection of storage devices. This does not protect your data against bad blocks and logical errors in the

file system. In those cases, you should use a RAID (Redundant Array of Inexpensive Disks) solution.

3.1.2.2. Partition layout and types

There are two kinds of major partitions on a Linux system:

data partition: normal Linux system data, including the root partition containing all the data to start

up and run the system; and

•

swap partition: expansion of the computer's physical memory, extra memory on hard disk.•

Most systems contain a root partition, one or more data partitions and one or more swap partitions. Systems in

mixed environments may contain partitions for other system data, such as a partition with a FAT or VFAT file

system for MS Windows data.

Most Linux systems use fdisk at installation time to set the partition type. As you may have noticed during the

exercise from Chapter 1, this usually happens automatically. On some occasions, however, you may not be so

lucky. In such cases, you will need to select the partition type manually and even manually do the actual

partitioning. The standard Linux partitions have number 82 for swap and 83 for data, which can be journaled

(ext3) or normal (ext2, on older systems). The fdisk utility has built-in help, should you forget these values.

Apart from these two, Linux supports a variety of other file system types, such as the relatively new Reiser

file system, JFS, NFS, FATxx and many other file systems natively available on other (proprietary) operating

systems.

The standard root partition (indicated with a single forward slash, /) is about 100-500 MB, and contains the

system configuration files, most basic commands and server programs, system libraries, some temporary

space and the home directory of the administrative user. A standard installation requires about 250 MB for the

root partition.

Swap space (indicated with swap) is only accessible for the system itself, and is hidden from view during

normal operation. Swap is the system that ensures, like on normal UNIX systems, that you can keep on

Introduction to Linux

Chapter 3. About files and the file system 34

working, whatever happens. On Linux, you will virtually never see irritating messages like Out of memory,

please close some applications first and try again, because of this extra memory. The swap or virtual memory

procedure has long been adopted by operating systems outside the UNIX world by now.

Using memory on a hard disk is naturally slower than using the real memory chips of a computer, but having

this little extra is a great comfort. We will learn more about swap when we discuss processes in Chapter 4.

Linux generally counts on having twice the amount of physical memory in the form of swap space on the hard

disk. When installing a system, you have to know how you are going to do this. An example on a system with

512 MB of RAM:

1st possibility: one swap partition of 1 GB•

2nd possibility: two swap partitions of 512 MB•

3rd possibility: with two hard disks: 1 partition of 512 MB on each disk.•

The last option will give the best results when a lot of I/O is to be expected.

Read the software documentation for specific guidelines. Some applications, such as databases, might require

more swap space. Others, such as some handheld systems, might not have any swap at all by lack of a hard

disk. Swap space may also depend on your kernel version.

The kernel is on a separate partition as well in many distributions, because it is the most important file of your

system. If this is the case, you will find that you also have a /boot partition, holding your kernel(s) and

accompanying data files.

The rest of the hard disk(s) is generally divided in data partitions, although it may be that all of the

non-system critical data resides on one partition, for example when you perform a standard workstation

installation. When non-critical data is separated on different partitions, it usually happens following a set

pattern:

a partition for user programs (/usr)•

a partition containing the users' personal data (/home)•

a partition to store temporary data like print- and mail-queues (/var)•

a partition for third party and extra software (/opt)•

Once the partitions are made, you can only add more. Changing sizes or properties of existing partitions is

possible but not advisable.

The division of hard disks into partitions is determined by the system administrator. On larger systems, he or

she may even spread one partition over several hard disks, using the appropriate software. Most distributions

allow for standard setups optimized for workstations (average users) and for general server purposes, but also

accept customized partitions. During the installation process you can define your own partition layout using

either your distribution specific tool, which is usually a straight forward graphical interface, or fdisk, a

text-based tool for creating partitions and setting their properties.

A workstation or client installation is for use by mainly one and the same person. The selected software for

installation reflects this and the stress is on common user packages, such as nice desktop themes, development

tools, client programs for E-mail, multimedia software, web and other services. Everything is put together on

one large partition, swap space twice the amount of RAM is added and your generic workstation is complete,

providing the largest amount of disk space possible for personal use, but with the disadvantage of possible

data integrity loss during problem situations.

Introduction to Linux

Chapter 3. About files and the file system 35

On a server, system data tends to be separate from user data. Programs that offer services are kept in a

different place than the data handled by this service. Different partitions will be created on such systems:

a partition with all data necessary to boot the machine•

a partition with configuration data and server programs•

one or more partitions containing the server data such as database tables, user mails, an ftp archive

etc.

•

a partition with user programs and applications•

one or more partitions for the user specific files (home directories)•

one or more swap partitions (virtual memory)•

Servers usually have more memory and thus more swap space. Certain server processes, such as databases,

may require more swap space than usual; see the specific documentation for detailed information. For better

performance, swap is often divided into different swap partitions.

3.1.2.3. Mount points

All partitions are attached to the system via a mount point. The mount point defines the place of a particular

data set in the file system. Usually, all partitions are connected through the root partition. On this partition,

which is indicated with the slash (/), directories are created. These empty directories will be the starting point

of the partitions that are attached to them. An example: given a partition that holds the following directories:

videos/ cd-images/ pictures/

We want to attach this partition in the filesystem in a directory called /opt/media. In order to do this, the

system administrator has to make sure that the directory /opt/media exists on the system. Preferably, it

should be an empty directory. How this is done is explained later in this chapter. Then, using the mount

command, the administrator can attach the partition to the system. When you look at the content of the

formerly empty directory /opt/media, it will contain the files and directories that are on the mounted

medium (hard disk or partition of a hard disk, CD, DVD, flash card, USB or other storage device).

During system startup, all the partitions are thus mounted, as described in the file /etc/fstab. Some

partitions are not mounted by default, for instance if they are not constantly connected to the system, such like

the storage used by your digital camera. If well configured, the device will be mounted as soon as the system

notices that it is connected, or it can be user-mountable, i.e. you don't need to be system administrator to

attach and detach the device to and from the system. There is an example in Section 9.3.

On a running system, information about the partitions and their mount points can be displayed using the df

command (which stands for disk full or disk free). In Linux, df is the GNU version, and supports the -h or

human readable option which greatly improves readability. Note that commercial UNIX machines commonly

have their own versions of df and many other commands. Their behavior is usually the same, though GNU

versions of common tools often have more and better features.

The df command only displays information about active non-swap partitions. These can include partitions

from other networked systems, like in the example below where the home directories are mounted from a file

server on the network, a situation often encountered in corporate environments.

freddy:~> df -h

Filesystem Size Used Avail Use% Mounted on

/dev/hda8 496M 183M 288M 39% /

/dev/hda1 124M 8.4M 109M 8% /boot

/dev/hda5 19G 15G 2.7G 85% /opt

/dev/hda6 7.0G 5.4G 1.2G 81% /usr

Introduction to Linux

Chapter 3. About files and the file system 36

/dev/hda7 3.7G 2.7G 867M 77% /var

fs1:/home 8.9G 3.7G 4.7G 44% /.automount/fs1/root/home

3.1.3. More file system layout

3.1.3.1. Visual

For convenience, the Linux file system is usually thought of in a tree structure. On a standard Linux system

you will find the layout generally follows the scheme presented below.

Figure 3-1. Linux file system layout

Introduction to Linux

Chapter 3. About files and the file system 37

This is a layout from a RedHat system. Depending on the system admin, the operating system and the mission

of the UNIX machine, the structure may vary, and directories may be left out or added at will. The names are

not even required; they are only a convention.

The tree of the file system starts at the trunk or slash, indicated by a forward slash (/). This directory,

containing all underlying directories and files, is also called the root directory or "the root" of the file system.

Directories that are only one level below the root directory are often preceded by a slash, to indicate their

position and prevent confusion with other directories that could have the same name. When starting with a

new system, it is always a good idea to take a look in the root directory. Let's see what you could run into:

emmy:~> cd /

emmy:/> ls

bin/ dev/ home/ lib/ misc/ opt/ root/ tmp/ var/

boot/ etc/ initrd/ lost+found/ mnt/ proc/ sbin/ usr/

Table 3-2. Subdirectories of the root directory

Directory Content

/bin Common programs, shared by the system, the system administrator and the users.

/boot

The startup files and the kernel, vmlinuz. In some recent distributions also grub data. Grub is

the GRand Unified Boot loader and is an attempt to get rid of the many different boot-loaders we

know today.

/dev
Contains references to all the CPU peripheral hardware, which are represented as files with

special properties.

/etc
Most important system configuration files are in /etc, this directory contains data similar to

those in the Control Panel in Windows

/home Home directories of the common users.

/initrd (on some distributions) Information for booting. Do not remove!

/lib Library files, includes files for all kinds of programs needed by the system and the users.

/lost+found
Every partition has a lost+found in its upper directory. Files that were saved during failures

are here.

/misc For miscellaneous purposes.

/mnt Standard mount point for external file systems, e.g. a CD-ROM or a digital camera.

/net Standard mount point for entire remote file systems

/opt Typically contains extra and third party software.

/proc

A virtual file system containing information about system resources. More information about the

meaning of the files in proc is obtained by entering the command man proc in a terminal

window. The file proc.txt discusses the virtual file system in detail.

/root
The administrative user's home directory. Mind the difference between /, the root directory and

/root, the home directory of the root user.

/sbin Programs for use by the system and the system administrator.

/tmp
Temporary space for use by the system, cleaned upon reboot, so don't use this for saving any

work!

/usr Programs, libraries, documentation etc. for all user-related programs.

/var Storage for all variable files and temporary files created by users, such as log files, the mail

queue, the print spooler area, space for temporary storage of files downloaded from the Internet,

Introduction to Linux

Chapter 3. About files and the file system 38

or to keep an image of a CD before burning it.

How can you find out which partition a directory is on? Using the df command with a dot (.) as an option

shows the partition the current directory belongs to, and informs about the amount of space used on this

partition:

sandra:/lib> df -h .

Filesystem Size Used Avail Use% Mounted on

/dev/hda7 980M 163M 767M 18% /

As a general rule, every directory under the root directory is on the root partition, unless it has a separate entry

in the full listing from df (or df -h with no other options).

Read more in man hier.

3.1.3.2. The file system in reality

For most users and for most common system administration tasks, it is enough to accept that files and

directories are ordered in a tree-like structure. The computer, however, doesn't understand a thing about trees

or tree-structures.

Every partition has its own file system. By imagining all those file systems together, we can form an idea of

the tree-structure of the entire system, but it is not as simple as that. In a file system, a file is represented by an

inode, a kind of serial number containing information about the actual data that makes up the file: to whom

this file belongs, and where is it located on the hard disk.

Every partition has its own set of inodes; throughout a system with multiple partitions, files with the same

inode number can exist.

Each inode describes a data structure on the hard disk, storing the properties of a file, including the physical

location of the file data. When a hard disk is initialized to accept data storage, usually during the initial system

installation process or when adding extra disks to an existing system, a fixed number of inodes per partition is

created. This number will be the maximum amount of files, of all types (including directories, special files,

links etc.) that can exist at the same time on the partition. We typically count on having 1 inode per 2 to 8

kilobytes of storage.

At the time a new file is created, it gets a free inode. In that inode is the following information:

Owner and group owner of the file.•

File type (regular, directory, ...)•

Permissions on the file Section 3.4.1•

Date and time of creation, last read and change.•

Date and time this information has been changed in the inode.•

Number of links to this file (see later in this chapter).•

File size•

An address defining the actual location of the file data.•

The only information not included in an inode, is the file name and directory. These are stored in the special

directory files. By comparing file names and inode numbers, the system can make up a tree-structure that the

user understands. Users can display inode numbers using the -i option to ls. The inodes have their own

separate space on the disk.

Introduction to Linux

Chapter 3. About files and the file system 39

3.2. Orientation in the file system

3.2.1. The path

When you want the system to execute a command, you almost never have to give the full path to that

command. For example, we know that the ls command is in the /bin directory (check with which -a ls),

yet we don't have to enter the command /bin/ls for the computer to list the content of the current directory.

The PATH environment variable takes care of this. This variable lists those directories in the system where

executable files can be found, and thus saves the user a lot of typing and memorizing locations of commands.

So the path naturally contains a lot of directories containing bin somewhere in their names, as the user below

demonstrates. The echo command is used to display the content ("$") of the variable PATH:

rogier:> echo $PATH

/opt/local/bin:/usr/X11R6/bin:/usr/bin:/usr/sbin/:/bin

In this example, the directories /opt/local/bin, /usr/X11R6/bin, /usr/bin, /usr/sbin and

/bin are subsequently searched for the required program. As soon as a match is found, the search is stopped,

even if not every directory in the path has been searched. This can lead to strange situations. In the first

example below, the user knows there is a program called sendsms to send an SMS message, and another user

on the same system can use it, but she can't. The difference is in the configuration of the PATH variable:

[jenny@blob jenny]$ sendsms

bash: sendsms: command not found

[jenny@blob jenny]$ echo $PATH

/bin:/usr/bin:/usr/bin/X11:/usr/X11R6/bin:/home/jenny/bin

[jenny@blob jenny]$ su - tony

Password:

tony:~>which sendsms

sendsms is /usr/local/bin/sendsms

tony:~>echo $PATH

/home/tony/bin.Linux:/home/tony/bin:/usr/local/bin:/usr/local/sbin:\

/usr/X11R6/bin:/usr/bin:/usr/sbin:/bin:/sbin

Note the use of the su (switch user) facility, which allows you to run a shell in the environment of another

user, on the condition that you know the user's password.

A backslash indicates the continuation of a line on the next, without an Enter separating one line from the

other.

In the next example, a user wants to call on the wc (word count) command to check the number of lines in a

file, but nothing happens and he has to break off his action using the Ctrl+C combination:

jumper:~> wc -l test

(Ctrl-C)

jumper:~> which wc

wc is hashed (/home/jumper/bin/wc)

jumper:~> echo $PATH

/home/jumper/bin:/usr/local/bin:/usr/local/sbin:/usr/X11R6/bin:\

/usr/bin:/usr/sbin:/bin:/sbin

The use of the which command shows us that this user has a bin-directory in his home directory, containing

a program that is also called wc. Since the program in his home directory is found first when searching the

Introduction to Linux

Chapter 3. About files and the file system 40

paths upon a call for wc, this "home-made" program is executed, with input it probably doesn't understand, so

we have to stop it. To resolve this problem there are several ways (there are always several ways to solve a

problem in UNIX/Linux): one answer could be to rename the user's wc program, or the user can give the full

path to the exact command he wants, which can be found by using the -a option to the which command.

If the user uses programs in the other directories more frequently, he can change his path to look in his own

directories last:

jumper:~> export PATH=/usr/local/bin:/usr/local/sbin:/usr/X11R6/bin:\

/usr/bin:/usr/sbin:/bin:/sbin:/home/jumper/bin

Changes are not permanent!

Note that when using the export command in a shell, the changes are temporary and only valid for this

session (until you log out). Opening new sessions, even while the current one is still running, will not

result in a new path in the new session. We will see in Section 7.2 how we can make these kinds of

changes to the environment permanent, adding these lines to the shell configuration files.

3.2.2. Absolute and relative paths

A path, which is the way you need to follow in the tree structure to reach a given file, can be described as

starting from the trunk of the tree (the / or root directory). In that case, the path starts with a slash and is called

an absolute path, since there can be no mistake: only one file on the system can comply.

In the other case, the path doesn't start with a slash and confusion is possible between ~/bin/wc (in the

user's home directory) and bin/wc in /usr, from the previous example. Paths that don't start with a slash

are always relative.

In relative paths we also use the . and .. indications for the current and the parent directory. A couple of

practical examples:

When you want to compile source code, the installation documentation often instructs you to run the

command ./configure, which runs the configure program located in the current directory (that came

with the new code), as opposed to running another configure program elsewhere on the system.

•

In HTML files, relative paths are often used to make a set of pages easily movable to another place:

•

Notice the difference one more time:
theo:~> ls /mp3

ls: /mp3: No such file or directory

theo:~>ls mp3/

oriental/ pop/ sixties/

•

3.2.3. The most important files and directories

3.2.3.1. The kernel

The kernel is the heart of the system. It manages the communication between the underlying hardware and the

peripherals. The kernel also makes sure that processes and daemons (server processes) are started and stopped

at the exact right times. The kernel has a lot of other important tasks, so many that there is a special

kernel-development mailing list on this subject only, where huge amounts of information are shared. It would

lead us too far to discuss the kernel in detail. For now it suffices to know that the kernel is the most important

Introduction to Linux

Chapter 3. About files and the file system 41

file on the system.

3.2.3.2. The shell

3.2.3.2.1. What is a shell?

When I was looking for an appropriate explanation on the concept of a shell, it gave me more trouble than I

expected. All kinds of definitions are available, ranging from the simple comparison that "the shell is the

steering wheel of the car", to the vague definition in the Bash manual which says that "bash is an

sh-compatible command language interpreter," or an even more obscure expression, "a shell manages the

interaction between the system and its users". A shell is much more than that.

A shell can best be compared with a way of talking to the computer, a language. Most users do know that

other language, the point-and-click language of the desktop. But in that language the computer is leading the

conversation, while the user has the passive role of picking tasks from the ones presented. It is very difficult

for a programmer to include all options and possible uses of a command in the GUI-format. Thus, GUIs are

almost always less capable than the command or commands that form the backend.

The shell, on the other hand, is an advanced way of communicating with the system, because it allows for

two-way conversation and taking initiative. Both partners in the communication are equal, so new ideas can

be tested. The shell allows the user to handle a system in a very flexible way. An additional asset is that the

shell allows for task automation.

3.2.3.2.2. Shell types

Just like people know different languages and dialects, the computer knows different shell types:

sh or Bourne Shell: the original shell still used on UNIX systems and in UNIX related environments.

This is the basic shell, a small program with few features. When in POSIX-compatible mode, bash

will emulate this shell.

•

bash or Bourne Again SHell: the standard GNU shell, intuitive and flexible. Probably most advisable

for beginning users while being at the same time a powerful tool for the advanced and professional

user. On Linux, bash is the standard shell for common users. This shell is a so-called superset of the

Bourne shell, a set of add-ons and plug-ins. This means that the Bourne Again SHell is compatible

with the Bourne shell: commands that work in sh, also work in bash. However, the reverse is not

always the case. All examples and exercises in this book use bash.

•

csh or C Shell: the syntax of this shell resembles that of the C programming language. Sometimes

asked for by programmers.

•

tcsh or Turbo C Shell: a superset of the common C Shell, enhancing user-friendliness and speed.•

ksh or the Korn shell: sometimes appreciated by people with a UNIX background. A superset of the

Bourne shell; with standard configuration a nightmare for beginning users.

•

The file /etc/shells gives an overview of known shells on a Linux system:

mia:~> cat /etc/shells

/bin/bash

/bin/sh

/bin/tcsh

/bin/csh

Fake Bourne shell

Introduction to Linux

Chapter 3. About files and the file system 42

Note that /bin/sh is usually a link to Bash, which will execute in Bourne shell compatible mode when

called on this way.

Your default shell is set in the /etc/passwd file, like this line for user mia:

mia:L2NOfqdlPrHwE:504:504:Mia Maya:/home/mia:/bin/bash

To switch from one shell to another, just enter the name of the new shell in the active terminal. The system

finds the directory where the name occurs using the PATH settings, and since a shell is an executable file

(program), the current shell activates it and it gets executed. A new prompt is usually shown, because each

shell has its typical appearance:

mia:~> tcsh

[mia@post21 ~]$

3.2.3.2.3. Which shell am I using?

If you don't know which shell you are using, either check the line for your account in /etc/passwd or type

the command

echo $SHELL

3.2.3.3. Your home directory

Your home directory is your default destination when connecting to the system. In most cases it is a

subdirectory of /home, though this may vary. Your home directory may be located on the hard disk of a

remote file server; in that case your home directory may be found in /nethome/your_user_name. In

another case the system administrator may have opted for a less comprehensible layout and your home

directory may be on /disk6/HU/07/jgillard.

Whatever the path to your home directory, you don't have to worry too much about it. The correct path to your

home directory is stored in the HOME environment variable, in case some program needs it. With the echo

command you can display the content of this variable:

orlando:~> echo $HOME

/nethome/orlando

You can do whatever you like in your home directory. You can put as many files in as many directories as you

want, although the total amount of data and files is naturally limited because of the hardware and size of the

partitions, and sometimes because the system administrator has applied a quota system. Limiting disk usage

was common practice when hard disk space was still expensive. Nowadays, limits are almost exclusively

applied in large environments. You can see for yourself if a limit is set using the quota command:

pierre@lamaison:/> quota -v

Diskquotas for user pierre (uid 501): none

In case quotas have been set, you get a list of the limited partitions and their specific limitations. Exceeding

the limits may be tolerated during a grace period with fewer or no restrictions at all. Detailed information can

be found using the info quota or man quota commands.

No Quota?

If your system can not find the quota, then no limitation of file system usage is being applied.

Your home directory is indicated by a tilde (~), shorthand for /path_to_home/user_name. This same

path is stored in the HOME variable, so you don't have to do anything to activate it. A simple application:

Introduction to Linux

Chapter 3. About files and the file system 43

switch from /var/music/albums/arno/2001 to images in your home directory using one elegant

command:

rom:/var/music/albums/arno/2001> cd ~/images

rom:~/images> pwd

/home/rom/images

Later in this chapter we will talk about the commands for managing files and directories in order to keep your

home directory tidy.

3.2.4. The most important configuration files

As we mentioned before, most configuration files are stored in the /etc directory. Content can be viewed

using the cat command, which sends text files to the standard output (usually your monitor). The syntax is

straight forward:

cat file1 file2 ... fileN

In this section we try to give an overview of the most common configuration files. This is certainly not a

complete list. Adding extra packages may also add extra configuration files in /etc. When reading the

configuration files, you will find that they are usually quite well commented and self-explanatory. Some files

also have man pages which contain extra documentation, such as man group.

Table 3-3. Most common configuration files

File Information/service

aliases

Mail aliases file for use with the Sendmail and Postfix mail server.

Running a mail server on each and every system has long been

common use in the UNIX world, and almost every Linux distribution

still comes with a Sendmail package. In this file local user names are

matched with real names as they occur in E-mail addresses, or with

other local addresses.

apache Config files for the Apache web server.

bashrc

The system-wide configuration file for the Bourne Again SHell.

Defines functions and aliases for all users. Other shells may have their

own system-wide config files, like cshrc.

crontab and the cron.*

directories

Configuration of tasks that need to be executed periodically - backups,

updates of the system databases, cleaning of the system, rotating logs

etc.

default Default options for certain commands, such as useradd.

filesystems Known file systems: ext3, vfat, iso9660 etc.

fstab Lists partitions and their mount points.

ftp*
Configuration of the ftp-server: who can connect, what parts of the

system are accessible etc.

group

Configuration file for user groups. Use the shadow utilities groupadd,

groupmod and groupdel to edit this file. Edit manually only if you

really know what you are doing.

Introduction to Linux

Chapter 3. About files and the file system 44

hosts

A list of machines that can be contacted using the network, but without

the need for a domain name service. This has nothing to do with the

system's network configuration, which is done in /etc/sysconfig.

inittab Information for booting: mode, number of text consoles etc.

issue Information about the distribution (release version and/or kernel info).

ld.so.conf Locations of library files.

lilo.conf, silo.conf,

aboot.conf etc.

Boot information for the LInux LOader, the system for booting that is

now gradually being replaced with GRUB.

logrotate.*
Rotation of the logs, a system preventing the collection of huge

amounts of log files.

mail Directory containing instructions for the behavior of the mail server.

modules.conf Configuration of modules that enable special features (drivers).

motd

Message Of The Day: Shown to everyone who connects to the system

(in text mode), may be used by the system admin to announce system

services/maintenance etc.

mtab Currently mounted file systems. It is advised to never edit this file.

nsswitch.conf
Order in which to contact the name resolvers when a process demands

resolving of a host name.

pam.d Configuration of authentication modules.

passwd

Lists local users. Use the shadow utilities useradd, usermod and

userdel to edit this file. Edit manually only when you really know what

you are doing.

printcap
Outdated but still frequently used printer configuration file. Don't edit

this manually unless you really know what you are doing.

profile
System wide configuration of the shell environment: variables, default

properties of new files, limitation of resources etc.

rc* Directories defining active services for each run level.

resolv.conf Order in which to contact DNS servers (Domain Name Servers only).

sendmail.cf Main config file for the Sendmail server.

services Connections accepted by this machine (open ports).

sndconfig or sound Configuration of the sound card and sound events.

ssh Directory containing the config files for secure shell client and server.

sysconfig

Directory containing the system configuration files: mouse, keyboard,

network, desktop, system clock, power management etc. (specific to

RedHat)

X11

Settings for the graphical server, X. RedHat uses XFree, which is

reflected in the name of the main configuration file, XFree86Config.

Also contains the general directions for the window managers available

on the system, for example gdm, fvwm, twm, etc.

xinetd.* or inetd.conf

Configuration files for Internet services that are run from the system's

(extended) Internet services daemon (servers that don't run an

independent daemon).

Throughout this guide we will learn more about these files and study some of them in detail.

Introduction to Linux

Chapter 3. About files and the file system 45

3.2.5. The most common devices

Devices, generally every peripheral attachment of a PC that is not the CPU itself, is presented to the system as

an entry in the /dev directory. One of the advantages of this UNIX-way of handling devices is that neither

the user nor the system has to worry much about the specification of devices.

Users that are new to Linux or UNIX in general are often overwhelmed by the amount of new names and

concepts they have to learn. That is why a list of common devices is included in this introduction.

Table 3-4. Common devices

Name Device

cdrom CD drive

console Special entry for the currently used console.

cua* Serial ports

dsp* Devices for sampling and recording

fd*
Entries for most kinds of floppy drives, the default is

/dev/fd0, a floppy drive for 1.44 MB floppies.

hd[a-t][1-16]
Standard support for IDE drives with maximum amount

of partitions each.

ir* Infrared devices

isdn* Management of ISDN connections

js* Joystick(s)

lp* Printers

mem Memory

midi* midi player

mixer* and music Idealized model of a mixer (combines or adds signals)

modem Modem

mouse (also msmouse, logimouse, psmouse,

input/mice, psaux)
All kinds of mouses

null Bottomless garbage can

par* Entries for parallel port support

pty* Pseudo terminals

radio* For Radio Amateurs (HAMs).

ram* boot device

sd* SCSI disks with their partitions

sequencer
For audio applications using the synthesizer features of

the sound card (MIDI-device controller)

tty* Virtual consoles simulating vt100 terminals.

usb* USB card and scanner

video* For use with a graphics card supporting video.

Introduction to Linux

Chapter 3. About files and the file system 46

3.2.6. The most common variable files

In the /var directory we find a set of directories for storing specific non-constant data (as opposed to the ls

program or the system configuration files, which change relatively infrequently or never at all). All files that

change frequently, such as log files, mailboxes, lock files, spoolers etc. are kept in a subdirectory of /var.

As a security measure these files are usually kept in separate parts from the main system files, so we can keep

a close eye on them and set stricter permissions where necessary. A lot of these files also need more

permissions than usual, like /var/tmp, which needs to be writable for everyone. A lot of user activity might

be expected here, which might even be generated by anonymous Internet users connected to your system. This

is one reason why the /var directory, including all its subdirectories, is usually on a separate partition. This

way, there is for instance no risk that a mail bomb, for instance, fills up the rest of the file system, containing

more important data such as your programs and configuration files.

/var/tmp and /tmp

Files in /tmp can be deleted without notice, by regular system tasks or because of a system reboot. On

some (customized) systems, also /var/tmp might behave unpredictably. Nevertheless, since this is not

the case by default, we advise to use the /var/tmp directory for saving temporary files. When in

doubt, check with your system administrator. If you manage your own system, you can be reasonably

sure that this is a safe place if you did not consciously change settings on /var/tmp (as root, a normal

user can not do this).

Whatever you do, try to stick to the privileges granted to a normal user - don't go saving files directly

under the root (/) of the file system, don't put them in /usr or some subdirectory or in another reserved

place. This pretty much limits your access to safe file systems.

One of the main security systems on a UNIX system, which is naturally implemented on every Linux machine

as well, is the log-keeping facility, which logs all user actions, processes, system events etc. The configuration

file of the so-called syslogdaemon determines which and how long logged information will be kept. The

default location of all logs is /var/log, containing different files for access log, server logs, system

messages etc.

In /var we typically find server data, which is kept here to separate it from critical data such as the server

program itself and its configuration files. A typical example on Linux systems is /var/www, which contains

the actual HTML pages, scripts and images that a web server offers. The FTP-tree of an FTP server (data that

can be downloaded by a remote client) is also best kept in one of /var's subdirectories. Because this data is

publicly accessible and often changeable by anonymous users, it is safer to keep it here, away from partitions

or directories with sensitive data.

On most workstation installations, /var/spool will at least contain an at and a cron directory,

containing scheduled tasks. In office environments this directory usually contains lpd as well, which holds

the print queue(s) and further printer configuration files, as well as the printer log files.

On server systems we will generally find /var/spool/mail, containing incoming mails for local users,

sorted in one file per user, the user's "inbox". A related directory is mqueue, the spooler area for unsent mail

messages. These parts of the system can be very busy on mail servers with a lot of users. News servers also

use the /var/spool area because of the enormous amounts of messages they have to process.

The /var/lib/rpm directory is specific to RPM-based (RedHat Package Manager) distributions; it is

where RPM package information is stored. Other package managers generally also store their data somewhere

in /var.

Introduction to Linux

Chapter 3. About files and the file system 47

3.3. Manipulating files

3.3.1. Viewing file properties

3.3.1.1. More about ls

Besides the name of the file, ls can give a lot of other information, such as the file type, as we already

discussed. It can also show permissions on a file, file size, inode number, creation date and time, owners and

amount of links to the file. With the -a option to ls, files that are normally hidden from view can be displayed

as well. These are files that have a name starting with a dot. A couple of typical examples include the

configuration files in your home directory. When you've worked with a certain system for a while, you will

notice that tens of files and directories have been created that are not automatically listed in a directory index.

Next to that, every directory contains a file named just dot (.) and one with two dots (..), which are used in

combination with their inode number to determine the directory's position in the file system's tree structure.

You should really read the Info pages about ls, since it is a very common command with a lot of useful

options. Options can be combined, as is the case with most UNIX commands and their options. A common

combination is ls -al; it shows a long list of files and their properties as well as the destinations that any

symbolic links point to. ls -latr displays the same files, only now in reversed order of the last change, so

that the file changed most recently occurs at the bottom of the list. Here are a couple of examples:

krissie:~/mp3> ls

Albums/ Radio/ Singles/ gene/ index.html

krissie:~/mp3> ls -a

./ .thumbs Radio gene/

../ Albums/ Singles/ index.html

krissie:~/mp3> ls -l Radio/

total 8

drwxr-xr-x 2 krissie krissie 4096 Oct 30 1999 Carolina/

drwxr-xr-x 2 krissie krissie 4096 Sep 24 1999 Slashdot/

krissie:~/mp3> ls -ld Radio/

drwxr-xr-x 4 krissie krissie 4096 Oct 30 1999 Radio/

krissie:~/mp3> ls -ltr

total 20

drwxr-xr-x 4 krissie krissie 4096 Oct 30 1999 Radio/

-rw-r--r-- 1 krissie krissie 453 Jan 7 2001 index.html

drwxrwxr-x 30 krissie krissie 4096 Oct 20 17:32 Singles/

drwxr-xr-x 2 krissie krissie 4096 Dec 4 23:22 gene/

drwxrwxr-x 13 krissie krissie 4096 Dec 21 11:40 Albums/

On most Linux versions ls is aliased to color-ls by default. This feature allows to see the file type without

using any options to ls. To achieve this, every file type has its own color. The standard scheme is in

/etc/DIR_COLORS:

Table 3-5. Color-ls default color scheme

Color File type

blue directories

Introduction to Linux

Chapter 3. About files and the file system 48

red compressed archives

white text files

pink images

cyan links

yellow devices

green executables

flashing red broken links

More information is in the man page. The same information was in earlier days displayed using suffixes to

every non-standard file name. For mono-color use (like printing a directory listing) and for general

readability, this scheme is still in use:

Table 3-6. Default suffix scheme for ls

Character File type

nothing regular file

/ directory

* executable file

@ link

= socket

| named pipe

A description of the full functionality and features of the ls command can be read with info coreutils ls.

3.3.1.2. More tools

To find out more about the kind of data we are dealing with, we use the file command. By applying certain

tests that check properties of a file in the file system, magic numbers and language tests, file tries to make an

educated guess about the format of a file. Some examples:

mike:~> file Documents/

Documents/: directory

mike:~> file high-tech-stats.pdf

high-tech-stats.pdf: PDF document, version 1.2

mike:~> file Nari-288.rm

Nari-288.rm: RealMedia file

mike:~> file bijlage10.sdw

bijlage10.sdw: Microsoft Office Document

mike:~> file logo.xcf

logo.xcf: GIMP XCF image data, version 0, 150 x 38, RGB Color

mike:~> file cv.txt

cv.txt: ISO-8859 text

mike:~> file image.png

image.png: PNG image data, 616 x 862, 8-bit grayscale, non-interlaced

mike:~> file figure

figure: ASCII text

Introduction to Linux

Chapter 3. About files and the file system 49

mike:~> file me+tux.jpg

me+tux.jpg: JPEG image data, JFIF standard 1.01, resolution (DPI),

 "28 Jun 1999", 144 x 144

mike:~> file 42.zip.gz

42.zip.gz: gzip compressed data, deflated, original filename,

 `42.zip', last modified: Thu Nov 1 23:45:39 2001, os: Unix

mike:~> file vi.gif

vi.gif: GIF image data, version 89a, 88 x 31

mike:~> file slide1

slide1: HTML document text

mike:~> file template.xls

template.xls: Microsoft Office Document

mike:~> file abook.ps

abook.ps: PostScript document text conforming at level 2.0

mike:~> file /dev/log

/dev/log: socket

mike:~> file /dev/hda

/dev/hda: block special (3/0)

The file command has a series of options, among others the -z option to look into compressed files. See info

file for a detailed description. Keep in mind that the results of file are not absolute, it is only a guess. In

other words, file can be tricked.

Why all the fuss about file types and formats?

Shortly, we will discuss a couple of command-line tools for looking at plain text files. These tools will

not work when used on the wrong type of files. In the worst case, they will crash your terminal and/or

make a lot of beeping noises. If this happens to you, just close the terminal session and start a new one.

But try to avoid it, because it is usually very disturbing for other people.

3.3.2. Creating and deleting files and directories

3.3.2.1. Making a mess...

... Is not a difficult thing to do. Today almost every system is networked, so naturally files get copied from

one machine to another. And especially when working in a graphical environment, creating new files is a

piece of cake and is often done without the approval of the user. To illustrate the problem, here's the full

content of a new user's directory, created on a standard RedHat system:

[newuser@blob user]$ ls -al

total 32

drwx------ 3 user user 4096 Jan 16 13:32 .

drwxr-xr-x 6 root root 4096 Jan 16 13:32 ..

-rw-r--r-- 1 user user 24 Jan 16 13:32 .bash_logout

-rw-r--r-- 1 user user 191 Jan 16 13:32 .bash_profile

-rw-r--r-- 1 user user 124 Jan 16 13:32 .bashrc

drwxr-xr-x 3 user user 4096 Jan 16 13:32 .kde

-rw-r--r-- 1 user user 3511 Jan 16 13:32 .screenrc

-rw------- 1 user user 61 Jan 16 13:32 .xauthDqztLr

On first sight, the content of a "used" home directory doesn't look that bad either:

Introduction to Linux

Chapter 3. About files and the file system 50

olduser:~> ls

app-defaults/ crossover/ Fvwm@ mp3/ OpenOffice.org638/

articles/ Desktop/ GNUstep/ Nautilus/ staroffice6.0/

bin/ Desktop1/ images/ nqc/ training/

brol/ desktoptest/ Machines@ ns_imap/ webstart/

C/ Documents/ mail/ nsmail/ xml/

closed/ Emacs@ Mail/ office52/ Xrootenv.0

But when all the directories and files starting with a dot are included, there are 185 items in this directory.

This is because most applications have their own directories and/or files, containing user-specific settings, in

the home directory of that user. Usually these files are created the first time you start an application. In some

cases you will be notified when a non-existent directory needs to be created, but most of the time everything is

done automatically.

Furthermore, new files are created seemingly continuously because users want to save files, keep different

versions of their work, use Internet applications, and download files and attachments to their local machine. It

doesn't stop. It is clear that one definitely needs a scheme to keep an overview on things.

In the next section, we will discuss our means of keeping order. We only discuss text tools available to the

shell, since the graphical tools are very intuitive and have the same look and feel as the well known

point-and-click MS Windows-style file managers, including graphical help functions and other features you

expect from this kind of applications. The following list is an overview of the most popular file managers for

GNU/Linux. Most file managers can be started from the menu of your desktop manager, or by clicking your

home directory icon, or from the command line, issuing these commands:

nautilus: The default file manager in Gnome, the GNU desktop. Excellent documentation about

working with this tool can be found at http://www.gnome.org.

•

konqueror: The file manager typically used on a KDE desktop. The handbook is at

http://docs.kde.org.

•

mc: Midnight Commander, the Unix file manager after the fashion of Norton Commander. All

documentation available from http://gnu.org/directory/ or a mirror, such as http://www.ibiblio.org.

•

These applications are certainly worth giving a try and usually impress newcomers to Linux, if only because

there is such a wide variety: these are only the most popular tools for managing directories and files, and

many other projects are being developed. Now let's find out about the internals and see how these graphical

tools use common UNIX commands.

3.3.2.2. The tools

3.3.2.2.1. Creating directories

A way of keeping things in place is to give certain files specific default locations by creating directories and

subdirectories (or folders and sub-folders if you wish). This is done with the mkdir command:

richard:~> mkdir archive

richard:~> ls -ld archive

drwxrwxrwx 2 richard richard 4096 Jan 13 14:09 archive/

Creating directories and subdirectories in one step is done using the -p option:

richard:~> cd archive

richard:~/archive> mkdir 1999 2000 2001

Introduction to Linux

Chapter 3. About files and the file system 51

http://www.gnome.org/learn/users-guide/latest/gosnautilus-1.html
http://docs.kde.org/en/3.1/kdebase/konqueror/
http://www.gnu.org/directory/midnightcommander.html
http://www.ibiblio.org

richard:~/archive> ls

1999/ 2000/ 2001/

richard:~/archive> mkdir 2001/reports/Restaurants-Michelin/

mkdir: cannot create directory `2001/reports/Restaurants-Michelin/':

No such file or directory

richard:~/archive> mkdir -p 2001/reports/Restaurants-Michelin/

richard:~/archive> ls 2001/reports/

Restaurants-Michelin/

If the new file needs other permissions than the default file creation permissions, the new access rights can be

set in one move, still using the mkdir command, see the Info pages for more. We are going to discuss access

modes in the next section on file security.

The name of a directory has to comply with the same rules as those applied on regular file names. One of the

most important restrictions is that you can't have two files with the same name in one directory (but keep in

mind that Linux is, like UNIX, a case sensitive operating system). There are virtually no limits on the length

of a file name, but it is usually kept shorter than 80 characters, so it can fit on one line of a terminal. You can

use any character you want in a file name, although it is advised to exclude characters that have a special

meaning to the shell. When in doubt, check with Appendix C.

3.3.2.2.2. Moving files

Now that we have properly structured our home directory, it is time to clean up unclassified files using the mv

command:

richard:~/archive> mv ../report[1-4].doc reports/Restaurants-Michelin/

This command is also applicable when renaming files:

richard:~> ls To_Do

-rw-rw-r-- 1 richard richard 2534 Jan 15 12:39 To_Do

richard:~> mv To_Do done

richard:~> ls -l done

-rw-rw-r-- 1 richard richard 2534 Jan 15 12:39 done

It is clear that only the name of the file changes. All other properties remain the same.

Detailed information about the syntax and features of the mv command can be found in the man or Info pages.

The use of this documentation should always be your first reflex when confronted with a problem. The answer

to your problem is likely to be in the system documentation. Even experienced users read man pages every

day, so beginning users should read them all the time. After a while, you will get to know the most common

options to the common commands, but you will still need the documentation as a primary source of

information. Note that the information contained in the HOWTOs, FAQs, man pages and other sources is

slowly being merged into the Info pages, which are today the most up-to-date source of online (as in readily

available on the system) documentation.

3.3.2.2.3. Copying files

Copying files and directories is done with the cp command. A useful option is recursive copy (copy all

underlying files and subdirectories), using the -R option to cp. The general syntax is

cp [-R] fromfile tofile

Introduction to Linux

Chapter 3. About files and the file system 52

As an example the case of user newguy, who wants the same Gnome desktop settings user oldguy has. One

way to solve the problem is to copy the settings of oldguy to the home directory of newguy:

victor:~> cp -R ../oldguy/.gnome/ .

This gives some errors involving file permissions, but all the errors have to do with private files that newguy

doesn't need anyway. We will discuss in the next part how to change these permissions in case they really are

a problem.

3.3.2.2.4. Removing files

Use the rm command to remove single files, rmdir to remove empty directories. (Use ls -a to check whether

a directory is empty or not). The rm command also has options for removing non-empty directories with all

their subdirectories, read the Info pages for these rather dangerous options.

How empty can a directory be?

It is normal that the directories . (dot) and .. (dot-dot) can't be removed, since they are also necessary in

an empty directory to determine the directories ranking in the file system hierarchy.

On Linux, just like on UNIX, there is no garbage can - at least not for the shell, although there are plenty of

solutions for graphical use. So once removed, a file is really gone, and there is generally no way to get it back

unless you have backups, or you are really fast and have a real good system administrator. To protect the

beginning user from this malice, the interactive behavior of the rm, cp and mv commands can be activated

using the -i option. In that case the system won't immediately act upon request. Instead it will ask for

confirmation, so it takes an additional click on the Enter key to inflict the damage:

mary:~> rm -ri archive/

rm: descend into directory `archive'? y

rm: descend into directory `archive/reports'? y

rm: remove directory `archive/reports'? y

rm: descend into directory `archive/backup'? y

rm: remove `archive/backup/sysbup200112.tar'? y

rm: remove directory `archive/backup'? y

rm: remove directory `archive'? y

We will discuss how to make this option the default in Chapter 7, which discusses customizing your shell

environment.

3.3.3. Finding files

3.3.3.1. Using shell features

In the example on moving files we already saw how the shell can manipulate multiple files at once. In that

example, the shell finds out automatically what the user means by the requirements between the square braces

"[" and "]". The shell can substitute ranges of numbers and upper or lower case characters alike. It also

substitutes as many characters as you want with an asterisk, and only one character with a question mark.

All sorts of substitutions can be used simultaneously; the shell is very logical about it. The Bash shell, for

instance, has no problem with expressions like ls dirname/*/*/*[2-3].

In other shells, the asterisk is commonly used to minimize the efforts of typing: people would enter cd dir*

instead of cd directory. In Bash however, this is not necessary because the GNU shell has a feature called

file name completion. It means that you can type the first few characters of a command (anywhere) or a file

(in the current directory) and if no confusion is possible, the shell will find out what you mean. For example

Introduction to Linux

Chapter 3. About files and the file system 53

in a directory containing many files, you can check if there are any files beginning with the letter A just by

typing ls A and pressing the Tab key twice, rather than pressing Enter. If there is only one file starting with

"A", this file will be shown as the argument to ls (or any shell command, for that matter) immediately.

3.3.3.2. Which

A very simple way of looking up files is using the which command, to look in the directories listed in the

user's search path for the required file. Of course, since the search path contains only paths to directories

containing executable programs, which doesn't work for ordinary files. The which command is useful when

troubleshooting "Command not Found" problems. In the example below, user tina can't use the acroread

program, while her colleague has no troubles whatsoever on the same system. The problem is similar to the

PATH problem in the previous part: Tina's colleague tells her that he can see the required program in

/opt/acroread/bin, but this directory is not in her path:

tina:~> which acroread

/usr/bin/which: no acroread in (/bin:/usr/bin:/usr/bin/X11)

The problem can be solved by giving the full path to the command to run, or by re-exporting the content of the

PATH variable:

tina:~> export PATH=$PATH:/opt/acroread/bin

tina:~> echo $PATH

/bin:/usr/bin:/usr/bin/X11:/opt/acroread/bin

Using the which command also checks to see if a command is an alias for another command:

gerrit:~> which -a ls

ls is aliased to `ls -F --color=auto'

ls is /bin/ls

If this does not work on your system, use the alias command:

tille@www:~/mail$ alias ls

alias ls='ls --color'

3.3.3.3. Find and locate

These are the real tools, used when searching other paths beside those listed in the search path. The find tool,

known from UNIX, is very powerful, which may be the cause of a somewhat more difficult syntax. GNU

find, however, deals with the syntax problems. This command not only allows you to search file names, it can

also accept file size, date of last change and other file properties as criteria for a search. The most common use

is for finding file names:

find <path> -name <searchstring>

This can be interpreted as "Look in all files and subdirectories contained in a given path, and print the names

of the files containing the search string in their name" (not in their content).

Another application of find is for searching files of a certain size, as in the example below, where user peter

wants to find all files in the current directory or one of its subdirectories, that are bigger than 5 MB:

peter:~> find . -size +5000k

psychotic_chaos.mp3

Introduction to Linux

Chapter 3. About files and the file system 54

If you dig in the man pages, you will see that find can also perform operations on the found files. A common

example is removing files. It is best to first test without the -exec option that the correct files are selected,

after that the command can be rerun to delete the selected files. Below, we search for files ending in .tmp:

peter:~> find . -name "*.tmp" -exec rm {} \;

peter:~>

Optimize!

This command will call on rm as many times as a file answering the requirements is found. In the worst

case, this might be thousands or millions of times. This is quite a load on your system.

A more realistic way of working would be the use of a pipe (|) and the xargs tool with rm as an

argument. This way, the rm command is only called when the command line is full, instead of for every

file. See Chapter 5 for more on using I/O redirection to ease everyday tasks.

Later on (in 1999 according to the man pages, after 20 years of find), locate was developed. This program is

easier to use, but more restricted than find, since its output is based on a file index database that is updated

only once every day. On the other hand, a search in the locate database uses less resources than find and

therefore shows the results nearly instantly.

Most Linux distributions use slocate these days, security enhanced locate, the modern version of locate that

prevents users from getting output they have no right to read. The files in root's home directory are such an

example, these are not normally accessible to the public. A user who wants to find someone who knows about

the C shell may issue the command locate .cshrc, to display all users who have a customized configuration

file for the C shell. Supposing the users root and jenny are running C shell, then only the file

/home/jenny/.cshrc will be displayed, and not the one in root's home directory. On most systems,

locate is a symbolic link to the slocate program:

billy:~> ls -l /usr/bin/locate

lrwxrwxrwx 1 root slocate 7 Oct 28 14:18 /usr/bin/locate -> slocate*

User tina could have used locate to find the application she wanted:

tina:~> locate acroread

/usr/share/icons/hicolor/16x16/apps/acroread.png

/usr/share/icons/hicolor/32x32/apps/acroread.png

/usr/share/icons/locolor/16x16/apps/acroread.png

/usr/share/icons/locolor/32x32/apps/acroread.png

/usr/local/bin/acroread

/usr/local/Acrobat4/Reader/intellinux/bin/acroread

/usr/local/Acrobat4/bin/acroread

Directories that don't contain the name bin can't contain the program - they don't contain executable files.

There are three possibilities left. The file in /usr/local/bin is the one tina would have wanted: it is a

link to the shell script that starts the actual program:

tina:~> file /usr/local/bin/acroread

/usr/local/bin/acroread: symbolic link to ../Acrobat4/bin/acroread

tina:~> file /usr/local/Acrobat4/bin/acroread

/usr/local/Acrobat4/bin/acroread: Bourne shell script text executable

tina:~> file /usr/local/Acrobat4/Reader/intellinux/bin/acroread

/usr/local/Acrobat4/Reader/intellinux/bin/acroread: ELF 32-bit LSB

executable, Intel 80386, version 1, dynamically linked (uses

Introduction to Linux

Chapter 3. About files and the file system 55

shared libs), not stripped

In order to keep the path as short as possible, so the system doesn't have to search too long every time a user

wants to execute a command, we add /usr/local/bin to the path and not the other directories, which

only contain the binary files of one specific program, while /usr/local/bin contains other useful

programs as well.

Again, a description of the full features of find and locate can be found in the Info pages.

3.3.3.4. The grep command

3.3.3.4.1. General line filtering

A simple but powerful program, grep is used for filtering input lines and returning certain patterns to the

output. There are literally thousands of applications for the grep program. In the example below, jerry uses

grep to see how he did the thing with find:

jerry:~> grep -a find .bash_history

find . -name userinfo

man find

find ../ -name common.cfg

Search history

Also useful in these cases is the search function in bash, activated by pressing Ctrl+R at once, such as

in the example where we want to check how we did that last find again:

thomas ~> ^R

(reverse-i-search)`find': find `/home/thomas` -name *.xml

Type your search string at the search prompt. The more characters you type, the more restricted the

search gets. This reads the command history for this shell session (which is written to

.bash_history in your home directory when you quit that session). The most recent occurrence of

your search string is shown. If you want to see previous commands containing the same string, type

Ctrl+R again.

See the Info pages on bash for more.

All UNIXes with just a little bit of decency have an online dictionary. So does Linux. The dictionary is a list

of known words in a file named words, located in /usr/share/dict. To quickly check the correct

spelling of a word, no graphical application is needed:

william:~> grep pinguin /usr/share/dict/words

william:~> grep penguin /usr/share/dict/words

penguin

penguins

Dictionary vs. word list

Some distributions offer the dict command, which offers more features than simply searching words in a

list.

Who is the owner of that home directory next to mine? Hey, there's his telephone number!

lisa:~> grep gdbruyne /etc/passwd

gdbruyne:x:981:981:Guy Debruyne, tel 203234:/home/gdbruyne:/bin/bash

Introduction to Linux

Chapter 3. About files and the file system 56

And what was the E-mail address of Arno again?

serge:~/mail> grep -i arno *

sent-mail: To: <Arno.Hintjens@celeb.com>

sent-mail: On Mon, 24 Dec 2001, Arno.Hintjens@celeb.com wrote:

find and locate are often used in combination with grep to define some serious queries. For more

information, see Chapter 5 on I/O redirection.

3.3.3.4.2. Special characters

Characters that have a special meaning to the shell have to be escaped. The escape character in Bash is

backslash, as in most shells; this takes away the special meaning of the following character. The shell knows

about quite some special characters, among the most common /, ., ? and *. A full list can be found in the Info

pages and documentation for your shell.

For instance, say that you want to display the file "*" instead of all the files in a directory, you would have to

use

less *

The same goes for filenames containing a space:

cat This\ File

3.3.4. More ways to view file content

3.3.4.1. General

Apart from cat, which really doesn't do much more than sending files to the standard output, there are other

tools to view file content.

The easiest way of course would be to use graphical tools instead of command line tools. In the introduction

we already saw a glimpse of an office application, OpenOffice.org. Other examples are the GIMP (start up

with gimp from the command line), the GNU Image Manipulation Program; xpdf to view Portable Document

Format files (PDF); GhostView (gv) for viewing PostScript files; Mozilla/FireFox, links (a text mode

browser), Konqueror, Opera and many others for web content; XMMS, CDplay and others for multimedia file

content; AbiWord, Gnumeric, KOffice etc. for all kinds of office applications and so on. There are thousands

of Linux applications; to list them all would take days.

Instead we keep concentrating on shell- or text-mode applications, which form the basics for all other

applications. These commands work best in a text environment on files containing text. When in doubt, check

first using the file command.

So let's see what text tools we have that are useful to look inside files.

Font problems

Plain text tools such as the ones we will now be discussing, often have problems with "plain" text files

because of the font encoding used in those files. Special characters, such as accented alphabetical

characters, Chinese characters and other characters from languages using different character sets than the

default en_US encoding and so on, are then displayed the wrong way or replaced by unreadable rubbish.

Introduction to Linux

Chapter 3. About files and the file system 57

These problems are discussed in Section 7.4.

3.3.4.2. "less is more"

Undoubtedly you will hear someone say this phrase sooner or later when working in a UNIX environment. A

little bit of UNIX history explains this:

First there was cat. Output was streamed in an uncontrollable way.•

Then there was pg, which may still be found on older UNIXes. This command puts text to the output

one page at the time.

•

The more program was a revised version of pg. This command is still available on every Linux

system.

•

less is the GNU version of more and has extra features allowing highlighting of search strings,

scrolling back etc. The syntax is very simple:

less name_of_file

More information is located in the Info pages.

•

You already know about pagers by now, because they are used for viewing the man pages.

3.3.4.3. The head and tail commands

These two commands display the n first/last lines of a file respectively. To see the last ten commands entered:

tony:~> tail -10 .bash_history

locate configure | grep bin

man bash

cd

xawtv &

grep usable /usr/share/dict/words

grep advisable /usr/share/dict/words

info quota

man quota

echo $PATH

frm

head works similarly. The tail command has a handy feature to continuously show the last n lines of a file

that changes all the time. This -f option is often used by system administrators to check on log files. More

information is located in the system documentation files.

3.3.5. Linking files

3.3.5.1. Link types

Since we know more about files and their representation in the file system, understanding links (or shortcuts)

is a piece of cake. A link is nothing more than a way of matching two or more file names to the same set of

file data. There are two ways to achieve this:

Hard link: Associate two or more file names with the same inode. Hard links share the same data

blocks on the hard disk, while they continue to behave as independent files.

•

Introduction to Linux

Chapter 3. About files and the file system 58

There is an immediate disadvantage: hard links can't span partitions, because inode numbers are only

unique within a given partition.

Soft link or symbolic link (or for short: symlink): a small file that is a pointer to another file. A

symbolic link contains the path to the target file instead of a physical location on the hard disk. Since

inodes are not used in this system, soft links can span across partitions.

•

The two link types behave similar, but are not the same, as illustrated in the scheme below:

Figure 3-2. Hard and soft link mechanism

Note that removing the target file for a symbolic link makes the link useless.

Each regular file is in principle a hardlink. Hardlinks can not span across partitions, since they refer to inodes,

and inode numbers are only unique within a given partition.

It may be argued that there is a third kind of link, the user-space link, which is similar to a shortcut in MS

Windows. These are files containing meta-data which can only be interpreted by the graphical file manager.

To the kernel and the shell these are just normal files. They may end in a .desktop or .lnk suffix; an example

can be found in ~/.gnome-desktop:

[dupont@boulot .gnome-desktop]$ cat La\ Maison\ Dupont

[Desktop Entry]

Encoding=Legacy-Mixed

Name=La Maison Dupont

Type=X-nautilus-home

X-Nautilus-Icon=temp-home

URL=file:///home/dupont

This example is from a KDE desktop:

Introduction to Linux

Chapter 3. About files and the file system 59

[lena@venus Desktop]$ cat camera

[Desktop Entry]

Dev=/dev/sda1

FSType=auto

Icon=memory

MountPoint=/mnt/camera

Type=FSDevice

X-KDE-Dynamic-Device=true

Creating this kind of link is easy enough using the features of your graphical environment. Should you need

help, your system documentation should be your first resort.

In the next section, we will study the creation of UNIX-style symbolic links using the command line.

3.3.5.2. Creating symbolic links

The symbolic link is particularly interesting for beginning users: they are fairly obvious to see and you don't

need to worry about partitions.

The command to make links is ln. In order to create symlinks, you need to use the -s option:

ln -s targetfile linkname

In the example below, user freddy creates a link in a subdirectory of his home directory to a directory on

another part of the system:

freddy:~/music> ln -s /opt/mp3/Queen/ Queen

freddy:~/music> ls -l

lrwxrwxrwx 1 freddy freddy 17 Jan 22 11:07 Queen -> /opt/mp3/Queen

Symbolic links are always very small files, while hard links have the same size as the original file.

The application of symbolic links is widespread. They are often used to save disk space, to make a copy of a

file in order to satisfy installation requirements of a new program that expects the file to be in another

location, they are used to fix scripts that suddenly have to run in a new environment and can generally save a

lot of work. A system admin may decide to move the home directories of the users to a new location, disk2

for instance, but if he wants everything to work like before, like the /etc/passwd file, with a minimum of

effort he will create a symlink from /home to the new location /disk2/home.

3.4. File security

3.4.1. Access rights: Linux's first line of defense

The Linux security model is based on the one used on UNIX systems, and is as rigid as the UNIX security

model (and sometimes even more), which is already quite robust. On a Linux system, every file is owned by a

user and a group user. There is also a third category of users, those that are not the user owner and don't

belong to the group owning the file. For each category of users, read, write and execute permissions can be

granted or denied.

We already used the long option to list files using the ls -l command, though for other reasons. This

command also displays file permissions for these three user categories; they are indicated by the nine

characters that follow the first character, which is the file type indicator at the beginning of the file properties

Introduction to Linux

Chapter 3. About files and the file system 60

line. As seen in the examples below, the first three characters in this series of nine display access rights for the

actual user that owns the file. The next three are for the group owner of the file, the last three for other users.

The permissions are always in the same order: read, write, execute for the user, the group and the others.

Some examples:

marise:~> ls -l To_Do

-rw-rw-r-- 1 marise users 5 Jan 15 12:39 To_Do

marise:~> ls -l /bin/ls

-rwxr-xr-x 1 root root 45948 Aug 9 15:01 /bin/ls*

The first file is a regular file (first dash). Users with user name marise or users belonging to the group users

can read and write (change/move/delete) the file, but they can't execute it (second and third dash). All other

users are only allowed to read this file, but they can't write or execute it (fourth and fifth dash).

The second example is an executable file, the difference: everybody can run this program, but you need to be

root to change it.

The Info pages explain how the ls command handles display of access rights in detail, see the section What

information is listed.

For easy use with commands, both access rights or modes and user groups have a code. See the tables below.

Table 3-7. Access mode codes

Code Meaning

0 or - The access right that is supposed to be on this place is not granted.

4 or r read access is granted to the user category defined in this place

2 or w write permission is granted to the user category defined in this place

1 or x execute permission is granted to the user category defined in this place

Table 3-8. User group codes

Code Meaning

u user permissions

g group permissions

o permissions for others

This straight forward scheme is applied very strictly, which allows a high level of security even without

network security. Among other functions, the security scheme takes care of user access to programs, it can

serve files on a need-to-know basis and protect sensitive data such as home directories and system

configuration files.

You should know what your user name is. If you don't, it can be displayed using the id command, which also

displays the default group you belong to and eventually other groups of which you are a member:

tilly:~> id

uid=504(tilly) gid=504(tilly) groups=504(tilly),100(users),2051(org)

Your user name is also stored in the environment variable USER:

tilly:~> echo $USER

tilly

Introduction to Linux

Chapter 3. About files and the file system 61

3.4.2. The tools

3.4.2.1. The chmod command

A normal consequence of applying strict file permissions, and sometimes a nuisance, is that access rights will

need to be changed for all kinds of reasons. We use the chmod command to do this, and eventually to chmod

has become an almost acceptable English verb, meaning the changing of the access mode of a file. The

chmod command can be used with alphanumeric or numeric options, whatever you like best.

The example below uses alphanumeric options in order to solve a problem that commonly occurs with new

users:

asim:~> ./hello

bash: ./hello: bad interpreter: Permission denied

asim:~> cat hello

#!/bin/bash

echo "Hello, World"

asim:~> ls -l hello

-rw-rw-r-- 1 asim asim 32 Jan 15 16:29 hello

asim:~> chmod u+x hello

asim:~> ./hello

Hello, World

asim:~> ls -l hello

-rwxrw-r-- 1 asim asim 32 Jan 15 16:29 hello*

The + and - operators are used to grant or deny a given right to a given group. Combinations separated by

commas are allowed. The Info and man pages contain useful examples. Here's another one, which makes the

file from the previous example a private file to user asim:

asim:~> chmod u+rwx,go-rwx hello

asim:~> ls -l hello

-rwx------ 1 asim asim 32 Jan 15 16:29 hello*

The kind of problem resulting in an error message saying that permission is denied somewhere is usually a

problem with access rights in most cases. Also, comments like, "It worked yesterday," and "When I run this as

root it works," are most likely caused by the wrong file permissions.

When using chmod with numeric arguments, the values for each granted access right have to be counted

together per group. Thus we get a 3-digit number, which is the symbolic value for the settings chmod has to

make. The following table lists the most common combinations:

Table 3-9. File protection with chmod

Command Meaning

chmod 400 file To protect a file against accidental overwriting.

chmod 500

directory

To protect yourself from accidentally removing, renaming or moving files from this

directory.

Introduction to Linux

Chapter 3. About files and the file system 62

chmod 600 file A private file only changeable by the user who entered this command.

chmod 644 file A publicly readable file that can only be changed by the issuing user.

chmod 660 file
Users belonging to your group can change this file, others don't have any access to

it at all.

chmod 700 file
Protects a file against any access from other users, while the issuing user still has

full access.

chmod 755

directory

For files that should be readable and executable by others, but only changeable by

the issuing user.

chmod 775 file Standard file sharing mode for a group.

chmod 777 file Everybody can do everything to this file.

If you enter a number with less than three digits as an argument to chmod, omitted characters are replaced

with zeros starting from the left. There is actually a fourth digit on Linux systems, that precedes the first three

and sets special access modes. Everything about these and many more are located in the Info pages.

3.4.2.2. Logging on to another group

When you type id on the command line, you get a list of all the groups that you can possibly belong to,

preceded by your user name and ID and the group name and ID that you are currently connected with.

However, on many Linux systems you can only be actively logged in to one group at the time. By default, this

active or primary group is the one that you get assigned from the /etc/passwd file. The fourth field of this

file holds users' primary group ID, which is looked up in the /etc/group file. An example:

asim:~> id

uid=501(asim) gid=501(asim) groups=100(users),501(asim),3400(web)

asim:~> grep asim /etc/passwd

asim:x:501:501:Asim El Baraka:/home/asim:/bin/bash

asim:~> grep 501 /etc/group

asim:x:501:

The fourth field in the line from /etc/passwd contains the value "501", which represents the group asim in

the above example. From /etc/group we can get the name matching this group ID. When initially

connecting to the system, this is the group that asim will belong to.

User private group scheme

In order to allow more flexibility, most Linux systems follow the so-called user private group

scheme, that assigns each user primarily to his or her own group. This group is a group that only

contains this particular user, hence the name "private group". Usually this group has the same name

as the user login name, which can be a bit confusing.

Apart from his own private group, user asim can also be in the groups users and web. Because these are

secondary groups to this user, he will need to use the newgrp to log into any of these groups (use gpasswd for

setting the group password first). In the example, asim needs to create files that are owned by the group web.

asim:/var/www/html> newgrp web

asim:/var/www/html> id

uid=501(asim) gid=3400(web) groups=100(users),501(asim),3400(web)

When asim creates new files now, they will be in group ownership of the group web instead of being owned

by the group asim:

Introduction to Linux

Chapter 3. About files and the file system 63

asim:/var/www/html> touch test

asim:/var/www/html> ls -l test

-rw-rw-r-- 1 asim web 0 Jun 10 15:38 test

Logging in to a new group prevents you from having to use chown (see Section 3.4.2.4) or calling your

system administrator to change ownerships for you.

See the manpage for newgrp for more information.

3.4.2.3. The file mask

When a new file is saved somewhere, it is first subjected to the standard security procedure. Files without

permissions don't exist on Linux. The standard file permission is determined by the mask for new file creation.

The value of this mask can be displayed using the umask command:

bert:~> umask

0002

Instead of adding the symbolic values to each other, as with chmod, for calculating the permission on a new

file they need to be subtracted from the total possible access rights. In the example above, however, we see 4

values displayed, yet there are only 3 permission categories: user, group and other. The first zero is part of the

special file attributes settings, which we will discuss in Section 3.4.2.4 and Section 4.1.6. It might just as well

be that this first zero is not displayed on your system when entering the umask command, and that you only

see 3 numbers representing the default file creation mask.

Each UNIX-like system has a system function for creating new files, which is called each time a user uses a

program that creates new files, for instance, when downloading a file from the Internet, when saving a new

text document and so on. This function creates both new files and new directories. Full read, write and

execute permission is granted to everybody when creating a new directory. When creating a new file, this

function will grant read and write permissions for everybody, but set execute permissions to none for all user

categories. This, before the mask is applied, a directory has permissions 777 or rwxrwxrwx, a plain file 666 or

rw-rw-rw-.

The umask value is subtracted from these default permissions after the function has created the new file or

directory. Thus, a directory will have permissions of 775 by default, a file 664, if the mask value is (0)002.

This is demonstrated in the example below:

bert:~> mkdir newdir

bert:~> ls -ld newdir

drwxrwxr-x 2 bert bert 4096 Feb 28 13:45 newdir/

bert:~> touch newfile

bert:~> ls -l newfile

-rw-rw-r-- 1 bert bert 0 Feb 28 13:52 newfile

Files versus directories

A directory gets more permissions by default: it always has the execute permission. If it wouldn't

have that, it would not be accessible. Try this out by chmodding a directory 644!

If you log in to another group using the newgrp command, the mask remains unchanged. Thus, if it is set to

002, files and directories that you create while being in the new group will also be accessible to the other

members of that group; you don't have to use chmod.

Introduction to Linux

Chapter 3. About files and the file system 64

The root user usually has stricter default file creation permissions:

[root@estoban root]# umask

022

These defaults are set system-wide in the shell resource configuration files, for instance /etc/bashrc or

/etc/profile. You can change them in your own shell configuration file, see Chapter 7 on customizing

your shell environment.

3.4.2.4. Changing user and group ownership

When a file is owned by the wrong user or group, the error can be repaired with the chown (change owner)

and chgrp (change group) commands. Changing file ownership is a frequent system administrative task in

environments where files need to be shared in a group. Both commands are very flexible, as you can find out

by using the --help option.

The chown command can be applied to change both user and group ownership of a file, while chgrp only

changes group ownership. Of course the system will check if the user issuing one of these commands has

sufficient permissions on the file(s) she wants to change.

In order to only change the user ownership of a file, use this syntax:

chown newuser file

If you use a colon after the user name (see the Info pages), group ownership will be changed as well, to the

primary group of the user issuing the command. On a Linux system, each user has his own group, so this form

can be used to make files private:

jacky:~> id

uid=1304(jacky) gid=(1304) groups=1304(jacky),2034(pproject)

jacky:~> ls -l my_report

-rw-rw-r-- 1 jacky project 29387 Jan 15 09:34 my_report

jacky:~> chown jacky: my_report

jacky:~> chmod o-r my_report

jacky:~> ls -l my_report

-rw-rw---- 1 jacky jacky 29387 Jan 15 09:34 my_report

If jacky would like to share this file, without having to give everybody permission to write it, he can use the

chgrp command:

jacky:~> ls -l report-20020115.xls

-rw-rw---- 1 jacky jacky 45635 Jan 15 09:35 report-20020115.xls

jacky:~> chgrp project report-20020115.xls

jacky:~> chmod o= report-20020115.xls

jacky:~> ls -l report-20020115.xls

-rw-rw---- 1 jacky project 45635 Jan 15 09:35 report-20020115.xls

This way, users in the group project will be able to work on this file. Users not in this group have no business

with it at all.

Introduction to Linux

Chapter 3. About files and the file system 65

Both chown and chgrp can be used to change ownership recursively, using the -R option. In that case, all

underlying files and subdirectories of a given directory will belong to the given user and/or group.

Restrictions

On most systems, the use of the chown and chgrp commands is restricted for non-privileged users. If

you are not the administrator of the system, you can not change user nor group ownerships for security

reasons. If the usage of these commands would not be restricted, malicious users could assign ownership

of files to other users and/or groups and change behavior of those users' environments and even cause

damage to other users' files.

3.4.2.5. Special modes

For the system admin to not be bothered solving permission problems all the time, special access rights can be

given to entire directories, or to separate programs. There are three special modes:

Sticky bit mode: After execution of a job, the command is kept in the system memory. Originally this

was a feature used a lot to save memory: big jobs are loaded into memory only once. But these days

memory is inexpensive and there are better techniques to manage it, so it is not used anymore for its

optimizing capabilities on single files. When applied to an entire directory, however, the sticky bit has

a different meaning. In that case, a user can only change files in this directory when she is the user

owner of the file or when the file has appropriate permissions. This feature is used on directories like

/var/tmp, that have to be accessible for everyone, but where it is not appropriate for users to

change or delete each other's data. The sticky bit is indicated by a t at the end of the file permission

field:
mark:~> ls -ld /var/tmp

drwxrwxrwt 19 root root 8192 Jan 16 10:37 /var/tmp/

The sticky bit is set using the command chmod o+t directory. The historic origin of the "t" is in

UNIX' save Text access feature.

•

SUID (set user ID) and SGID (set group ID): represented by the character s in the user or group

permission field. When this mode is set on an executable file, it will run with the user and group

permissions on the file instead of with those of the user issuing the command, thus giving access to

system resources. We will discuss this further in Chapter 4.

•

SGID (set group ID) on a directory: in this special case every file created in the directory will have

the same group owner as the directory itself (while normal behavior would be that new files are

owned by the users who create them). This way, users don't need to worry about file ownership when

sharing directories:
mimi:~> ls -ld /opt/docs

drwxrws--- 4 root users 4096 Jul 25 2001 docs/

mimi:~> ls -l /opt/docs

-rw-rw---- 1 mimi users 345672 Aug 30 2001-Council.doc

This is the standard way of sharing files in UNIX.

Existing files are left unchanged!

Files that are being moved to a SGID directory but were created elsewhere keep their original

user and group owner. This may be confusing.

•

Introduction to Linux

Chapter 3. About files and the file system 66

3.5. Summary

On UNIX, as on Linux, all entities are in some way or another presented to the system as files with the

appropriate file properties. Use of (predefined) paths allows the users and the system admin to find, read and

manipulate files.

We've made our first steps toward becoming an expert: we discussed the real and the fake structure of the file

system, and we know about the Linux file security model, as well as several other security precautions that are

taken on every system by default.

The shell is the most important tool for interaction with the system. We learned several shell commands in

this chapter, which are listed in the table below.

Table 3-10. New commands in chapter 3: Files and the file system

Command Meaning

bash GNU shell program.

cat file(s) Send content of file(s) to standard output.

cd directory Enter directory. cd is a bash built-in command.

chgrp newgroup file(s) Change the group ownership of file(s) to newgroup

chmod mode file(s) Change access permissions on file(s)

chown newowner[:[newgroup]] file(s) Change file owner and group ownership.

cp sourcefile targetfile Copy sourcefile to targetfile.

df file
Reports on used disk space on the partition containing

file.

echo string Display a line of text

export
Part of bash that announces variables and their values

to the system.

file filename Determine file type of filename.

find path expression Find files in the file system hierarchy

grep PATTERN file Print lines in file containing the search pattern.

head file Send the first part of file to standard output

id Prints real and effective user name and groups.

info command Read documentation about command.

less file View file with a powerful viewer.

ln targetfile linkname Make a link with name linkname to targetfile.

locate searchstring Print all accessible files matching the search pattern.

ls file(s) Prints directory content.

man command
Format and display online (system) manual pages for

command.

mkdir newdir Make a new empty directory.

mv oldfile newfile Rename or move oldfile.

newgrp groupname Log in to a new group.

pwd Print the present or current working directory.

Introduction to Linux

Chapter 3. About files and the file system 67

quota Show disk usage and limits.

rm file Removes files and directories.

rmdir file Removes directories.

tail file Print the last part of file.

umask [value] Show or change new file creation mode.

wc file Counts lines, words and characters in file.

which command Shows the full path to command.

We also stressed the fact that you should READ THE MAN PAGES. This documentation is your first-aid kit

and contains the answers to many questions. The above list contains the basic commands that you will use on

a daily basis, but they can do much more than the tasks we've discussed here. Reading the documentation will

give you the control you need.

Last but not least, a handy overview of file permissions:

Table 3-11. File permissions

Who\What r(ead) w(rite) (e)x(ecute)

u(ser) 4 2 1

g(roup) 4 2 1

o(ther) 4 2 1

3.6. Exercises

Just login with your common user ID.

3.6.1. Partitions

On which partition is your home directory?•

How many partitions are on your system?•

What is the total size of your Linux installation?•

3.6.2. Paths

Display your search path.•

Export a senseless path by entering, for instance, export PATH=blah and try listing directory

content.

•

What is the path to your home directory? How would another user reach your home directory starting

from his own home directory, using a relative path?

•

Go to the tmp directory in /var.•

Now go to share in /usr using only one command. Change to doc. What is your present working

directory?

•

Introduction to Linux

Chapter 3. About files and the file system 68

3.6.3. Tour of the system

Change to the /proc directory.•

What CPU(s) is the system running on?•

How much RAM does it currently use?•

How much swap space do you have?•

What drivers are loaded?•

How many hours has the system been running?•

Which filesystems are known by your system?•

Change to /etc/rc.d | /etc/init.d | /etc/runlevels and choose the directory

appropriate for your run level.

•

What services should be running in this level?•

Which services run in graphical mode that don't run in text mode?•

Change to /etc•

How long does the system keep the log file in which user logins are monitored?•

Which release are you running?•

Are there any issues or messages of the day?•

How many users are defined on your system? Don't count them, let the computer do it for you!•

How many groups?•

Where is the time zone information kept?•

Are the HOWTOs installed on your system?•

Change to /usr/share/doc.•

Name three programs that come with the GNU coreutils package.•

Which version of bash is installed on this system?•

3.6.4. Manipulating files

Create a new directory in your home directory.•

Can you move this directory to the same level as your home directory?•

Copy all XPM files from /usr/share/pixmaps to the new directory. What does XPM mean?•

List the files in reverse alphabetical order.•

Change to your home directory. Create a new directory and copy all the files of the /etc directory

into it. Make sure that you also copy the files and directories which are in the subdirectories of /etc!

(recursive copy)

•

Change into the new directory and make a directory for files starting with an upper case character and

one for files starting with a lower case character. Move all the files to the appropriate directories. Use

as few commands as possible.

•

Remove the remaining files.•

Delete the directory and its entire content using a single command.•

Use grep to find out which script starts the Font Server in the graphical run level.•

Where is the sendmail server program?•

Make a symbolic link in your home directory to /var/tmp. Check that it really works.•

Make another symbolic link in your home directory to this link. Check that it works. Remove the first

link and list directory content. What happened to the second link?

•

3.6.5. File permissions

Can you change file permissions on /home?•

What is your standard file creation mode?•

Change ownership of /etc to your own user and group.•

Introduction to Linux

Chapter 3. About files and the file system 69

Change file permissions of ~/.bashrc so that only you and your primary group can read it.•

Issue the command locate root. Do you notice anything special?•

Make a symbolic link to /root. Can it be used?•

Introduction to Linux

Chapter 3. About files and the file system 70

Chapter 4. Processes

Next to files, processes are the most important things on a UNIX/Linux system. In this

chapter, we will take a closer look at those processes. We will learn more about:

Multi-user processing and multi-tasking♦

Process types♦

Controlling processes with different signals♦

Process attributes♦

The life cycle of a process♦

System startup and shutdown♦

SUID and SGID♦

System speed and response♦

Scheduling processes♦

The Vixie cron system♦

How to get the most out of your system♦

4.1. Processes inside out

4.1.1. Multi-user and multi-tasking

Now that we are more used to our environment and we are able to communicate a little bit with our system, it

is time to study the processes we can start in more detail. Not every command starts a single process. Some

commands initiate a series of processes, such as mozilla; others, like ls, are executed as a single command.

Furthermore, Linux is based on UNIX, where it has been common policy to have multiple users running

multiple commands, at the same time and on the same system. It is obvious that measures have to be taken to

have the CPU manage all these processes, and that functionality has to be provided so users can switch

between processes. In some cases, processes will have to continue to run even when the user who started them

logs out. And users need a means to reactivate interrupted processes.

We will explain the structure of Linux processes in the next sections.

4.1.2. Process types

4.1.2.1. Interactive processes

Interactive processes are initialized and controlled through a terminal session. In other words, there has to be

someone connected to the system to start these processes; they are not started automatically as part of the

system functions. These processes can run in the foreground, occupying the terminal that started the program,

and you can't start other applications as long as this process is running in the foreground. Alternatively, they

can run in the background, so that the terminal in which you started the program can accept new commands

while the program is running. Until now, we mainly focussed on programs running in the foreground - the

length of time taken to run them was too short to notice - but viewing a file with the less command is a good

example of a command occupying the terminal session. In this case, the activated program is waiting for you

to do something. The program is still connected to the terminal from where it was started, and the terminal is

only useful for entering commands this program can understand. Other commands will just result in errors or

Chapter 4. Processes 71

unresponsiveness of the system.

While a process runs in the background, however, the user is not prevented from doing other things in the

terminal in which he started the program, while it is running.

The shell offers a feature called job control which allows easy handling of multiple processes. This

mechanism switches processes between the foreground and the background. Using this system, programs can

also be started in the background immediately.

Running a process in the background is only useful for programs that don't need user input (via the shell).

Putting a job in the background is typically done when execution of a job is expected to take a long time. In

order to free the issuing terminal after entering the command, a trailing ampersand is added. In the example,

using graphical mode, we open an extra terminal window from the existing one:

billy:~> xterm &

[1] 26558

billy:~> jobs

[1]+ Running xterm &

The full job control features are explained in detail in the bash Info pages, so only the frequently used job

control applications are listed here:

Table 4-1. Controlling processes

(part of) command Meaning

regular_command Runs this command in the foreground.

command & Run this command in the background (release the terminal)

jobs Show commands running in the background.

Ctrl+Z Suspend (stop, but not quit) a process running in the foreground (suspend).

Ctrl+C Interrupt (terminate and quit) a process running in the foreground.

%n
Every process running in the background gets a number assigned to it. By using the %

expression a job can be referred to using its number, for instance fg %2.

bg Reactivate a suspended program in the background.

fg Puts the job back in the foreground.

kill End a process (also see Shell Builtin Commands in the Info pages of bash)

More practical examples can be found in the exercises.

Most UNIX systems are likely to be able to run screen, which is useful when you actually want another shell

to execute commands. Upon calling screen, a new session is created with an accompanying shell and/or

commands as specified, which you can then put out of the way. In this new session you may do whatever it is

you want to do. All programs and operations will run independent of the issuing shell. You can then detach

this session, while the programs you started in it continue to run, even when you log out of the originating

shell, and pick your screen up again any time you like.

This program originates from a time when virtual consoles were not invented yet, and everything needed to be

done using one text terminal. To addicts, it still has meaning in Linux, even though we've had virtual consoles

for almost ten years.

Introduction to Linux

Chapter 4. Processes 72

4.1.2.2. Automatic processes

Automatic or batch processes are not connected to a terminal. Rather, these are tasks that can be queued into a

spooler area, where they wait to be executed on a FIFO (first-in, first-out) basis. Such tasks can be executed

using one of two criteria:

At a certain date and time: done using the at command, which we will discuss in the second part of

this chapter.

•

At times when the total system load is low enough to accept extra jobs: done using the batch

command. By default, tasks are put in a queue where they wait to be executed until the system load is

lower than 0.8. In large environments, the system administrator may prefer batch processing when

large amounts of data have to be processed or when tasks demanding a lot of system resources have to

be executed on an already loaded system. Batch processing is also used for optimizing system

performance.

•

4.1.2.3. Daemons

Daemons are server processes that run continuously. Most of the time, they are initialized at system startup

and then wait in the background until their service is required. A typical example is the networking daemon,

xinetd, which is started in almost every boot procedure. After the system is booted, the network daemon just

sits and waits until a client program, such as an FTP client, needs to connect.

4.1.3. Process attributes

A process has a series of characteristics, which can be viewed with the ps command:

The process ID or PID: a unique identification number used to refer to the process.•

The parent process ID or PPID: the number of the process (PID) that started this process.•

Nice number: the degree of friendliness of this process toward other processes (not to be confused

with process priority, which is calculated based on this nice number and recent CPU usage of the

process).

•

Terminal or TTY: terminal to which the process is connected.•

User name of the real and effective user (RUID and EUID): the owner of the process. The real owner

is the user issuing the command, the effective user is the one determining access to system resources.

RUID and EUID are usually the same, and the process has the same access rights the issuing user

would have. An example to clarify this: the browser mozilla in /usr/bin is owned by user root:
theo:~> ls -l /usr/bin/mozilla

-rwxr-xr-x 1 root root 4996 Nov 20 18:28 /usr/bin/mozilla*

theo:~> mozilla &

[1] 26595

theo:~> ps -af

UID PID PPID C STIME TTY TIME CMD

theo 26601 26599 0 15:04 pts/5 00:00:00 /usr/lib/mozilla/mozilla-bin

theo 26613 26569 0 15:04 pts/5 00:00:00 ps -af

When user theo starts this program, the process itself and all processes started by the initial process,

will be owned by user theo and not by the system administrator. When mozilla needs access to certain

files, that access will be determined by theo's permissions and not by root's.

•

Real and effective group owner (RGID and EGID): The real group owner of a process is the primary

group of the user who started the process. The effective group owner is usually the same, except when

SGID access mode has been applied to a file.

•

Introduction to Linux

Chapter 4. Processes 73

4.1.4. Displaying process information

The ps command is one of the tools for visualizing processes. This command has several options which can

be combined to display different process attributes.

With no options specified, ps only gives information about the current shell and eventual processes:

theo:~> ps

 PID TTY TIME CMD

 4245 pts/7 00:00:00 bash

 5314 pts/7 00:00:00 ps

Since this does not give enough information - generally, at least a hundred processes are running on your

system - we will usually select particular processes out of the list of all processes, using the grep command in

a pipe, see Section 5.1.2.1, as in this line, which will select and display all processes owned by a particular

user:

ps -ef | grep username

This example shows all processes with a process name of bash, the most common login shell on Linux

systems:

theo:> ps auxw | grep bash

brenda 31970 0.0 0.3 6080 1556 tty2 S Feb23 0:00 -bash

root 32043 0.0 0.3 6112 1600 tty4 S Feb23 0:00 -bash

theo 32581 0.0 0.3 6384 1864 pts/1 S Feb23 0:00 bash

theo 32616 0.0 0.3 6396 1896 pts/2 S Feb23 0:00 bash

theo 32629 0.0 0.3 6380 1856 pts/3 S Feb23 0:00 bash

theo 2214 0.0 0.3 6412 1944 pts/5 S 16:18 0:02 bash

theo 4245 0.0 0.3 6392 1888 pts/7 S 17:26 0:00 bash

theo 5427 0.0 0.1 3720 548 pts/7 S 19:22 0:00 grep bash

In these cases, the grep command finding lines containing the string bash is often displayed as well on

systems that have a lot of idletime. If you don't want this to happen, use the pgrep command.

Bash shells are a special case: this process list also shows which ones are login shells (where you have to give

your username and password, such as when you log in in textmode or do a remote login, as opposed to

non-login shells, started up for instance by clicking a terminal window icon). Such login shells are preceded

with a dash (-).

|?

We will explain about the | operator in the next chapter, see Chapter 5.

More info can be found the usual way: ps --help or man ps. GNU ps supports different styles of option

formats; the above examples don't contain errors.

Note that ps only gives a momentary state of the active processes, it is a one-time recording. The top program

displays a more precise view by updating the results given by ps (with a bunch of options) once every five

seconds, generating a new list of the processes causing the heaviest load periodically, meanwhile integrating

more information about the swap space in use and the state of the CPU, from the proc file system:

 12:40pm up 9 days, 6:00, 4 users, load average: 0.21, 0.11, 0.03

89 processes: 86 sleeping, 3 running, 0 zombie, 0 stopped

CPU states: 2.5% user, 1.7% system, 0.0% nice, 95.6% idle

Introduction to Linux

Chapter 4. Processes 74

Mem: 255120K av, 239412K used, 15708K free, 756K shrd, 22620K buff

Swap: 1050176K av, 76428K used, 973748K free, 82756K cached

 PID USER PRI NI SIZE RSS SHARE STAT %CPU %MEM TIME COMMAND

 5005 root 14 0 91572 15M 11580 R 1.9 6.0 7:53 X

19599 jeff 14 0 1024 1024 796 R 1.1 0.4 0:01 top

19100 jeff 9 0 5288 4948 3888 R 0.5 1.9 0:24 gnome-terminal

19328 jeff 9 0 37884 36M 14724 S 0.5 14.8 1:30 mozilla-bin

 1 root 8 0 516 472 464 S 0.0 0.1 0:06 init

 2 root 9 0 0 0 0 SW 0.0 0.0 0:02 keventd

 3 root 9 0 0 0 0 SW 0.0 0.0 0:00 kapm-idled

 4 root 19 19 0 0 0 SWN 0.0 0.0 0:00 ksoftirqd_CPU0

 5 root 9 0 0 0 0 SW 0.0 0.0 0:33 kswapd

 6 root 9 0 0 0 0 SW 0.0 0.0 0:00 kreclaimd

 7 root 9 0 0 0 0 SW 0.0 0.0 0:00 bdflush

 8 root 9 0 0 0 0 SW 0.0 0.0 0:05 kupdated

 9 root -1-20 0 0 0 SW< 0.0 0.0 0:00 mdrecoveryd

 13 root 9 0 0 0 0 SW 0.0 0.0 0:01 kjournald

 89 root 9 0 0 0 0 SW 0.0 0.0 0:00 khubd

 219 root 9 0 0 0 0 SW 0.0 0.0 0:00 kjournald

 220 root 9 0 0 0 0 SW 0.0 0.0 0:00 kjournald

The first line of top contains the same information displayed by the uptime command:

jeff:~> uptime

 3:30pm, up 12 days, 23:29, 6 users, load average: 0.01, 0.02, 0.00

The data for these programs is stored among others in /var/run/utmp (information about currently

connected users) and in the virtual file system /proc, for example /proc/loadavg (average load

information). There are all sorts of graphical applications to view this data, such as the Gnome System

Monitor and lavaps. Over at FreshMeat and SourceForge you will find tens of applications that centralize this

information along with other server data and logs from multiple servers on one (web) server, allowing

monitoring of the entire IT infrastructure from one workstation.

The relations between processes can be visualized using the pstree command:

sophie:~> pstree

init-+-amd

 |-apmd

 |-2*[artsd]

 |-atd

 |-crond

 |-deskguide_apple

 |-eth0

 |-gdm---gdm-+-X

 | `-gnome-session-+-Gnome

 | |-ssh-agent

 | `-true

 |-geyes_applet

 |-gkb_applet

 |-gnome-name-serv

 |-gnome-smproxy

 |-gnome-terminal-+-bash---vim

 | |-bash

 | |-bash---pstree

 | |-bash---ssh

 | |-bash---mozilla-bin---mozilla-bin---3*[mozilla-bin]

 | `-gnome-pty-helper

 |-gpm

 |-gweather

 |-kapm-idled

Introduction to Linux

Chapter 4. Processes 75

http://www.freshmeat.net
http://www.sourceforge.org

 |-3*[kdeinit]

 |-keventd

 |-khubd

 |-5*[kjournald]

 |-klogd

 |-lockd---rpciod

 |-lpd

 |-mdrecoveryd

 |-6*[mingetty]

 |-8*[nfsd]

 |-nscd---nscd---5*[nscd]

 |-ntpd

 |-3*[oafd]

 |-panel

 |-portmap

 |-rhnsd

 |-rpc.mountd

 |-rpc.rquotad

 |-rpc.statd

 |-sawfish

 |-screenshooter_a

 |-sendmail

 |-sshd---sshd---bash---su---bash

 |-syslogd

 |-tasklist_applet

 |-vmnet-bridge

 |-xfs

 `-xinetd-ipv6

The -u and -a options give additional information. For more options and what they do, refer to the Info

pages.

In the next section, we will see how one process can create another.

4.1.5. Life and death of a process

4.1.5.1. Process creation

A new process is created because an existing process makes an exact copy of itself. This child process has the

same environment as its parent, only the process ID number is different. This procedure is called forking.

After the forking process, the address space of the child process is overwritten with the new process data. This

is done through an exec call to the system.

The fork-and-exec mechanism thus switches an old command with a new, while the environment in which the

new program is executed remains the same, including configuration of input and output devices, environment

variables and priority. This mechanism is used to create all UNIX processes, so it also applies to the Linux

operating system. Even the first process, init, with process ID 1, is forked during the boot procedure in the

so-called bootstrapping procedure.

This scheme illustrates the fork-and-exec mechanism. The process ID changes after the fork procedure:

Figure 4-1. Fork-and-exec mechanism

Introduction to Linux

Chapter 4. Processes 76

There are a couple of cases in which init becomes the parent of a process, while the process was not started by

init, as we already saw in the pstree example. Many programs, for instance, daemonize their child processes,

so they can keep on running when the parent stops or is being stopped. A window manager is a typical

example; it starts an xterm process that generates a shell that accepts commands. The window manager then

denies any further responsibility and passes the child process to init. Using this mechanism, it is possible to

change window managers without interrupting running applications.

Every now and then things go wrong, even in good families. In an exceptional case, a process might finish

while the parent does not wait for the completion of this process. Such an unburied process is called a zombie

process.

4.1.5.2. Ending processes

When a process ends normally (it is not killed or otherwise unexpectedly interrupted), the program returns its

exit status to the parent. This exit status is a number returned by the program providing the results of the

program's execution. The system of returning information upon executing a job has its origin in the C

programming language in which UNIX has been written.

The return codes can then be interpreted by the parent, or in scripts. The values of the return codes are

program-specific. This information can usually be found in the man pages of the specified program, for

example the grep command returns -1 if no matches are found, upon which a message on the lines of "No

files found" can be printed. Another example is the Bash builtin command true, which does nothing except

return an exit status of 0, meaning success.

Introduction to Linux

Chapter 4. Processes 77

4.1.5.3. Signals

Processes end because they receive a signal. There are multiple signals that you can send to a process. Use the

kill command to send a signal to a process. The command kill -l shows a list of signals. Most signals are for

internal use by the system, or for programmers when they write code. As a user, you will need the following

signals:

Table 4-2. Common signals

Signal name Signal number Meaning

SIGTERM 15 Terminate the process in an orderly way.

SIGINT 2
Interrupt the process. A process can ignore this

signal.

SIGKILL 9
Interrupt the process. A process can not ignore

this signal.

SIGHUP 1 For daemons: reread the configuration file.

You can read more about default actions that are taken when sending a signal to a process in man 7 signal.

4.1.6. SUID and SGID

As promised in the previous chapter, we will now discuss the special modes SUID and SGID in more detail.

These modes exist to provide normal users the ability to execute tasks they would normally not be able to do

because of the tight file permission scheme used on UNIX based systems. In the ideal situation special modes

are used as sparsely as possible, since they include security risks. Linux developers have generally tried to

avoid them as much as possible. The Linux ps version, for example, uses the information stored in the /proc

file system, which is accessible to everyone, thus avoiding exposition of sensitive system data and resources

to the general public. Before that, and still on older UNIX systems, the ps program needed access to files such

as /dev/mem and /dev/kmem, which had disadvantages because of the permissions and ownerships on

these files:

rita:~> ls -l /dev/*mem

crw-r----- 1 root kmem 1, 2 Aug 30 22:30 /dev/kmem

crw-r----- 1 root kmem 1, 1 Aug 30 22:30 /dev/mem

With older versions of ps, it was not possible to start the program as a common user, unless special modes

were applied to it.

While we generally try to avoid applying any special modes, it is sometimes necessary to use an SUID. An

example is the mechanism for changing passwords. Of course users will want to do this themselves instead of

having their password set by the system administrator. As we know, user names and passwords are listed in

the /etc/passwd file, which has these access permissions and owners:

bea:~> ls -l /etc/passwd

-rw-r--r-- 1 root root 1267 Jan 16 14:43 /etc/passwd

Still, users need to be able to change their own information in this file. This is achieved by giving the passwd

program special permissions:

mia:~> which passwd

passwd is /usr/bin/passwd

Introduction to Linux

Chapter 4. Processes 78

mia:~> ls -l /usr/bin/passwd

-r-s--x--x 1 root root 13476 Aug 7 06:03 /usr/bin/passwd*

When called, the passwd command will run using the access permissions of root, thus enabling a common

user to edit the password file which is owned by the system admin.

SGID modes on a file don't occur nearly as frequently as SUID, because SGID often involves the creation of

extra groups. In some cases, however, we have to go through this trouble in order to build an elegant solution

(don't worry about this too much - the necessary groups are usually created upon installation). This is the case

for the write and wall programs, which are used to send messages to other users' terminals (ttys). The write

command writes a message to a single user, while wall writes to all connected users.

Sending text to another user's terminal or graphical display is normally not allowed. In order to bypass this

problem, a group has been created, which owns all terminal devices. When the write and wall commands are

granted SGID permissions, the commands will run using the access rights as applicable to this group, tty in

the example. Since this group has write access to the destination terminal, also a user having no permissions

to use that terminal in any way can send messages to it.

In the example below, user joe first finds out on which terminal his correspondent is connected, using the who

command. Then he sends her a message using the write command. Also illustrated are the access rights on the

write program and on the terminals occupied by the receiving user: it is clear that others than the user owner

have no permissions on the device, except for the group owner, which can write to it.

joe:~> which write

write is /usr/bin/write

joe:~> ls -l /usr/bin/write

-rwxr-sr-x 1 root tty 8744 Dec 5 00:55 /usr/bin/write*

joe:~> who

jenny tty1 Jan 23 11:41

jenny pts/1 Jan 23 12:21 (:0)

jenny pts/2 Jan 23 12:22 (:0)

jenny pts/3 Jan 23 12:22 (:0)

joe pts/0 Jan 20 10:13 (lo.callhost.org)

joe:~> ls -l /dev/tty1

crw--w---- 1 jenny tty 4, 1 Jan 23 11:41 /dev/tty1

joe:~> write jenny tty1

hey Jenny, shall we have lunch together?

^C

User jenny gets this on her screen:

Message from joe@lo.callhost.org on ptys/1 at 12:36 ...

hey Jenny, shall we have lunch together?

EOF

After receiving a message, the terminal can be cleared using the Ctrl+L key combination. In order to receive

no messages at all (except from the system administrator), use the mesg command. To see which connected

users accept messages from others use who -w. All features are fully explained in the Info pages of each

command.

Group names may vary

The group scheme is specific to the distribution. Other distributions may use other names or other

solutions.

Introduction to Linux

Chapter 4. Processes 79

4.2. Boot process, Init and shutdown

4.2.1. Introduction

One of the most powerful aspects of Linux concerns its open method of starting and stopping the operating

system, where it loads specified programs using their particular configurations, permits you to change those

configurations to control the boot process, and shuts down in a graceful and organized way.

Beyond the question of controlling the boot or shutdown process, the open nature of Linux makes it much

easier to determine the exact source of most problems associated with starting up or shutting down your

system. A basic understanding of this process is quite beneficial to everybody who uses a Linux system.

A lot of Linux systems use lilo, the LInux LOader for booting operating systems. We will only discuss

GRUB, however, which is easier to use and more flexible. Should you need information about lilo, refer to the

man pages and HOWTOs. Both systems support dual boot installations, we refer to the HOWTOs on this

subject for practical examples and background information.

4.2.2. The boot process

When an x86 computer is booted, the processor looks at the end of the system memory for the BIOS (Basic

Input/Output System) and runs it. The BIOS program is written into permanent read-only memory and is

always available for use. The BIOS provides the lowest level interface to peripheral devices and controls the

first step of the boot process.

The BIOS tests the system, looks for and checks peripherals, and then looks for a drive to use to boot the

system. Usually it checks the floppy drive (or CD-ROM drive on many newer systems) for bootable media, if

present, and then it looks to the hard drive. The order of the drives used for booting is usually controlled by a

particular BIOS setting on the system. Once Linux is installed on the hard drive of a system, the BIOS looks

for a Master Boot Record (MBR) starting at the first sector on the first hard drive, loads its contents into

memory, then passes control to it.

This MBR contains instructions on how to load the GRUB (or LILO) boot-loader, using a pre-selected

operating system. The MBR then loads the boot-loader, which takes over the process (if the boot-loader is

installed in the MBR). In the default Red Hat Linux configuration, GRUB uses the settings in the MBR to

display boot options in a menu. Once GRUB has received the correct instructions for the operating system to

start, either from its command line or configuration file, it finds the necessary boot file and hands off control

of the machine to that operating system.

4.2.3. GRUB features

This boot method is called direct loading because instructions are used to directly load the operating system,

with no intermediary code between the boot-loaders and the operating system's main files (such as the kernel).

The boot process used by other operating systems may differ slightly from the above, however. For example,

Microsoft's DOS and Windows operating systems completely overwrite anything on the MBR when they are

installed without incorporating any of the current MBR's configuration. This destroys any other information

stored in the MBR by other operating systems, such as Linux. The Microsoft operating systems, as well as

various other proprietary operating systems, are loaded using a chain loading boot method. With this method,

the MBR points to the first sector of the partition holding the operating system, where it finds the special files

Introduction to Linux

Chapter 4. Processes 80

necessary to actually boot that operating system.

GRUB supports both boot methods, allowing you to use it with almost any operating system, most popular

file systems, and almost any hard disk your BIOS can recognize.

GRUB contains a number of other features; the most important include:

GRUB provides a true command-based, pre-OS environment on x86 machines to allow maximum

flexibility in loading operating systems with certain options or gathering information about the

system.

•

GRUB supports Logical Block Addressing (LBA) mode, needed to access many IDE and all SCSI

hard disks. Before LBA, hard drives could encounter a 1024-cylinder limit, where the BIOS could not

find a file after that point.

•

GRUB's configuration file is read from the disk every time the system boots, preventing you from

having to write over the MBR every time you change the boot options.

•

A full description of GRUB may be found by issuing the info grub command or at the GRUB site. The

Linux Documentation Project has a Multiboot with GRUB Mini-HOWTO.

4.2.4. Init

The kernel, once it is loaded, finds init in sbin and executes it.

When init starts, it becomes the parent or grandparent of all of the processes that start up automatically on

your Linux system. The first thing init does, is reading its initialization file, /etc/inittab. This instructs

init to read an initial configuration script for the environment, which sets the path, starts swapping, checks the

file systems, and so on. Basically, this step takes care of everything that your system needs to have done at

system initialization: setting the clock, initializing serial ports and so forth.

Then init continues to read the /etc/inittab file, which describes how the system should be set up in

each run level and sets the default run level. A run level is a configuration of processes. All UNIX-like

systems can be run in different process configurations, such as the single user mode, which is referred to as

run level 1 or run level S (or s). In this mode, only the system administrator can connect to the system. It is

used to perform maintenance tasks without risks of damaging the system or user data. Naturally, in this

configuration we don't need to offer user services, so they will all be disabled. Another run level is the reboot

run level, or run level 6, which shuts down all running services according to the appropriate procedures and

then restarts the system.

Use the who to check what your current run level is:

willy@ubuntu:~$ who -r

 run-level 2 2006-10-17 23:22 last=S

More about run levels in the next section, see Section 4.2.5.

After having determined the default run level for your system, init starts all of the background processes

necessary for the system to run by looking in the appropriate rc directory for that run level. init runs each of

the kill scripts (their file names start with a K) with a stop parameter. It then runs all of the start scripts (their

file names start with an S) in the appropriate run level directory so that all services and applications are started

correctly. In fact, you can execute these same scripts manually after the system is finished booting with a

command like /etc/init.d/httpd stop or service httpd stop logged in as root, in this case stopping the

Introduction to Linux

Chapter 4. Processes 81

http://www.gnu.org/software/grub/
http://www.tldp.org/HOWTO/mini/Multiboot-with-GRUB.html

web server.

Special case

Note that on system startup, the scripts in rc2.d and rc3.d are usually executed. In that case, no

services are stopped (at least not permanently). There are only services that are started.

None of the scripts that actually start and stop the services are located in /etc/rc<x>.d. Rather, all of the

files in /etc/rc<x>.d are symbolic links that point to the actual scripts located in /etc/init.d. A

symbolic link is nothing more than a file that points to another file, and is used in this case because it can be

created and deleted without affecting the actual scripts that kill or start the services. The symbolic links to the

various scripts are numbered in a particular order so that they start in that order. You can change the order in

which the services start up or are killed by changing the name of the symbolic link that refers to the script that

actually controls the service. You can use the same number multiple times if you want a particular service

started or stopped right before or after another service, as in the example below, listing the content of

/etc/rc5.d, where crond and xfs are both started from a linkname starting with "S90". In this case, the

scripts are started in alphabetical order.

[jean@blub /etc/rc5.d] ls

K15httpd@ K45named@ S08ipchains@ S25netfs@ S85gpm@

K16rarpd@ K46radvd@ S08iptables@ S26apmd@ S90crond@

K20nfs@ K61ldap@ S09isdn@ S28autofs@ S90xfs@

K20rstatd@ K65identd@ S10network@ S30nscd@ S95anacron@

K20rusersd@ K74ntpd@ S12syslog@ S55sshd@ S95atd@

K20rwalld@ K74ypserv@ S13portmap@ S56rawdevices@ S97rhnsd@

K20rwhod@ K74ypxfrd@ S14nfslock@ S56xinetd@ S99local@

K25squid@ K89bcm5820@ S17keytable@ S60lpd@

K34yppasswdd@ S05kudzu@ S20random@ S80sendmail@

After init has progressed through the run levels to get to the default run level, the /etc/inittab script

forks a getty process for each virtual console (login prompt in text mode). getty opens tty lines, sets their

modes, prints the login prompt, gets the user's name, and then initiates a login process for that user. This

allows users to authenticate themselves to the system and use it. By default, most systems offer 6 virtual

consoles, but as you can see from the inittab file, this is configurable.

/etc/inittab can also tell init how it should handle a user pressing Ctrl+Alt+Delete at the console. As

the system should be properly shut down and restarted rather than immediately power-cycled, init is told to

execute the command /sbin/shutdown -t3 -r now, for instance, when a user hits those keys. In addition,

/etc/inittab states what init should do in case of power failures, if your system has a UPS unit attached

to it.

On most RPM-based systems the graphical login screen is started in run level 5, where /etc/inittab runs

a script called /etc/X11/prefdm. The prefdm script runs the preferred X display manager, based on the

contents of the /etc/sysconfig/desktop directory. This is typically gdm if you run GNOME or kdm

if you run KDE, but they can be mixed, and there's also the xdm that comes with a standard X installation.

But there are other possibilities as well. On Debian, for instance, there is an initscript for each of the display

managers, and the content of the /etc/X11/default-display-manager is used to determine which

one to start. More about the graphical interface can be read in Section 7.3. Ultimately, your system

documentation will explain the details about the higher level aspects of init.

The /etc/default and/or /etc/sysconfig directories contain entries for a range of functions and

services, these are all read at boot time. The location of the directory containing system defaults might be

somewhat different depending on your Linux distribution.

Introduction to Linux

Chapter 4. Processes 82

Besides the graphical user environment, a lot of other services may be started as well. But if all goes well, you

should be looking at a login prompt or login screen when the boot process has finished.

Other procedures

We explained how SysV init works on x86 based machines. Startup procedures may vary on other

architectures and distributions. Other systems may use the BSD-style init, where startup files are not

split up into multiple /etc/rc<LEVEL>.d directories. It might also be possible that your system uses

/etc/rc.d/init.d instead of /etc/init.d.

4.2.5. Init run levels

The idea behind operating different services at different run levels essentially revolves around the fact that

different systems can be used in different ways. Some services cannot be used until the system is in a

particular state, or mode, such as being ready for more than one user or having networking available.

There are times in which you may want to operate the system in a lower mode. Examples are fixing disk

corruption problems in run level 1 so no other users can possibly be on the system, or leaving a server in run

level 3 without an X session running. In these cases, running services that depend upon a higher system mode

to function does not make sense because they will not work correctly anyway. By already having each service

assigned to start when its particular run level is reached, you ensure an orderly start up process, and you can

quickly change the mode of the machine without worrying about which services to manually start or stop.

Available run levels are generally described in /etc/inittab, which is partially shown below:

#

inittab This file describes how the INIT process should set up

the system in a certain run-level.

Default run level. The run levels are:

0 - halt (Do NOT set initdefault to this)

1 - Single user mode

2 - Multiuser, without NFS

(The same as 3, if you do not have networking)

3 - Full multiuser mode

4 - unused

5 - X11

6 - reboot (Do NOT set initdefault to this)

id:5:initdefault:

<--cut-->

Feel free to configure unused run levels (commonly run level 4) as you see fit. Many users configure those run

levels in a way that makes the most sense for them while leaving the standard run levels as they are by default.

This allows them to quickly move in and out of their custom configuration without disturbing the normal set

of features at the standard run levels.

If your machine gets into a state where it will not boot due to a bad /etc/inittab or will not let you log in

because you have a corrupted /etc/passwd file (or if you have simply forgotten your password), boot into

single-user mode.

No graphics?

When you are working in text mode because you didn't get presented a graphical login screen on the

console of your machine, you can normally switch to console 7 or up to have a graphical login. If this is

Introduction to Linux

Chapter 4. Processes 83

not the case, check the current run level using the command who -r. If it is set to something else than

the original default from /etc/inittab, chances are that the system does not start up in graphical

mode by default. Contact your system administrator or read man init in that case. Note that switching

run levels is done preferably using the telinit command; switching from a text to a graphical console or

vice versa does not involve a run level switch.

The discussion of run levels, scripts and configurations in this guide tries to be as general as possible. Lots of

variations exist. For instance, Gentoo Linux stores scripts in /etc/run levels. Other systems might first

run through (a) lower run level(s) and execute all the scripts in there before arriving at the final run level and

executing those scripts. Refer to your system documentation for more information. You might also read

through the scripts that are refered to in /etc/inittab to get a better comprehension of what happens on

your system.

4.2.5.1. Tools

The chkconfig or update-rc.d utilities, when installed on your system, provide a simple command-line tool

for maintaining the /etc/init.d directory hierarchy. These relieve system administrators from having to

directly manipulate the numerous symbolic links in the directories under /etc/rc[x].d.

In addition, some systems offer the ntsysv tool, which provides a text-based interface; you may find this

easier to use than chkconfig's command-line interface. On SuSE Linux, you will find the yast and insserv

tools. For Mandrake easy configuration, you may want to try DrakConf, which allows among other features

switching between run levels 3 and 5. In Mandriva this became the Mandriva Linux Control Center.

Most distributions provide a graphical user interface for configuring processes, check with your system

documentation.

All of these utilities must be run as root. The system administrator may also manually create the appropriate

links in each run level directory in order to start or stop a service in a certain run level.

4.2.6. Shutdown

UNIX was not made to be shut down, but if you really must, use the shutdown command. After completing

the shutdown procedure, the -h option will halt the system, while -r will reboot it.

The reboot and halt commands are now able to invoke shutdown if run when the system is in run levels 1-5,

and thus ensure proper shutdown of the system,but it is a bad habit to get into, as not all UNIX/Linux versions

have this feature.

If your computer does not power itself down, you should not turn off the computer until you see a message

indicating that the system is halted or finished shutting down, in order to give the system the time to unmount

all partitions. Being impatient may cause data loss.

4.3. Managing processes

4.3.1. Work for the system admin

While managing system resources, including processes, is a task for the local system administrator, it doesn't

hurt a common user to know something about it, especially where his or her own processes and their optimal

execution are concerned.

Introduction to Linux

Chapter 4. Processes 84

We will explain a little bit on a theoretical level about system performance, though not as far as hardware

optimization and other advanced procedures. Instead, we will study the daily problems a common user is

confronted with, and actions such a user can take to optimally use the resources available. As we learn in the

next section, this is mainly a matter of thinking before acting.

Figure 4-2. Can't you go faster?

4.3.2. How long does it take?

Bash offers a built-in time command that displays how long a command takes to execute. The timing is highly

accurate and can be used on any command. In the example below, it takes about a minute and a half to make

this book:

tilly:~/xml/src> time make

Output written on abook.pdf (222 pages, 1619861 bytes).

Transcript written on abook.log.

real 1m41.056s

user 1m31.190s

sys 0m1.880s

Introduction to Linux

Chapter 4. Processes 85

The GNU time command in /usr/bin (as opposed to the shell built-in version) displays more information

that can be formatted in different ways. It also shows the exit status of the command, and the total elapsed

time. The same command as the above using the independent time gives this output:

tilly:~/xml/src> /usr/bin/time make

Output written on abook.pdf (222 pages, 1595027 bytes).

Transcript written on abook.log.

Command exited with non-zero status 2

88.87user 1.74system 1:36.21elapsed 94%CPU

 (0avgtext+0avgdata 0maxresident)k

0inputs+0outputs (2192major+30002minor)pagefaults 0swaps

Refer again to the Info pages for all the information.

4.3.3. Performance

To a user, performance means quick execution of commands. To a system manager, on the other hand, it

means much more: the system admin has to optimize system performance for the whole system, including

users, all programs and daemons. System performance can depend on a thousand tiny things which are not

accounted for with the time command:

the program executing is badly written or doesn't use the computer appropriately•

access to disks, controllers, display, all kinds of interfaces, etc.•

reachability of remote systems (network performance)•

amount of users on the system, amount of users actually working simultaneously•

time of day•

...•

4.3.4. Load

In short: the load depends on what is normal for your system. My old P133 running a firewall, SSH server,

file server, a route daemon, a sendmail server, a proxy server and some other services doesn't complain with 7

users connected; the load is still 0 on average. Some (multi-CPU) systems I've seen were quite happy with a

load of 67. There is only one way to find out - check the load regularly if you want to know what's normal. If

you don't, you will only be able to measure system load from the response time of the command line, which is

a very rough measurement since this speed is influenced by a hundred other factors.

Keep in mind that different systems will behave different with the same load average. For example, a system

with a graphics card supporting hardware acceleration will have no problem rendering 3D images, while the

same system with a cheap VGA card will slow down tremendously while rendering. My old P133 will

become quite uncomfortable when I start the X server, but on a modern system you hardly notice the

difference in the system load.

4.3.5. Can I do anything as a user?

A big environment can slow you down. If you have lots of environment variables set (instead of shell

variables), long search paths that are not optimized (errors in setting the path environment variable) and more

of those settings that are usually made "on the fly", the system will need more time to search and read data.

In X, window managers and desktop environments can be real CPU-eaters. A really fancy desktop comes with

a price, even when you can download it for free, since most desktops provide add-ons ad infinitum. Modesty

Introduction to Linux

Chapter 4. Processes 86

is a virtue if you don't buy a new computer every year.

4.3.5.1. Priority

The priority or importance of a job is defined by it's nice number. A program with a high nice number is

friendly to other programs, other users and the system; it is not an important job. The lower the nice number,

the more important a job is and the more resources it will take without sharing them.

Making a job nicer by increasing its nice number is only useful for processes that use a lot of CPU time

(compilers, math applications and the like). Processes that always use a lot of I/O time are automatically

rewarded by the system and given a higher priority (a lower nice number), for example keyboard input always

gets highest priority on a system.

Defining the priority of a program is done with the nice command.

Most systems also provide the BSD renice command, which allows you to change the niceness of a running

command. Again, read the man page for your system-specific information.

Interactive programs

It is NOT a good idea to nice or renice an interactive program or a job running in the foreground.

Use of these commands is usually a task for the system administrator. Read the man page for more info on

extra functionality available to the system administrator.

4.3.5.2. CPU resources

On every Linux system, many programs want to use the CPU(s) at the same time, even if you are the only

user on the system. Every program needs a certain amount of cycles on the CPU to run. There may be times

when there are not enough cycles because the CPU is too busy. The uptime command is wildly inaccurate (it

only displays averages, you have to know what is normal), but far from being useless. There are some actions

you can undertake if you think your CPU is to blame for the unresponsiveness of your system:

Run heavy programs when the load is low. This may be the case on your system during the night. See

next section for scheduling.

•

Prevent the system from doing unnecessary work: stop daemons and programs that you don't use, use

locate instead of a heavy find, ...

•

Run big jobs with a low priority•

If none of these solutions are an option in your particular situation, you may want to upgrade your CPU. On a

UNIX machine this is a job for the system admin.

4.3.5.3. Memory resources

When the currently running processes expect more memory than the system has physically available, a Linux

system will not crash; it will start paging, or swapping, meaning the process uses the memory on disk or in

swap space, moving contents of the physical memory (pieces of running programs or entire programs in the

case of swapping) to disk, thus reclaiming the physical memory to handle more processes. This slows the

system down enormously since access to disk is much slower than access to memory. The top command can

be used to display memory and swap use. Systems using glibc offer the memusage and memusagestat

commands to visualize memory usage.

Introduction to Linux

Chapter 4. Processes 87

If you find that a lot of memory and swap space are being used, you can try:

Killing, stopping or renicing those programs that use a big chunk of memory•

Adding more memory (and in some cases more swap space) to the system.•

Tuning system performance, which is beyond the scope of this document. See the reading list in

Appendix A for more.

•

4.3.5.4. I/O resources

While I/O limitations are a major cause of stress for system admins, the Linux system offers rather poor

utilities to measure I/O performance. The ps, vmstat and top tools give some indication about how many

programs are waiting for I/O; netstat displays network interface statistics, but there are virtually no tools

available to measure the I/O response to system load, and the iostat command gives a brief overview of

general I/O usage. Various graphical front-ends exist to put the output of these commands in a humanly

understandable form.

Each device has its own problems, but the bandwidth available to network interfaces and the bandwidth

available to disks are the two primary causes of bottlenecks in I/O performance.

Network I/O problems:

Network overload:

The amount of data transported over the network is larger than the network's capacity, resulting in

slow execution of every network related task for all users. They can be solved by cleaning up the

network (which mainly involves disabling protocols and services that you don't need) or by

reconfiguring the network (for example use of subnets, replacing hubs with switches, upgrading

interfaces and equipment).

•

Network integrity problems:

Occurs when data is transferred incorrectly. Solving this kind of problem can only be done by

isolating the faulty element and replacing it.

•

Disk I/O problems:

per-process transfer rate too low:

Read or write speed for a single process is not sufficient.

•

aggregate transfer rate too low:

The maximum total bandwidth that the system can provide to all programs that run is not enough.

•

This kind of problem is more difficult to detect, and usually takes extra hardware in order to re-divide data

streams over buses, controllers and disks, if overloaded hardware is cause of the problem. One solution to

solve this is a RAID array configuration optimized for input and output actions. This way, you get to keep the

same hardware. An upgrade to faster buses, controlers and disks is usually the other option.

If overload is not the cause, maybe your hardware is gradually failing, or not well connected to the system.

Check contacts, connectors and plugs to start with.

Introduction to Linux

Chapter 4. Processes 88

4.3.5.5. Users

Users can be divided in several classes, depending on their behavior with resource usage:

Users who run a (large) number of small jobs: you, the beginning Linux user, for instance.•

Users who run relatively few but large jobs: users running simulations, calculations, emulators or

other programs that eat a lot of memory, and usually these users have accompanying large data files.

•

Users who run few jobs but use a lot of CPU time (developers and the like).•

You can see that system requirements may vary for each class of users, and that it can be hard to satisfy

everyone. If you are on a multi-user system, it is useful (and fun) to find out habits of other users and the

system, in order to get the most out of it for your specific purposes.

4.3.5.6. Graphical tools

For the graphical environment, there are a whole bunch of monitoring tools available. Below is a screen shot

of the Gnome System Monitor, which has features for displaying and searching process information, and

monitoring system resources:

Figure 4-3. Gnome System Monitor

Introduction to Linux

Chapter 4. Processes 89

There are also a couple of handy icons you can install in the task bar, such as a disk, memory and load

monitor. xload is another small X application for monitoring system load. Find your favorite!

4.3.5.7. Interrupting your processes

As a non-privileged user, you can only influence your own processes. We already saw how you can display

processes and filter out processes that belong to a particular user, and what possible restrictions can occur.

When you see that one of your processes is eating too much of the system's resources, there are two things

that you can do:

Make the process use less resources without interrupting it;1.

Stop the process altogether.2.

In the case that you want the process to continue to run, but you also want to give the other processes on the

system a chance, you can renice the process. Appart from using the nice or renice commands, top is an easy

way of spotting the troublesome process(es) and reducing priority.

Identify the process in the "NI" column, it will most likely have a negative priority. Type r and enter the

process ID of the process that you want to renice. Then enter the nice value, for instance "20". That means

that from now on, this process will take 1/5 of the CPU cycles at the most.

Examples of processes that you want to keep on running are emulators, virtual machines, compilers and so on.

If you want to stop a process because it hangs or is going totally berserk in the way of I/O consumption, file

creation or use of other system resources, use the kill command. If you have the opportunity, first try to kill

the process softly, sending it the SIGTERM signal. This is an instruction to terminate whatever it is doing,

according to procedures as described in the code of the program:

joe:~> ps -ef | grep mozilla

joe 25822 1 0 Mar11 ? 00:34:04 /usr/lib/mozilla-1.4.1/mozilla-

joe:~> kill -15 25822

In the example above, user joe stopped his Mozilla browser because it hung.

Some processes are a little bit harder to get rid of. If you have the time, you might want to send them the

SIGINT signal to interrupt them. If that does not do the trick either, use the strongest signal, SIGKILL. In the

example below, joe stops a Mozilla that is frozen:

joe:~> ps -ef | grep mozilla

joe 25915 1 0 Mar11 ? 00:15:06 /usr/lib/mozilla-1.4.1/mozilla-

joe:~> kill -9 25915

joe:~> ps -ef | grep 25915

joe 2634 32273 0 18:09 pts/4 00:00:00 grep 25915

In such cases, you might want to check that the process is really dead, using the grep filter again on the PID.

If this only returns the grep process, you can be sure that you succeeded in stopping the process.

Among processes that are hard to kill is your shell. And that is a good thing: if they would be easy to kill, you

woud loose your shell every time you type Ctrl-C on the command line accidentally, since this is equivalent

to sending a SIGINT.

Introduction to Linux

Chapter 4. Processes 90

UNIX without pipes is almost unthinkable

The usage of pipes (|) for using output of one command as input of another is explained in the next

chapter, Chapter 5.

In a graphical environment, the xkill program is very easy to use. Just type the name of the command,

followed by an Enter and select the window of the application that you want to stop. It is rather dangerous

because it sends a SIGKILL by default, so only use it when an application hangs.

4.4. Scheduling processes

4.4.1. Use that idle time!

A Linux system can have a lot to suffer from, but it usually suffers only during office hours. Whether in an

office environment, a server room or at home, most Linux systems are just idling away during the morning,

the evening, the nights and weekends. Using this idle time can be a lot cheaper than buying those machines

you'd absolutely need if you want everything done at the same time.

There are three types of delayed execution:

Waiting a little while and then resuming job execution, using the sleep command. Execution time

depends on the system time at the moment of submission.

•

Running a command at a specified time, using the at command. Execution of the job(s) depends on

system time, not the time of submission.

•

Regularly running a command on a monthly, weekly, daily or hourly basis, using the cron facilities.•

The following sections discuss each possibility.

4.4.2. The sleep command

The Info page on sleep is probably one of the shortest there is. All sleep does is wait. By default the time to

wait is expressed in seconds.

So why does it exist? Some practical examples:

Somebody calls you on the phone, you say "Yes I'll be with you in half an hour" but you're about drowned in

work as it is and bound to forget your lunch:

(sleep 1800; echo "Lunch time..") &

When you can't use the at command for some reason, it's five o'clock, you want to go home but there's still

work to do and right now somebody is eating system resources:

(sleep 10000; myprogram) &

Make sure there's an auto-logout on your system, and that you log out or lock your desktop/office when

submitting this kind of job, or run it in a screen session.

When you run a series of printouts of large files, but you want other users to be able to print in between:

lp lotoftext; sleep 900; lp hugefile; sleep 900; lp anotherlargefile

Introduction to Linux

Chapter 4. Processes 91

Printing files is discussed in Chapter 8.

Programmers often use the sleep command to halt script or program execution for a certain time.

4.4.3. The at command

The at command executes commands at a given time, using your default shell unless you tell the command

otherwise (see the man page).

The options to at are rather user-friendly, which is demonstrated in the examples below:

steven@home:~> at tomorrow + 2 days

warning: commands will be executed using (in order) a) $SHELL

 b) login shell c) /bin/sh

at> cat reports | mail myboss@mycompany

at> <EOT>

job 1 at 2001-06-16 12:36

Typing Ctrl+D quits the at utility and generates the "EOT" message.

User steven does a strange thing here combining two commands; we will study this sort of practice in Chapter

5, Redirecting Input and Output.

steven@home:~> at 0237

warning: commands will be executed using (in order) a) $SHELL

 b) login shell c) /bin/sh

at> cd new-programs

at> ./configure; make

at> <EOT>

job 2 at 2001-06-14 02:00

The -m option sends mail to the user when the job is done, or explains when a job can't be done. The

command atq lists jobs; perform this command before submitting jobs in order prevent them from starting at

the same time as others. With the atrm command you can remove scheduled jobs if you change your mind.

It is a good idea to pick strange execution times, because system jobs are often run at "round" hours, as you

can see in Section 4.4.4 the next section. For example, jobs are often run at exactly 1 o'clock in the morning

(e.g. system indexing to update a standard locate database), so entering a time of 0100 may easily slow your

system down rather than fire it up. To prevent jobs from running all at the same time, you may also use the

batch command, which queues processes and feeds the work in the queue to the system in an evenly balanced

way, preventing excessive bursts of system resource usage. See the Info pages for more information.

4.4.4. Cron and crontab

The cron system is managed by the cron daemon. It gets information about which programs and when they

should run from the system's and users' crontab entries. Only the root user has access to the system crontabs,

while each user should only have access to his own crontabs. On some systems (some) users may not have

access to the cron facility.

At system startup the cron daemon searches /var/spool/cron/ for crontab entries which are named after

accounts in /etc/passwd, it searches /etc/cron.d/ and it searches /etc/crontab, then uses this

information every minute to check if there is something to be done. It executes commands as the user who

owns the crontab file and mails any output of commands to the owner.

Introduction to Linux

Chapter 4. Processes 92

On systems using Vixie cron, jobs that occur hourly, daily, weekly and monthly are kept in separate

directories in /etc to keep an overview, as opposed to the standard UNIX cron function, where all tasks are

entered into one big file.

Example of a Vixie crontab file:

[root@blob /etc]# more crontab

SHELL=/bin/bash

PATH=/sbin:/bin:/usr/sbin:/usr/bin

MAILTO=root

HOME=/

run-parts

commands to execute every hour

01 * * * * root run-parts /etc/cron.hourly

commands to execute every day

02 4 * * * root run-parts /etc/cron.daily

commands to execute every week

22 4 * * 0 root run-parts /etc/cron.weekly

commands to execute every month

42 4 1 * * root run-parts /etc/cron.monthly

Alternative

You could also use the crontab -l command to display crontabs.

Some variables are set, and after that there's the actual scheduling, one line per job, starting with 5 time and

date fields. The first field contains the minutes (from 0 to 59), the second defines the hour of execution (0-23),

the third is day of the month (1-31), then the number of the month (1-12), the last is day of the week (0-7, both

0 and 7 are Sunday). An asterisk in these fields represents the total acceptable range for the field. Lists are

allowed; to execute a job from Monday to Friday enter 1-5 in the last field, to execute a job on Monday,

Wednesday and Friday enter 1,3,5.

Then comes the user who should run the processes which are listed in the last column. The example above is

from a Vixie cron configuration where root runs the program run-parts on regular intervals, with the

appropriate directories as options. In these directories, the actual jobs to be executed at the scheduled time are

stored as shell scripts, like this little script that is run daily to update the database used by the locate

command:

billy@ahost cron.daily]$ cat slocate.cron

#!/bin/sh

renice +19 -p $$ >/dev/null 2>&1

/usr/bin/updatedb -f "nfs,smbfs,ncpfs,proc,devpts" -e \

"/tmp,/var/tmp, /usr/tmp,/afs,/net"

Users are supposed to edit their crontabs in a safe way using the crontab -e command. This will prevent a

user from accidentally opening more than one copy of his/her crontab file. The default editor is vi (see

Chapter 6, but you can use any text editor, such as gvim or gedit if you feel more comfortable with a GUI

editor.

When you quit, the system will tell you that a new crontab is installed.

This crontab entry reminds billy to go to his sports club every Thursday night:

billy:~> crontab -l

DO NOT EDIT THIS FILE - edit the master and reinstall.

(/tmp/crontab.20264 installed on Sun Jul 20 22:35:14 2003)

Introduction to Linux

Chapter 4. Processes 93

(Cron version -- $Id: chap4.xml,v 1.28 2007/09/19 12:22:26 tille Exp $)

38 16 * * 3 mail -s "sports evening" billy

After adding a new scheduled task, the system will tell you that a new crontab is installed. You do not need to

restart the cron daemon for the changes to take effect. In the example, billy added a new line pointing to a

backup script:

billy:~> crontab -e

45 15 * * 3 mail -s "sports evening" billy

4 4 * * 4,7 /home/billy/bin/backup.sh

<--write and quit-->

crontab: installing new crontab

billy:~>

The backup.sh script is executed every Thursday and Sunday. See Section 7.2.5 for an introduction to shell

scripting. Keep in mind that output of commands, if any, is mailed to the owner of the crontab file. If no mail

service is configured, you might find the output of your commands in your local mailbox,

/var/spool/mail/<your_username>, a plain text file.

Who runs my commands?

You don't have to specify the user who should run the commands. They are executed with the user's own

permissions by default.

4.5. Summary

Linux is a multi-user, multi-tasking operating system that has a UNIX-like way of handling processes.

Execution speed of commands can depend on a thousand tiny things. Among others, we learned a lot of new

commands to visualize and handle processes. Here's a list:

Table 4-3. New commands in chapter 4: Processes

Command Meaning

at Queue jobs for later execution.

atq Lists the user's pending jobs.

atrm Deletes jobs, determined by their job number.

batch Executes commands when system load level permits.

crontab Maintain crontab files for individual users.

halt Stop the system.

init run level Process control initialization.

jobs Lists currently executing jobs.

kill Terminate a process.

mesg Control write access to your terminal.

netstat
Display network connections, routing tables, interface statistics, masquerade

connections and multicast memberships.

nice Run a program with modified scheduling priority.

pgrep Display processes.

Introduction to Linux

Chapter 4. Processes 94

ps Report process status.

pstree Display a tree of processes.

reboot Stop the system.

renice Alter priority of running processes.

shutdown Bring the system down.

sleep Delay for a specified time.

time Time a command or report resource usage.

top Display top CPU processes.

uptime Show how long the system has been running.

vmstat Report virtual memory statistics.

w Show who is logged on and what they are doing.

wall Send a message to everybody's terminals.

who Show who is logged on.

write Send a message to another user.

4.6. Exercises

These are some exercises that will help you get the feel for processes running on your system.

4.6.1. General

Run top in one terminal while you do the exercises in another.•

Run the ps command.•

Read the man pages to find out how to display all your processes.•

Run the command find /. What effect does it have on system load? Stop this command.•

In graphical mode, start the xclock program in the foreground. Then let it run in the background. Stop

the program using the kill command.

•

Run the xcalc directly in the background, so that the prompt of the issuing terminal is released.•

What does kill -9 -1 do?•

Open two terminals or terminal windows again and use write to send a message from one to the other.•

Issue the dmesg command. What does it tell?•

How long does it take to execute ls in the current directory?•

Based on process entries in /proc, owned by your UID, how would you work to find out which

processes these actually represent?

•

How long has your system been running?•

Which is your current TTY?•

Name 3 processes that couldn't have had init as an initial parent.•

Name 3 commands which use SUID mode. Explain why this is so.•

Name the commands that are generally causing the highest load on your system.•

4.6.2. Booting, init etc.

Can you reboot the system as a normal user? Why is that?•

According to your current run level, name the steps that are taken during shutdown.•

How do you change the system run level? Switch from your default run level to run level 1 and vice

versa.

•

Introduction to Linux

Chapter 4. Processes 95

Make a list of all the services and daemons that are started up when your system has booted.•

Which kernel is currently load at startup?•

Suppose you have to start some exotic server at boot time. Up until now, you logged in after booting

the system and started this server manually using a script named deliver_pizza in your home

directory. What do you have to do in order to have the service start up automatically in run level 4,

which you defined for this purpose only?

•

4.6.3. Scheduling

Use sleep to create a reminder that your pasta is ready in ten minutes.•

Create an at job that copies all files in your home directory to /var/tmp within half an hour. You

may want to create a sub-directory in /var/tmp.

•

Make a cronjob that does this task every Monday to Friday during lunch.•

Check that it works.•

Make a mistake in the crontab entry, like issuing the nonexistent command coppy instead of cp. What

happens upon execution of the task?

•

Introduction to Linux

Chapter 4. Processes 96

Chapter 5. I/O redirection

This chapter describes more about the powerful UNIX mechanism of redirecting input, output

and errors. Topics include:

Standard input, output and errors♦

Redirection operators♦

How to use output of one command as input for another♦

How to put output of a command in a file for later referrence♦

How to append output of multiple commands to a file♦

Input redirection♦

Handling standard error messages♦

Combining redirection of input, output and error streams♦

Output filters♦

5.1. Simple redirections

5.1.1. What are standard input and standard output?

Most Linux commands read input, such as a file or another attribute for the command, and write output. By

default, input is being given with the keyboard, and output is displayed on your screen. Your keyboard is your

standard input (stdin) device, and the screen or a particular terminal window is the standard output (stdout)

device.

However, since Linux is a flexible system, these default settings don't necessarily have to be applied. The

standard output, for example, on a heavily monitored server in a large environment may be a printer.

5.1.2. The redirection operators

5.1.2.1. Output redirection with > and |

Sometimes you will want to put output of a command in a file, or you may want to issue another command on

the output of one command. This is known as redirecting output. Redirection is done using either the ">"

(greater-than symbol), or using the "|" (pipe) operator which sends the standard output of one command to

another command as standard input.

As we saw before, the cat command concatenates files and puts them all together to the standard output. By

redirecting this output to a file, this file name will be created - or overwritten if it already exists, so take care.

nancy:~> cat test1

some words

nancy:~> cat test2

some other words

nancy:~> cat test1 test2 > test3

nancy:~> cat test3

some words

Chapter 5. I/O redirection 97

some other words

Don't overwrite!

Be careful not to overwrite existing (important) files when redirecting output. Many shells, including

Bash, have a built-in feature to protect you from that risk: noclobber. See the Info pages for more

information. In Bash, you would want to add the set -o noclobber command to your .bashrc

configuration file in order to prevent accidental overwriting of files.

Redirecting "nothing" to an existing file is equal to emptying the file:

nancy:~> ls -l list

-rw-rw-r-- 1 nancy nancy 117 Apr 2 18:09 list

nancy:~> > list

nancy:~> ls -l list

-rw-rw-r-- 1 nancy nancy 0 Apr 4 12:01 list

This process is called truncating.

The same redirection to an nonexistent file will create a new empty file with the given name:

nancy:~> ls -l newlist

ls: newlist: No such file or directory

nancy:~> > newlist

nancy:~> ls -l newlist

-rw-rw-r-- 1 nancy nancy 0 Apr 4 12:05 newlist

Chapter 7 gives some more examples on the use of this sort of redirection.

Some examples using piping of commands:

To find a word within some text, display all lines matching "pattern1", and exclude lines also matching

"pattern2" from being displayed:

grep pattern1 file | grep -v pattern2

To display output of a directory listing one page at a time:

ls -la | less

To find a file in a directory:

ls -l | grep part_of_file_name

5.1.2.2. Input redirection

In another case, you may want a file to be the input for a command that normally wouldn't accept a file as an

option. This redirecting of input is done using the "<" (less-than symbol) operator.

Below is an example of sending a file to somebody, using input redirection.

andy:~> mail mike@somewhere.org < to_do

Introduction to Linux

Chapter 5. I/O redirection 98

If the user mike exists on the system, you don't need to type the full address. If you want to reach somebody

on the Internet, enter the fully qualified address as an argument to mail.

This reads a bit more difficult than the beginner's cat file | mail someone, but it is of course a much more

elegant way of using the available tools.

5.1.2.3. Combining redirections

The following example combines input and output redirection. The file text.txt is first checked for

spelling mistakes, and the output is redirected to an error log file:

spell < text.txt > error.log

The following command lists all commands that you can issue to examine another file when using less:

mike:~> less --help | grep -i examine

 :e [file] Examine a new file.

 :n * Examine the (N-th) next file from the command line.

 :p * Examine the (N-th) previous file from the command line.

 :x * Examine the first (or N-th) file from the command line.

The -i option is used for case-insensitive searches - remember that UNIX systems are very case-sensitive.

If you want to save output of this command for future reference, redirect the output to a file:

mike:~> less --help | grep -i examine > examine-files-in-less

mike:~> cat examine-files-in-less

 :e [file] Examine a new file.

 :n * Examine the (N-th) next file from the command line.

 :p * Examine the (N-th) previous file from the command line.

 :x * Examine the first (or N-th) file from the command line.

Output of one command can be piped into another command virtually as many times as you want, just as long

as these commands would normally read input from standard input and write output to the standard output.

Sometimes they don't, but then there may be special options that instruct these commands to behave according

to the standard definitions; so read the documentation (man and Info pages) of the commands you use if you

should encounter errors.

Again, make sure you don't use names of existing files that you still need. Redirecting output to existing files

will replace the content of those files.

5.1.2.4. The >> operator

Instead of overwriting file data, you can also append text to an existing file using two subsequent greater-than

signs:

Example:

mike:~> cat wishlist

more money

less work

mike:~> date >> wishlist

Introduction to Linux

Chapter 5. I/O redirection 99

mike:~> cat wishlist

more money

less work

Thu Feb 28 20:23:07 CET 2002

The date command would normally put the last line on the screen; now it is appended to the file wishlist.

5.2. Advanced redirection features

5.2.1. Use of file descriptors

There are three types of I/O, which each have their own identifier, called a file descriptor:

standard input: 0•

standard output: 1•

standard error: 2•

In the following descriptions, if the file descriptor number is omitted, and the first character of the redirection

operator is <, the redirection refers to the standard input (file descriptor 0). If the first character of the

redirection operator is >, the redirection refers to the standard output (file descriptor 1).

Some practical examples will make this more clear:

ls > dirlist 2>&1

will direct both standard output and standard error to the file dirlist, while the command

ls 2>&1 > dirlist

will only direct standard output to dirlist. This can be a useful option for programmers.

Things are getting quite complicated here, don't confuse the use of the ampersand here with the use of it in

Section 4.1.2.1, where the ampersand is used to run a process in the background. Here, it merely serves as an

indication that the number that follows is not a file name, but rather a location that the data stream is pointed

to. Also note that the bigger-than sign should not be separated by spaces from the number of the file

descriptor. If it would be separated, we would be pointing the output to a file again. The example below

demonstrates this:

[nancy@asus /var/tmp]$ ls 2> tmp

[nancy@asus /var/tmp]$ ls -l tmp

-rw-rw-r-- 1 nancy nancy 0 Sept 7 12:58 tmp

[nancy@asus /var/tmp]$ ls 2 > tmp

ls: 2: No such file or directory

The first command that nancy executes is correct (eventhough no errors are generated and thus the file to

which standard error is redirected is empty). The second command expects that 2 is a file name, which does

not exist in this case, so an error is displayed.

All these features are explained in detail in the Bash Info pages.

Introduction to Linux

Chapter 5. I/O redirection 100

5.2.2. Examples

5.2.2.1. Analyzing errors

If your process generates a lot of errors, this is a way to thoroughly examine them:

command 2>&1 | less

This is often used when creating new software using the make command, such as in:

andy:~/newsoft> make all 2>&1 | less

--output ommitted--

5.2.2.2. Separating standard output from standard error

Constructs like these are often used by programmers, so that output is displayed in one terminal window, and

errors in another. Find out which pseudo terminal you are using issuing the tty command first:

andy:~/newsoft> make all 2> /dev/pts/7

5.2.2.3. Writing to output and files simultaneously

You can use the tee command to copy input to standard output and one or more output files in one move.

Using the -a option to tee results in appending input to the file(s). This command is useful if you want to

both see and save output. The > and >> operators do not allow to perform both actions simultaneously.

This tool is usually called on through a pipe (|), as demonstrated in the example below:

mireille ~/test> date | tee file1 file2

Thu Jun 10 11:10:34 CEST 2004

mireille ~/test> cat file1

Thu Jun 10 11:10:34 CEST 2004

mireille ~/test> cat file2

Thu Jun 10 11:10:34 CEST 2004

mireille ~/test> uptime | tee -a file2

 11:10:51 up 21 days, 21:21, 57 users, load average: 0.04, 0.16, 0.26

mireille ~/test> cat file2

Thu Jun 10 11:10:34 CEST 2004

 11:10:51 up 21 days, 21:21, 57 users, load average: 0.04, 0.16, 0.26

5.3. Filters

When a program performs operations on input and writes the result to the standard output, it is called a filter.

One of the most common uses of filters is to restructure output. We'll discuss a couple of the most important

filters below.

Introduction to Linux

Chapter 5. I/O redirection 101

5.3.1. More about grep

As we saw in Section 3.3.3.4, grep scans the output line per line, searching for matching patterns. All lines

containing the pattern will be printed to standard output. This behavior can be reversed using the -v option.

Some examples: suppose we want to know which files in a certain directory have been modified in February:

jenny:~> ls -la | grep Feb

The grep command, like most commands, is case sensitive. Use the -i option to make no difference between

upper and lower case. A lot of GNU extensions are available as well, such as --colour, which is helpful to

highlight searchterms in long lines, and --after-context, which prints the number of lines after the last

matching line. You can issue a recursive grep that searches all subdirectories of encountered directories using

the -r option. As usual, options can be combined.

Regular expressions can be used to further detail the exact character matches you want to select out of all the

input lines. The best way to start with regular expressions is indeed to read the grep documentation. An

excellent chapter is included in the grep Info page. Since it would lead us too far discussing the ins and outs

of regular expressions, it is strongly advised to start here if you want to know more about them.

Play around a bit with grep, it will be worth the trouble putting some time in this most basic but very

powerful filtering command. The exercises at the end of this chapter will help you to get started, see Section

5.5.

5.3.2. Filtering output

The command sort arranges lines in alphabetical order by default:

thomas:~> cat people-I-like | sort

Auntie Emmy

Boyfriend

Dad

Grandma

Mum

My boss

But there are many more things sort can do. Looking at the file size, for instance. With this command,

directory content is sorted smallest files first, biggest files last:

ls -la | sort -nk 5

Old sort syntax

You might obtain the same result with ls -la | sort +4n, but this is an old form which does not comply

with the current standards.

The sort command is also used in combination with the uniq program (or sort -u) to sort output and filter out

double entries:

thomas:~> cat itemlist

1

4

2

5

34

Introduction to Linux

Chapter 5. I/O redirection 102

567

432

567

34

555

thomas:~> sort itemlist | uniq

1

2

34

4

432

5

555

567

5.4. Summary

In this chapter we learned how commands can be linked to each other, and how input from one command can

be used as output for another command.

Input/output redirection is a common task on UNIX and Linux machines. This powerful mechanism allows

flexible use of the building blocks UNIX is made of.

The most commonly used redirections are > and |. Refer to Appendix C for an overview of redirection

commands and other shell constructs.

Table 5-1. New commands in chapter 5: I/O redirection

Command Meaning

date Display time and date information.

set Configure shell options.

sort Sort lines of text.

uniq Remove duplicate lines from a sorted file.

5.5. Exercises

These exercises give more examples on how to combine commands. The main goal is to try and use the Enter

key as little as possible.

All exercises are done using a normal user ID, so as to generate some errors. While you're at it, don't forget to

read those man pages!

Use the cut command on the output of a long directory listing in order to display only the file

permissions. Then pipe this output to sort and uniq to filter out any double lines. Then use the wc to

count the different permission types in this directory.

•

Put the output of date in a file. Append the output of ls to this file. Send this file to your local mailbox

(don't specify anything <@domain>, just the user name will do). When using Bash, you will see a

new mail notice upon success.

•

Introduction to Linux

Chapter 5. I/O redirection 103

mailto:@domain

List the devices in /dev which are currently used by your UID. Pipe through less to view them

properly.

•

Issue the following commands as a non-privileged user. Determine standard input, output and error

for each command.

cat nonexistentfile♦

file /sbin/ifconfig♦

grep root /etc/passwd /etc/nofiles > grepresults♦

/etc/init.d/sshd start > /var/tmp/output♦

/etc/init.d/crond start > /var/tmp/output 2>&1♦

Now check your results by issuing the commands again, now redirecting standardoutput to

the file /var/tmp/output and standard error to the file /var/tmp/error.

♦

•

How many processes are you currently running?•

How many invisible files are in your home directory?•

Use locate to find documentation about the kernel.•

Find out which file contains the following entry:
root:x:0:0:root:/root:/bin/bash

And this one:

system: root

•

See what happens upon issuing this command:

> time; date >> time; cat < time

•

What command would you use to check which script in /etc/init.d starts a given process?•

Introduction to Linux

Chapter 5. I/O redirection 104

Chapter 6. Text editors

In this chapter, we will discuss the importance of mastering an editor. We will focus mainly

on the Improved vi editor.

After finishing this chapter, you will be able to:

Open and close files in text mode♦

Edit files♦

Search text♦

Undo errors♦

Merge files♦

Recover lost files♦

Find a program or suite for office use♦

6.1. Text editors

6.1.1. Why should I use an editor?

It is very important to be able to use at least one text mode editor. Knowing how to use an editor on your

system is the first step to independence.

We will need to master an editor by the next chapter as we need it to edit files that influence our environment.

As an advanced user, you may want to start writing scripts, or books, develop websites or new programs.

Mastering an editor will immensely improve your productivity as well as your capabilities.

6.1.2. Which editor should I use?

Our focus is on text editors, which can also be used on systems without a graphical environment and in

terminal windows. The additional advantage of mastering a text editor is in using it on remote machines.

Since you don't need to transfer the entire graphical environment over the network, working with text editors

tremendously improves network speed.

There are, as usual, multiple ways to handle the problem. Let's see what editors are commonly available:

6.1.2.1. GNU Emacs

Emacs is the extensible, customizable, self-documenting, real-time display editor, known on many UNIX and

other systems. The text being edited is visible on the screen and is updated automatically as you type your

commands. It is a real-time editor because the display is updated very frequently, usually after each character

or pair of characters you type. This minimizes the amount of information you must keep in your head as you

edit. Emacs is called advanced because it provides facilities that go beyond simple insertion and deletion:

controlling subprocesses; automatic indentation of programs; viewing two or more files at once; editing

formatted text; and dealing in terms of characters, words, lines, sentences, paragraphs, and pages, as well as

expressions and comments in several different programming languages.

Self-documenting means that at any time you can type a special character, Ctrl+H, to find out what your

Chapter 6. Text editors 105

options are. You can also use it to find out what any command does, or to find all the commands that pertain

to a topic. Customizable means that you can change the definitions of Emacs commands in little ways. For

example, if you use a programming language in which comments start with "<**" and end with "**>", you

can tell the Emacs comment manipulation commands to use those strings. Another sort of customization is

rearrangement of the command set. For example, if you prefer the four basic cursor motion commands (up,

down, left and right) on keys in a diamond pattern on the keyboard, you can rebind the keys that way.

Extensible means that you can go beyond simple customization and write entirely new commands, programs

in the Lisp language that are run by Emacs's own Lisp interpreter. Emacs is an online extensible system,

which means that it is divided into many functions that call each other, any of which can be redefined in the

middle of an editing session. Almost any part of Emacs can be replaced without making a separate copy of all

of Emacs. Most of the editing commands of Emacs are written in Lisp already; the few exceptions could have

been written in Lisp but are written in C for efficiency. Although only a programmer can write an extension,

anybody can use it afterward.

When run under the X Window System (started as xemacs) Emacs provides its own menus and convenient

bindings to mouse buttons. But Emacs can provide many of the benefits of a window system on a text-only

terminal. For instance, you can look at or edit several files at once, move text between files, and edit files

while running shell commands.

6.1.2.2. Vi(m)

Vim stands for "Vi IMproved". It used to be "Vi IMitation", but there are so many improvements that a name

change was appropriate. Vim is a text editor which includes almost all the commands from the UNIX program

vi and a lot of new ones.

Commands in the vi editor are entered using only the keyboard, which has the advantage that you can keep

your fingers on the keyboard and your eyes on the screen, rather than moving your arm repeatedly to the

mouse. For those who want it, mouse support and a GUI version with scrollbars and menus can be activated.

We will refer to vi or vim throughout this book for editing files, while you are of course free to use the editor

of your choice. However, we recommend to at least get the vi basics in the fingers, because it is the standard

text editor on almost all UNIX systems, while emacs can be an optional package. There may be small

differences between different computers and terminals, but the main point is that if you can work with vi, you

can survive on any UNIX system.

Apart from the vim command, the vIm packages may also provide gvim, the Gnome version of vim.

Beginning users might find this easier to use, because the menus offer help when you forgot or don't know

how to perform a particular editing task using the standard vim commands.

6.2. Using the Vim editor

6.2.1. Two modes

The vi editor is a very powerful tool and has a very extensive built-in manual, which you can activate using

the :help command when the program is started (instead of using man or info, which don't contain nearly as

much information). We will only discuss the very basics here to get you started.

What makes vi confusing to the beginner is that it can operate in two modes: command mode and insert mode.

The editor always starts in command mode. Commands move you through the text, search, replace, mark

Introduction to Linux

Chapter 6. Text editors 106

blocks and perform other editing tasks, and some of them switch the editor to insert mode.

This means that each key has not one, but likely two meanings: it can either represent a command for the

editor when in command mode, or a character that you want in a text when in insert mode.

Pronunciation

It's pronounced "vee-eye".

6.2.2. Basic commands

6.2.2.1. Moving through the text

Moving through the text is usually possible with the arrow keys. If not, try:

h to move the cursor to the left•

l to move it to the right•

k to move up•

j to move down•

SHIFT-G will put the prompt at the end of the document.

6.2.2.2. Basic operations

These are some popular vi commands:

n dd will delete n lines starting from the current cursor position.•

n dw will delete n words at the right side of the cursor.•

x will delete the character on which the cursor is positioned•

:n moves to line n of the file.•

:w will save (write) the file•

:q will exit the editor.•

:q! forces the exit when you want to quit a file containing unsaved changes.•

:wq will save and exit•

:w newfile will save the text to newfile.•

:wq! overrides read-only permission (if you have the permission to override permissions, for instance

when you are using the root account.

•

/astring will search the string in the file and position the cursor on the first match below its position.•

/ will perform the same search again, moving the cursor to the next match.•

:1, $s/word/anotherword/g will replace word with anotherword throughout the file.•

yy will copy a block of text.•

n p will paste it n times.•

:recover will recover a file after an unexpected interruption.•

6.2.2.3. Commands that switch the editor to insert mode

a will append: it moves the cursor one position to the right before switching to insert mode•

i will insert•

o will insert a blank line under the current cursor position and move the cursor to that line.•

Introduction to Linux

Chapter 6. Text editors 107

Pressing the Esc key switches back to command mode. If you're not sure what mode you're in because you

use a really old version of vi that doesn't display an "INSERT" message, type Esc and you'll be sure to return

to command mode. It is possible that the system gives a little alert when you are already in command mode

when hitting Esc, by beeping or giving a visual bell (a flash on the screen). This is normal behavior.

6.2.3. The easy way

Instead of reading the text, which is quite boring, you can use the vimtutor to learn you first Vim commands.

This is a thirty minute tutorial that teaches the most basic Vim functionality in eight easy exercises. While you

can't learn everything about vim in just half an hour, the tutor is designed to describe enough of the

commands that you will be able to easily use Vim as an all-purpose editor.

In UNIX and MS Windows, if Vim has been properly installed, you can start this program from the shell or

command line, entering the vimtutor command. This will make a copy of the tutor file, so that you can edit it

without the risk of damaging the original. There are a few translated versions of the tutor. To find out if yours

is available, use the two-letter language code. For French this would be vimtutor fr (if installed on the

system).

6.3. Linux in the office

6.3.1. History

Throughout the last decade the office domain has typically been dominated by MS Office, and, let's face it:

the Microsoft Word, Excel and PowerPoint formats are industry standards that you will have to deal with

sooner or later.

This monopoly situation of Microsoft proved to be a big disadvantage for getting new users to Linux, so a

group of German developers started the StarOffice project, that was, and is still, aimed at making an MS

Office clone. Their company, StarDivision, was acquired by Sun Microsystems by the end of the 1990s, just

before the 5.2 release. Sun continues development but restricted access to the sources. Nevertheless,

development on the original set of sources continues in the Open Source community, which had to rename the

project to OpenOffice. OpenOffice is now available for a variety of platforms, including MS Windows, Linux,

MacOS and Solaris. There is a screenshot in Section 1.3.2.

Almost simultaneously, a couple of other quite famous projects took off. Also a very common alternative to

using MS Office is KOffice, the office suite that used to be popular among SuSE users. Like the original, this

clone incorporates an MS Word and Excel compatible program, and much more.

Smaller projects deal with particular programs of the MS example suite, such as Abiword and MS Wordview

for compatibility with MS Word documents, and Gnumeric for viewing and creating Excel compatible

spreadsheets.

6.3.2. Suites and programs

Current distributions usually come with all the necessary tools. Since these provide excellent guidelines and

searchable indexes in the Help menus, we won't discuss them in detail. For references, see you system

documentation or the web sites of the projects, such as

http://www.openoffice.org•

Introduction to Linux

Chapter 6. Text editors 108

http://www.openoffice.org

http://www.koffice.org•

Freshmeat and SourceForge for various other projects.•

6.3.3. Remarks

6.3.3.1. General use of office documents

Try to limit the use of office documents for the purposes they were meant for: the office.

An example: it drives most Linux users crazy if you send them a mail that says in the body something like:

"Hello, I want to tell you something, see attach", and then the attachement proves to be an MS Word

compatible document like: "Hello my friend, how is your new job going and will you have time to have lunch

with me tomorrow?" Also a bad idea is the attachment of your signature in such a file, for instance. If you

want to sign messages or files, use GPG, the PGP-compatible GNU Privacy Guard or SSL (Secure Socket

Layer) certificates.

These users are not annoyed because they are unable to read these documents, or because they are worried

that these formats typically generate much larger files, but rather because of the implication that they are using

MS Windows, and possibly because of the extra work of starting some additional programs.

6.3.3.2. System and user configuration files

In the next chapter, we start configuring our environment, and this might include editing all kinds of files that

determine how a program behave.

Don't edit these files with any office component!

The default file format specification would make the program add several lines of code, defining the format of

the file and the fonts used. These lines won't be interpreted in the correct way by the programs depending on

them, resulting in errors or a crash of the program reading the file. In some cases, you can save the file as

plain text, but you'll run into trouble when making this a habit.

6.3.3.3. But I want a graphical text editor!

If you really insist, try gedit, kedit, kwrite or xedit; these programs only do text files, which is what we will

be needing. If you plan on doing anything serious, though, stick to a real text mode editor such as vim or

emacs.

An acceptable alternative is gvim, the Gnome version of vim. You still need to use vi commands, but if you

are stuck, you can look them up in the menus.

6.4. Summary

In this chapter we learned to use an editor. While it depends on your own individual preference which one you

use, it is necessary to at least know how to use one editor.

The vi editor is available on every UNIX system.

Most Linux distributions include an office suite and a graphical text editor.

Introduction to Linux

Chapter 6. Text editors 109

http://www.koffice.org
http://freshmeat.net
http://sourceforge.org

6.5. Exercises

This chapter has only one exercise: start the Vim tutor by entering vimtutor in a terminal session, and get

started.

You may alternatively start emacs and type Ctrl+H and then T to invoke the self-paced Emacs tutorial.

Practice is the only way!

Introduction to Linux

Chapter 6. Text editors 110

Chapter 7. Home sweet /home

This chapter is about configuring your environment. Now that we know how to use an editor,

we can change all kinds of files to make ourselves feel better at home. After completing this

chapter, you will know more about:

Organizing your environment♦

Common shell setup files♦

Shell configuration♦

Configuring the prompt♦

Configuring the graphical environment♦

Sound and video applications♦

Display and window managers♦

How the X client-server system works♦

Language and font settings♦

Installing new software♦

Updating existing packages♦

7.1. General good housekeeping

7.1.1. Introduction

As we mentioned before, it is easy enough to make a mess of the system. We can't put enough stress on the

importance of keeping the place tidy. When you learn this from the start, it will become a good habit that will

save you time when programming on a Linux or UNIX system or when confronted with system management

tasks. Here are some ways of making life easier on yourself:

Make a bin directory for your program files and scripts.•

Organize non-executable files in appropriate directories, and make as many directories as you like.

Examples include separate directories for images, documents, projects, downloaded files,

spreadsheets, personal files, and so on.

•

Make directories private with the chmod 700 dirname command.•

Give your files sensible names, such as Complaint to the prime minister 050302

rather than letter1.

•

7.1.2. Make space

On some systems, the quota system may force you to clean up from time to time, or the physical limits of

your hard disk may force you to make more space without running any monitoring programs. This section

discusses a number of ways, besides using the rm command, to reclaim disk space.

Run the quota -v command to see how much space is left.

Chapter 7. Home sweet /home 111

7.1.2.1. Emptying files

Sometimes the content of a file doesn't interest you, but you need the file name as a marker (for instance, you

just need the timestamp of a file, a reminder that the file was there or should be there some time in the future).

Redirecting the output of a null command is how this is done in the Bourne and Bash shells:

andy:~> cat wishlist > placeholder

andy:~> ls -la placeholder

-rw-rw-r-- 1 andy andy 200 Jun 12 13:34 placeholder

andy:~> > placeholder

andy:~> ls -la placeholder

-rw-rw-r-- 1 andy andy 0 Jun 12 13:35 placeholder

The process of reducing an existing file to a file with the same name that is 0 bytes large is called truncating.

For creating a new empty file, the same effect is obtained with the touch command. On an existing file, touch

will only update the timestamp. See the Info pages on touch for more details.

To "almost" empty a file, use the tail command. Suppose user andy's wishlist becomes rather long because he

always adds stuff at the end but never deletes the things he actually gets. Now he only wants to keep the last

five items:

andy:~> tail -5 wishlist > newlist

andy:~> cat newlist > wishlist

andy:~> rm newlist

7.1.2.2. More about log files

Some Linux programs insist on writing all sorts of output in a log file. Usually there are options to only log

errors, or to log a minimal amount of information, for example setting the debugging level of the program.

But even then, you might not care about the log file. Here are some ways to get rid of them or at least set some

limits to their size:

Try removing the log file when the program is not running, if you are sure that you won't need it

again. Some programs may even see, when restarted, that there is no log file and will therefore not

log.

•

If you remove the log file and the program recreates it, read the documentation for this particular

program in search for command options that avoid making log files.

•

Try making smaller log files by logging only the information that is relevant to you, or by logging

only significant information.

•

Try replacing the log file with a symbolic link to /dev/null; if you're lucky the program won't

complain. Don't do this with the log files of programs that run at system boot or programs that run

from cron (see Chapter 4). These programs might replace the symbolic link with a small file that starts

growing again.

•

Introduction to Linux

Chapter 7. Home sweet /home 112

7.1.2.3. Mail

Regularly clean out your mailbox, make sub-folders and automatic redirects using procmail (see the Info

pages) or the filters of your favorite mail reading application. If you have a trash folder, clean it out on a

regular basis.

To redirect mail, use the .forward file in your home directory. The Linux mail service looks for this file

whenever it has to deliver local mail. The content of the file defines what the mail system should do with your

mail. It can contain a single line holding a fully qualified E-mail address. In that case the system will send all

your mail to this address. For instance, when renting space for a website, you might want to forward the mail

destined for the webmaster to your own account in order not to waste disk space. The webmaster's

.forward may look like this:

webmaster@www ~/> cat .forward

mike@pandora.be

Using mail forwarding is also useful to prevent yourself from having to check several different mailboxes.

You can make every address point to a central and easily accessible account.

You can ask your system administrator to define a forward for you in the local mail aliases file, like when an

account is being closed but E-mail remains active for a while.

7.1.2.4. Save space with a link

When several users need access to the same file or program, when the original file name is too long or too

difficult to remember, use a symbolic link instead of a separate copy for each user or purpose.

Multiple symbolic links may have different names, e.g. a link may be called monfichier in one user's

directory, and mylink in another's. Multiple links (different names) to the same file may also occur in the

same directory. This is often done in the /lib directory: when issuing the command

ls -l /lib

you will see that this directory is plenty of links pointing to the same files. These are created so that programs

searching for one name would not get stuck, so they are pointed to the correct/current name of the libraries

they need.

7.1.2.5. Limit file sizes

The shell contains a built-in command to limit file sizes, ulimit, which can also be used to display limitations

on system resources:

cindy:~> ulimit -a

core file size (blocks) 0

data seg size (kbytes) unlimited

file size (blocks) unlimited

max locked memory (kbytes) unlimited

max memory size (kbytes) unlimited

open files 1024

pipe size (512 bytes) 8

stack size (kbytes) 8192

cpu time (seconds) unlimited

max user processes 512

virtual memory (kbytes) unlimited

Introduction to Linux

Chapter 7. Home sweet /home 113

Cindy is not a developer and doesn't care about core dumps, which contain debugging information on a

program. If you do want core dumps, you can set their size using the ulimit command. Read the Info pages on

bash for a detailed explanation.

Core file?

A core file or core dump is sometimes generated when things go wrong with a program during its

execution. The core file contains a copy of the system's memory, as it was at the time that the error

occured.

7.1.2.6. Compressed files

Compressed files are useful because they take less space on your hard disk. Another advantage is that it takes

less bandwidth to send a compressed file over your network. A lot of files, such as the man pages, are stored

in a compressed format on your system. Yet unpacking these to get a little bit of information and then having

to compress them again is rather time-consuming. You don't want to unpack a man page, for instance, read

about an option to a command and then compress the man page again. Most people will probably forget to

clean up after they found the information they needed.

So we have tools that work on compressed files, by uncompressing them only in memory. The actual

compressed file stays on your disk as it is. Most systems support zgrep, zcat, bzless and other members of the

z-family to prevent unnecessary decompressing/compressing actions. See your system's binary directory and

the Info pages.

See Chapter 9 for more on the actual compressing of files and examples on making archives.

7.2. Your text environment

7.2.1. Environment variables

7.2.1.1. General

We already mentioned a couple of environment variables, such as PATH and HOME. Until now, we only saw

examples in which they serve a certain purpose to the shell. But there are many other Linux utilities that need

information about you in order to do a good job.

What other information do programs need apart from paths and home directories?

A lot of programs want to know about the kind of terminal you are using; this information is stored in the

TERM variable. In text mode, this will be the linux terminal emulation, in graphical mode you are likely to use

xterm. Lots of programs want to know what your favorite editor is, in case they have to start an editor in a

subprocess. The shell you are using is stored in the SHELL variable, the operating system type in OS and so

on. A list of all variables currently defined for your session can be viewed entering the printenv command.

The environment variables are managed by the shell. As opposed to regular shell variables, environment

variables are inherited by any program you start, including another shell. New processes are assigned a copy

of these variables, which they can read, modify and pass on in turn to their own child processes.

There is nothing special about variable names, except that the common ones are in upper case characters by

convention. You may come up with any name you want, although there are standard variables that are

Introduction to Linux

Chapter 7. Home sweet /home 114

important enough to be the same on every Linux system, such as PATH and HOME.

7.2.1.2. Exporting variables

An individual variable's content is usually displayed using the echo command, as in these examples:

debby:~> echo $PATH

/usr/bin:/usr/sbin:/bin:/sbin:/usr/X11R6/bin:/usr/local/bin

debby:~> echo $MANPATH

/usr/man:/usr/share/man/:/usr/local/man:/usr/X11R6/man

If you want to change the content of a variable in a way that is useful to other programs, you have to export

the new value from your environment into the environment that runs these programs. A common example is

exporting the PATH variable. You may declare it as follows, in order to be able to play with the flight

simulator software that is in /opt/FlightGear/bin:

debby:~> PATH=$PATH:/opt/FlightGear/bin

This instructs the shell to not only search programs in the current path, $PATH, but also in the additional

directory /opt/FlightGear/bin.

However, as long as the new value of the PATH variable is not known to the environment, things will still not

work:

debby:~> runfgfs

bash: runfgfs: command not found

Exporting variables is done using the shell built-in command export:

debby:~> export PATH

debby:~> runfgfs

--flight simulator starts--

In Bash, we normally do this in one elegant step:

export VARIABLE=value

The same technique is used for the MANPATH variable, that tells the man command where to look for

compressed man pages. If new software is added to the system in new or unusual directories, the

documentation for it will probably also be in an unusual directory. If you want to read the man pages for the

new software, extend the MANPATH variable:

debby:~> export MANPATH=$MANPATH:/opt/FlightGear/man

debby:~> echo $MANPATH

/usr/man:/usr/share/man:/usr/local/man:/usr/X11R6/man:/opt/FlightGear/man

You can avoid retyping this command in every window you open by adding it to one of your shell setup files,

see Section 7.2.2.

7.2.1.3. Reserved variables

The following table gives an overview of the most common predefined variables:

Introduction to Linux

Chapter 7. Home sweet /home 115

Table 7-1. Common environment variables

Variable name Stored information

DISPLAY used by the X Window system to identify the display server

DOMAIN domain name

EDITOR stores your favorite line editor

HISTSIZE size of the shell history file in number of lines

HOME path to your home directory

HOSTNAME local host name

INPUTRC location of definition file for input devices such as keyboard

LANG preferred language

LD_LIBRARY_PATH paths to search for libraries

LOGNAME login name

MAIL location of your incoming mail folder

MANPATH paths to search for man pages

OS string describing the operating system

OSTYPE more information about version etc.

PAGER
used by programs like man which need to know what to do in case output is more

than one terminal window.

PATH search paths for commands

PS1 primary prompt

PS2 secondary prompt

PWD present working directory

SHELL current shell

TERM terminal type

UID user ID

USER(NAME) user name

VISUAL your favorite full-screen editor

XENVIRONMENT location of your personal settings for X behavior

XFILESEARCHPATH paths to search for graphical libraries

A lot of variables are not only predefined but also preset, using configuration files. We discuss these in the

next section.

7.2.2. Shell setup files

When entering the ls -al command to get a long listing of all files, including the ones starting with a dot, in

your home directory, you will see one or more files starting with a . and ending in rc. For the case of bash,

this is .bashrc. This is the counterpart of the system-wide configuration file /etc/bashrc.

When logging into an interactive login shell, login will do the authentication, set the environment and start

your shell. In the case of bash, the next step is reading the general profile from /etc, if that file exists.

bash then looks for ~/.bash_profile, ~/.bash_login and ~/.profile, in that order, and reads

and executes commands from the first one that exists and is readable. If none exists, /etc/bashrc is

applied.

Introduction to Linux

Chapter 7. Home sweet /home 116

When a login shell exits, bash reads and executes commands from the file ~/.bash_logout, if it exists.

This procedure is explained in detail in the login and bash man pages.

7.2.3. A typical set of setup files

7.2.3.1. /etc/profile example

Let's look at some of these config files. First /etc/profile is read, in which important variables such as

PATH, USER and HOSTNAME are set:

debby:~> cat /etc/profile

/etc/profile

System wide environment and startup programs, for login setup

Functions and aliases go in /etc/bashrc

Path manipulation

if [`id -u` = 0] && ! echo $PATH | /bin/grep -q "/sbin" ; then

 PATH=/sbin:$PATH

fi

if [`id -u` = 0] && ! echo $PATH | /bin/grep -q "/usr/sbin" ; then

 PATH=/usr/sbin:$PATH

fi

if [`id -u` = 0] && ! echo $PATH | /bin/grep -q "/usr/local/sbin"

 then

 PATH=/usr/local/sbin:$PATH

fi

if ! echo $PATH | /bin/grep -q "/usr/X11R6/bin" ; then

 PATH="$PATH:/usr/X11R6/bin"

fi

These lines check the path to set: if root opens a shell (user ID 0), it is checked that /sbin, /usr/sbin and

/usr/local/sbin are in the path. If not, they are added. It is checked for everyone that

/usr/X11R6/bin is in the path.

No core files by default

ulimit -S -c 0 > /dev/null 2>&1

All trash goes to /dev/null if the user doesn't change this setting.

USER=`id -un`

LOGNAME=$USER

MAIL="/var/spool/mail/$USER"

HOSTNAME=`/bin/hostname`

HISTSIZE=1000

Here general variables are assigned their proper values.

if [-z "$INPUTRC" -a ! -f "$HOME/.inputrc"]; then

 INPUTRC=/etc/inputrc

fi

If the variable INPUTRC is not set, and there is no .inputrc in the user's home directory, then the default

input control file is loaded.

Introduction to Linux

Chapter 7. Home sweet /home 117

export PATH USER LOGNAME MAIL HOSTNAME HISTSIZE INPUTRC

All variables are exported, so that they are available to other programs requesting information about your

environment.

7.2.3.2. The profile.d directory

for i in /etc/profile.d/*.sh ; do

 if [-r $i]; then

 . $i

 fi

done

unset i

All readable shell scripts from the /etc/profile.d directory are read and executed. These do things like

enabling color-ls, aliasing vi to vim, setting locales etc. The temporary variable i is unset to prevent it from

disturbing shell behavior later on.

7.2.3.3. .bash_profile example

Then bash looks for a .bash_profile in the user's home directory:

debby:~> cat .bash_profile

###

#

.bash_profile file

#

Executed from the bash shell when you log in.

#

###

source ~/.bashrc

source ~/.bash_login

This very straight forward file instructs your shell to first read ~/.bashrc and then ~/.bash_login.

You will encounter the source built-in shell command regularly when working in a shell environment: it is

used to apply configuration changes to the current environment.

7.2.3.4. .bash_login example

The ~/.bash_login file defines default file protection by setting the umask value, see Section 3.4.2.2.

The ~/.bashrc file is used to define a bunch of user-specific aliases and functions and personal

environment variables. It first reads /etc/bashrc, which describes the default prompt (PS1) and the

default umask value. After that, you can add your own settings. If no ~/.bashrc exists, /etc/bashrc is

read by default.

7.2.3.5. /etc/bashrc example

Your /etc/bashrc file might look like this:

debby:~> cat /etc/bashrc

/etc/bashrc

System wide functions and aliases

Environment stuff goes in /etc/profile

by default, we want this to get set.

Introduction to Linux

Chapter 7. Home sweet /home 118

Even for non-interactive, non-login shells.

if [`id -gn` = `id -un` -a `id -u` -gt 99]; then

 umask 002

else

 umask 022

fi

These lines set the umask value. Then, depending on the type of shell, the prompt is set:

are we an interactive shell?

if ["$PS1"]; then

 if [-x /usr/bin/tput]; then

 if ["x`tput kbs`" != "x"]; then

We can't do this with "dumb" terminal

 stty erase `tput kbs`

 elif [-x /usr/bin/wc]; then

 if ["`tput kbs|wc -c `" -gt 0]; then

We can't do this with "dumb" terminal

 stty erase `tput kbs`

 fi

 fi

 fi

 case $TERM in

 xterm*)

 if [-e /etc/sysconfig/bash-prompt-xterm]; then

 PROMPT_COMMAND=/etc/sysconfig/bash-prompt-xterm

 else

 PROMPT_COMMAND='echo -ne "\033]0;${USER}@${HOSTNAME%%.*}:\

${PWD/$HOME/~}\007"'

 fi

 ;;

 *)

 [-e /etc/sysconfig/bash-prompt-default] && PROMPT_COMMAND=\

/etc/sysconfig/bash-prompt-default

 ;;

 esac

 ["$PS1" = "\\s-\\v\\\$ "] && PS1="[\u@\h \W]\\$ "

 if ["x$SHLVL" != "x1"]; then # We're not a login shell

 for i in /etc/profile.d/*.sh; do

 if [-x $i]; then

 . $i

 fi

 done

 fi

fi

7.2.3.6. .bash_logout example

Upon logout, the commands in ~/.bash_logout are executed, which can for instance clear the terminal,

so that you have a clean window upon logging out of a remote session, or upon leaving the system console:

debby:~> cat .bash_logout

~/.bash_logout

clear

Let's take a closer look at how these scripts work in the next section. Keep info bash close at hand.

Introduction to Linux

Chapter 7. Home sweet /home 119

7.2.4. The Bash prompt

7.2.4.1. Introduction

The Bash prompt can do much more than displaying such simple information as your user name, the name of

your machine and some indication about the present working directory. We can add other information such as

the current date and time, number of connected users etc.

Before we begin, however, we will save our current prompt in another environment variable:

[jerry@nowhere jerry]$ MYPROMPT=$PS1

[jerry@nowhere jerry]$ echo $MYPROMPT

[\u@\h \W]\$

[jerry@nowhere jerry]$

When we change the prompt now, for example by issuing the command PS1="->", we can always get our

original prompt back with the command PS1=$MYPROMPT. You will, of course, also get it back when you

reconnect, as long as you just fiddle with the prompt on the command line and avoid putting it in a shell

configuration file.

7.2.4.2. Some examples

In order to understand these prompts and the escape sequences used, we refer to the Bash Info or man pages.

export PS1="[\t \j] "

Displays time of day and number of running jobs

•

export PS1="[\d][\u@\h \w] : "

Displays date, user name, host name and current working directory. Note that \W displays only base

names of the present working directory.

•

export PS1="{\!} "

Displays history number for each command.

•

export PS1="\[\033[1;35m\]\u@\h\[\033[0m\] "

Displays user@host in pink.

•

export PS1="\[\033[1;35m\]\u\[\033[0m\] \[\033[1;34m\]\w\[\033[0m\] "

Sets the user name in pink and the present working directory in blue.

•

export PS1="\[\033[1;44m\]$USER is in \w\[\033[0m\] "

Prompt for people who have difficulties seeing the difference between the prompt and what they type.

•

export PS1="\[\033[4;34m\]\u@\h \w \[\033[0m\]"

Underlined prompt.

•

export PS1="\[\033[7;34m\]\u@\h \w \[\033[0m\] "

White characters on a blue background.

•

export PS1="\[\033[3;35m\]\u@\h \w \[\033[0m\]\a"•

Introduction to Linux

Chapter 7. Home sweet /home 120

Pink prompt in a lighter font that alerts you when your commands have finished.

export PS1=...•

Variables are exported so the subsequently executed commands will also know about the environment. The

prompt configuration line that you want is best put in your shell configuration file, ~/.bashrc.

If you want, prompts can execute shell scripts and behave different under different conditions. You can even

have the prompt play a tune every time you issue a command, although this gets boring pretty soon. More

information can be found in the Bash-Prompt HOWTO.

7.2.5. Shell scripts

7.2.5.1. What are scripts?

A shell script is, as we saw in the shell configuration examples, a text file containing shell commands. When

such a file is used as the first non-option argument when invoking Bash, and neither the -c nor -s option is

supplied, Bash reads and executes commands from the file, then exits. This mode of operation creates a

non-interactive shell. When Bash runs a shell script, it sets the special parameter 0 to the name of the file,

rather than the name of the shell, and the positional parameters (everything following the name of the script)

are set to the remaining arguments, if any are given. If no additional arguments are supplied, the positional

parameters are unset.

A shell script may be made executable by using the chmod command to turn on the execute bit. When Bash

finds such a file while searching the PATH for a command, it spawns a sub-shell to execute it. In other words,

executing

filename ARGUMENTS

is equivalent to executing

bash filename ARGUMENTS

if "filename" is an executable shell script. This sub-shell reinitializes itself, so that the effect is as if a new

shell had been invoked to interpret the script, with the exception that the locations of commands remembered

by the parent (see hash in the Info pages) are retained by the child.

Most versions of UNIX make this a part of the operating system's command execution mechanism. If the first

line of a script begins with the two characters "#!", the remainder of the line specifies an interpreter for the

program. Thus, you can specify bash, awk, perl or some other interpreter or shell and write the rest of the

script file in that language.

The arguments to the interpreter consist of a single optional argument following the interpreter name on the

first line of the script file, followed by the name of the script file, followed by the rest of the arguments. Bash

will perform this action on operating systems that do not handle it themselves.

Bash scripts often begin with

#! /bin/bash

(assuming that Bash has been installed in /bin), since this ensures that Bash will be used to interpret the

script, even if it is executed under another shell.

Introduction to Linux

Chapter 7. Home sweet /home 121

http://www.tldp.org/HOWTO/Bash-Prompt-HOWTO/

7.2.5.2. Some simple examples

A very simple script consisting of only one command, that says hello to the user executing it:

[jerry@nowhere ~] cat hello.sh

#!/bin/bash

echo "Hello $USER"

The script actually consists of only one command, echo, which uses the value of ($) the USER environment

variable to print a string customized to the user issuing the command.

Another one-liner, used for displaying connected users:

#!/bin/bash

who | cut -d " " -f 1 | sort -u

Here is a script consisting of some more lines, that I use to make backup copies of all files in a directory. The

script first makes a list of all the files in the current directory and puts it in the variable LIST. Then it sets the

name of the copy for each file, and then it copies the file. For each file, a message is printed:

tille:~> cat bin/makebackupfiles.sh

#!/bin/bash

make copies of all files in a directory

LIST=`ls`

for i in $LIST; do

 ORIG=$i

 DEST=$i.old

 cp $ORIG $DEST

 echo "copied $i"

done

Just entering a line like mv * *.old won't work, as you will notice when trying this on a set of test files. An

echo command was added in order to display some activity. echo's are generally useful when a script won't

work: insert one after each doubted step and you will find the error in no time.

The /etc/rc.d/init.d directory contains loads of examples. Let's look at this script that controls the

fictive ICanSeeYou server:

#!/bin/sh

description: ICanSeeYou allows you to see networked people

process name: ICanSeeYou

pidfile: /var/run/ICanSeeYou/ICanSeeYou.pid

config: /etc/ICanSeeYou.cfg

Source function library.

. /etc/rc.d/init.d/functions

See how (with which arguments) we were called.

case "$1" in

 start)

 echo -n "Starting ICanSeeYou: "

 daemon ICanSeeYou

 echo

 touch /var/lock/subsys/ICanSeeYou

 ;;

 stop)

 echo -n "Shutting down ICanSeeYou: "

Introduction to Linux

Chapter 7. Home sweet /home 122

 killproc ICanSeeYou

 echo

 rm -f /var/lock/subsys/ICanSeeYou

 rm -f /var/run/ICanSeeYou/ICanSeeYou.pid

 ;;

 status)

 status ICanSeeYou

 ;;

 restart)

 $0 stop

 $0 start

 ;;

 *)

 echo "Usage: $0 {start|stop|restart|status}"

 exit 1

esac

exit 0

First, with the . command (dot) a set of shell functions, used by almost all shell scripts in

/etc/rc.d/init.d, is loaded. Then a case command is issued, which defines 4 different ways the script

can execute. An example might be ICanSeeYou start. The decision of which case to apply is made by

reading the (first) argument to the script, with the expression $1.

When no compliant input is given, the default case, marked with an asterisk, is applied, upon which the script

gives an error message. The case list is ended with the esac statement. In the start case the server program is

started as a daemon, and a process ID and lock are assigned. In the stop case, the server process is traced

down and stopped, and the lock and the PID are removed. Options, such as the daemon option, and functions

like killproc, are defined in the /etc/rc.d/init.d/functions file. This setup is specific to the

distribution used in this example. The initscripts on your system might use other functions, defined in other

files, or none at all.

Upon success, the script returns an exit code of zero to its parent.

This script is a fine example of using functions, which make the script easier to read and the work done faster.

Note that they use sh instead of bash, to make them useful on a wider range of systems. On a Linux system,

calling bash as sh results in the shell running in POSIX-compliant mode.

The bash man pages contain more information about combining commands, for- and while-loops and regular

expressions, as well as examples. A comprehensible Bash course for system administrators and power users,

with exercises, from the same author as this Introduction to Linux guide, is at

http://tille.garrels.be/training/bash/. Detailed description of Bash features and applications is in the reference

guide Advanced Bash Scripting.

7.3. The graphical environment

7.3.1. Introduction

The average user may not care too much about his login settings, but Linux offers a wide variety of flashy

window and desktop managers for use under X, the graphical environment. The use and configuration of

window managers and desktops is straightforward and may even resemble the standard MS Windows, Apple

or UNIX CDE environment, although many Linux users prefer flashier desktops and fancier window

managers. We won't discuss the user specific configuration here. Just experiment and read the documentation

using the built-in Help functions these managers provide and you will get along fine.

Introduction to Linux

Chapter 7. Home sweet /home 123

http://tille.garrels.be/training/bash/
http://tldp.org/LDP/abs/html/index.html

We will, however, take a closer look at the underlying system.

7.3.2. The X Window System

The X Window System is a network-transparent window system which runs on a wide range of computing

and graphics machines. X Window System servers run on computers with bitmap displays. The X server

distributes user input to and accepts output requests from several client programs through a variety of different

interprocess communication channels. Although the most common case is for the client programs to be

running on the same machine as the server, clients can be run transparently from other machines (including

machines with different architectures and operating systems) as well. We will learn how to do this in Chapter

10 on networking and remote applications.

X supports overlapping hierarchical sub-windows and text and graphics operations, on both monochrome and

color displays. The number of X client programs that use the X server is quite large. Some of the programs

provided in the core X Consortium distribution include:

xterm: a terminal emulator•

twm: a minimalistic window manager•

xdm: a display manager•

xconsole: a console redirect program•

bitmap: a bitmap editor•

xauth, xhost and iceauth: access control programs•

xset, xmodmap and many others: user preference setting programs•

xclock: a clock•

xlsfonts and others: a font displayer, utilities for listing information about fonts, windows and

displays

•

xfs: a font server•

...•

We refer again to the man pages of these commands for detailed information. More explanations on available

functions can be found in the Xlib - C language X Interface manual that comes with your X distribution, the X

Window System Protocol specification, and the various manuals and documentation of X toolkits. The

/usr/share/doc directory contains references to these documents and many others.

Many other utilities, window managers, games, toolkits and gadgets are included as user-contributed software

in the X Consortium distribution, or are available using anonymous FTP on the Internet. Good places to start

are http://www.x.org and http://www.xfree.org.

Furthermore, all your graphical applications, such as your browser, your E-mail program, your image viewing

programs, sound playing tools and so on, are all clients to your X server. Note that in normal operation, that is

in graphical mode, X clients and the X server on Linux run on the same machine.

7.3.2.1. Display names

From the user's perspective, every X server has a display name in the form of:

hostname:displaynumber.screennumber

This information is used by the application to determine how it should connect to the X server and which

screen it should use by default (on displays with multiple monitors):

Introduction to Linux

Chapter 7. Home sweet /home 124

http://www.x.org
http://www.xfree.org

hostname: The host name specifies the name of the client machine to which the display is physically

connected. If the host name is not given, the most efficient way of communicating to a server on the

same machine will be used.

•

displaynumber: The phrase "display" is usually used to refer to a collection of monitors that share a

common key board and pointer (mouse, tablet, etc.). Most workstations tend to only have one

keyboard, and therefore, only one display. Larger, multi-user systems, however, frequently have

several displays so that more than one person can be doing graphics work at once. To avoid

confusion, each display on a machine is assigned a display number (beginning at 0) when the X server

for that display is started. The display number must always be given in a display name.

•

screen number: Some displays share a single keyboard and pointer among two or more monitors.

Since each monitor has its own set of windows, each screen is assigned a screen number (beginning at

0) when the X server for that display is started. If the screen number is not given, screen 0 will be

used.

•

On POSIX systems, the default display name is stored in your DISPLAY environment variable. This variable

is set automatically by the xterm terminal emulator. However, when you log into another machine on a

network, you might need to set DISPLAY by hand to point to your display, see Section 10.4.3.2.

More information can be found in the X man pages.

7.3.2.2. Window and desktop managers

The layout of windows on the screen is controlled by special programs called window managers. Although

many window managers will honor geometry specifications as given, others may choose to ignore them

(requiring the user to explicitly draw the window's region on the screen with the pointer, for example).

Since window managers are regular (albeit complex) client programs, a variety of different user interfaces can

be built. The X Consortium distribution comes with a window manager named twm, but most users prefer

something more fancy when system resources permit. Sawfish and Enlightenment are popular examples

which allow each user to have a desktop according to mood and style.

A desktop manager makes use of one window manager or another for arranging your graphical desktop in a

convenient way, with menubars, drop-down menus, informative messages, a clock, a program manager, a file

manager and so on. Among the most popular desktop managers are Gnome and KDE, which both run on

almost any Linux distribution and many other UNIX systems.

KDE applications in Gnome/Gnome applications in KDE

You don't need to start your desktop in KDE in order to be able to run KDE applications. If you have the

KDE libraries installed (the kdelibs package), you can run these applications from the Gnome menus or

start them from a Gnome terminal.

Running Gnome applications in a KDE environment is a bit more tricky, because there is no single set of

base-libraries in Gnome. However, the dependencies and thus extra packages you might have to install

will become clear when running or installing such an application.

7.3.3. X server configuration

The X distribution that used to come with Linux, XFree86, uses the configuration file XF86Config for its

initial setup. This file configures your video card and is searched for in a number of locations, although it is

Introduction to Linux

Chapter 7. Home sweet /home 125

usually in /etc/X11.

If you see that the file /etc/X11/XF86Config is present on your system, a full description can be found

in the Info or man pages about XF86Config.

Because of licensing issues with XFree86, newer systems usually come with the X.Org distribution of the X

server and tools. The main configuration file here is xorg.conf, usually also in /etc/X11. The file

consists of a number of sections that may occur in any order. The sections contain information about your

monitor, your video adaptor, the screen configuration, your keyboard etcetera. As a user, you needn't worry

too much about what is in this file, since everything is normally determined at the time the system is installed.

Should you need to change graphical server settings, however, you can run the configuration tools or edit the

configuration files that set up the infrastructure to use the XFree86 server. See the man pages for more

information; your distribution might have its own tools. Since misconfiguration may result in unreadable

garbage in graphical mode, you may want to make a backup copy of the configuration file before attempting

to change it, just to be on the safe side.

7.4. Region specific settings

7.4.1. Keyboard setup

Setting the keyboard layout is done using the loadkeys command for text consoles. Use your local X

configuration tool or edit the Keyboard section in XF86Config manually to configure the layout for

graphical mode. The XkbdLayout is the one you want to set:

 XkbLayout "us"

This is the default. Change it to your local settings by replacing the quoted value with any of the names listed

in the subdirectories of your keymaps directory. If you can't find the keymaps, try displaying their location

on your system issuing the command

locate keymaps

It is possible to combine layout settings, like in this example:

Xkblayout "us,ru"

Make a backup of the /etc/X11/XF86Config file before editing it! You will need to use the root account

to do this.

Log out and reconnect in order to reload X settings.

The Gnome Keyboard Applet enables real-time switching between layouts; no special pemissions are needed

for using this program. KDE has a similar tool for switching between keyboard layouts.

7.4.2. Fonts

Use the setfont tool to load fonts in text mode. Most systems come with a standard inputrc file which

enables combining of characters, such as the French "é" (meta characters). The system admin should then add

the line

Introduction to Linux

Chapter 7. Home sweet /home 126

export INPUTRC="/etc/inputrc"

to the /etc/bashrc file.

7.4.3. Date and time zone

Setting time information is usually done at installation time. After that, it can be kept up to date using an NTP

(Network Time Protocol) client. Most Linux systems run ntpd by default:

debby:~> ps -ef | grep ntpd

ntp 24678 1 0 2002 ? 00:00:33 ntpd -U ntp

You can run ntpdate manually to set the time, on condition that you can reach a time server. The ntpd

daemon should not be running when you adjust the time using ntpdate. Use a time server as argument to the

command:

root@box:~# ntpdate 10.2.5.200

26 Oct 14:35:42 ntpdate[20364]: adjust time server 10.2.5.200 offset

 -0.008049 sec

See your system manual and the documentation that comes with the NTP package. Most desktop managers

include tools to set the system time, providing that you have access to the system administrator's account.

For setting the time zone correct, you can use tzconfig or timezone commands. Timezone information is

usually set during the installation of your machine. Many systems have distribution-specific tools to configure

it, see your system documentation.

7.4.4. Language

If you'd rather get your messages from the system in Dutch or French, you may want to set the LANG and

LANGUAGE environment variables, thus enabling locale support for the desired language and eventually the

fonts related to character conventions in that language.

With most graphical login systems, such as gdm or kdm, you have the possibility to configure these language

settings before logging in.

Note that on most systems, the default tends to be en_US.UTF-8 these days. This is not a problem, because

systems where this is the default, will also come with all the programs supporting this encoding. Thus, vi can

edit all the files on your system, cat won't behave strange and so on.

Trouble starts when you connect to an older system not supporting this font encoding, or when you open a

UTF-8 encoded file on a system supporting only 1-byte character fonts. The recode utility might come in

handy to convert files from one character set to another. Read the man pages for an overview of features and

usage. Another solution might be to temporarily work with another encoding definition, by setting the LANG

environment variable:

debby:~> acroread /var/tmp/51434s.pdf

Warning: charset "UTF-8" not supported, using "ISO8859-1".

Aborted

debby:~> set | grep UTF

LANG=en_US.UTF-8

debby:~> export LANG=en_US

Introduction to Linux

Chapter 7. Home sweet /home 127

debby:~> acroread /var/tmp/51434s.pdf

<--new window opens-->

Refer to the Mozilla web site for guidance on how to get Firefox in your language. The OpenOffice.org web

site has information on localization of your OpenOffice.org suite.

7.4.5. Country-specific Information

The list of HOWTOs contains references to Bangla, Belarusian, Chinese, Esperanto, Finnish, Francophone,

Hebrew, Hellenic, Latvian, Polish, Portugese, Serbian, Slovak, Slovenian, Spanish, Thai and Turkish

localization instructions.

7.5. Installing new software

7.5.1. General

Most people are surprised to see that they have a running, usable computer after installing Linux; most

distributions contain ample support for video and network cards, monitors and other external devices, so there

is usually no need to install extra drivers. Also common tools such as office suites, web browsers, E-mail and

other network client programs are included in the main distributions. Even so, an initial installation might not

meet your requirements.

If you just can't find what you need, maybe it is not installed on your system. It may also be that you have the

required software, but it does not do what it is supposed to do. Remember that Linux moves fast, and software

improves on a daily basis. Don't waste your time troubleshooting problems that might already be resolved.

You can update your system or add packages to it at any time you want. Most software comes in packages.

Extra software may be found on your installation CDs or on the Internet. The website of your Linux

distribution is a good place to start looking for additional software and contains instructions about how to

install it on your type of Linux, see Appendix A. Always read the documentation that comes with new

software, and any installation guidelines the package might contain. All software comes with a README file,

which you are very strongly advised to read.

7.5.2. Package formats

7.5.2.1. RPM packages

7.5.2.1.1. What is RPM?

RPM, the RedHat Package Manager, is a powerful package manager that you can use to install, update and

remove packages. It allows you to search for packages and keeps track of the files that come with each

package. A system is built-in so that you can verify the authenticity of packages downloaded from the

Internet. Advanced users can build their own packages with RPM.

An RPM package consists of an archive of files and meta-data used to install and erase the archive files. The

meta-data includes helper scripts, file attributes, and descriptive information about the package. Packages

come in two varieties: binary packages, used to encapsulate software to be installed, and source packages,

containing the source code and recipe necessary to produce binary packages.

Introduction to Linux

Chapter 7. Home sweet /home 128

http://www.mozilla.org/
http://www.openoffice.org/
http://www.tldp.org/HOWTO/HOWTO-INDEX/howtos.html

Many other distributions support RPM packages, among the popular ones RedHat Enterprise Linux, Mandriva

(former Mandrake), Fedora Core and SuSE Linux. Apart from the advice for your distribution, you will want

to read man rpm.

7.5.2.1.2. RPM examples

Most packages are simply installed with the upgrade option, -U, whether the package is already installed or

not. The RPM package contains a complete version of the program, which overwrites existing versions or

installs as a new package. The typical usage is as follows:

rpm -Uvh /path/to/rpm-package(s)

The -v option generates more verbose output, and -h makes rpm print a progress bar:

[root@jupiter tmp]# rpm -Uvh totem-0.99.5-1.fr.i386.rpm

Preparing... ### [100%]

 1:totem ### [100%]

[root@jupiter tmp]#

New kernel packages, however, are installed with the install option -i, which does not overwrite existing

version(s) of the package. That way, you will still be able to boot your system with the old kernel if the new

one does not work.

You can also use rpm to check whether a package is installed on your system:

[david@jupiter ~] rpm -qa | grep vim

vim-minimal-6.1-29

vim-X11-6.1-29

vim-enhanced-6.1-29

vim-common-6.1-29

Or you can find out which package contains a certain file or executable:

[david@jupiter ~] rpm -qf /etc/profile

setup-2.5.25-1

[david@jupiter ~] which cat

cat is /bin/cat

[david@jupiter ~] rpm -qf /bin/cat

coreutils-4.5.3-19

Note that you need not have access to administrative privileges in order to use rpm to query the RPM

database. You only need to be root when adding, modifying or deleting packages.

Below is one last example, demonstrating how to uninstall a package using rpm:

[root@jupiter root]# rpm -e totem

[root@jupiter root]#

Note that uninstalling is not that verbose by default, it is normal that you don't see much happening. When in

doubt, use rpm -qa again to verify that the package has been removed.

RPM can do much more than the couple of basic functions we discussed in this introduction; the RPM

HOWTO contains further references.

Introduction to Linux

Chapter 7. Home sweet /home 129

http://www.tldp.org/HOWTO/RPM-HOWTO/index.html
http://www.tldp.org/HOWTO/RPM-HOWTO/index.html

7.5.2.2. DEB (.deb) packages

7.5.2.2.1. What are Debian packages?

This package format is the default on Debian GNU/Linux, where dselect, and, nowadays more common,

aptitude, is the standard tool for managing the packages. It is used to select packages that you want to install

or upgrade, but it will also run during the installation of a Debian system and help you to define the access

method to use, to list available packages and to configure packages.

The Debian web site contains all information you need, including a "dselect Documentation for Beginners".

According to the latest news, the Debian package format is becoming more and more popular. At the time of

this writing, 5 of the top-10 distributions use it. Also apt-get (see Section 7.5.3.2 is becoming extremely

popular, also on non-DEB systems.

7.5.2.2.2. Examples with DEB tools

Checking whether a package is installed is done using the dpkg command. For instance, if you want to know

which version of the Gallery software is installed on your machine:

nghtwsh@gorefest:~$ dpkg -l *gallery*

Desired=Unknown/Install/Remove/Purge/Hold

| Status=Not/Installed/Config-files/Unpacked/Failed-config/Half-installed

|/ Err?=(none)/Hold/Reinst-required/X=both-problems (Status,Err: uppercase=bad)

||/ Name Version Description

+++-==============-==============-==

ii gallery 1.5-1sarge2 a web-based photo album written in php

The "ii" prefix means the package is installed. Should you see "un" as a prefix, that means that the package is

known in the list that your computer keeps, but that it is not installed.

Searching which package a file belongs to is done using the -S to dpkg:

nghtwsh@gorefest:~$ dpkg -S /bin/cat

coreutils: /bin/cat

More information can be found in the Info pages for dpkg.

7.5.2.3. Source packages

The largest part of Linux programs is Free/Open Source, so source packages are available for these programs.

Source files are needed for compiling your own program version. Sources for a program can be downloaded

from its web site, often as a compressed tarball (program-version.tar.gz or similar). For RPM-based

distributions, the source is often provided in the program-version.src.rpm. Debian, and most

distributions based on it, provide themselves the adapted source which can be obtained using apt-get

source.

Specific requirements, dependencies and installation instructions are provided in the README file. You will

probably need a C compiler, gcc. This GNU C compiler is included in most Linux systems and is ported to

many other platforms.

Introduction to Linux

Chapter 7. Home sweet /home 130

http://debian.org

7.5.3. Automating package management and updates

7.5.3.1. General remarks

The first thing you do after installing a new system is applying updates; this applies to all operating systems

and Linux is not different.

The updates for most Linux systems can usually be found on a nearby site mirroring your distribution. Lists of

sites offering this service can be found at your distribution's web site, see Appendix A.

Updates should be applied regularly, daily if possible - but every couple of weeks would be a reasonable start.

You really should try to have the most recent version of your distribution, since Linux changes constantly. As

we said before, new features, improvements and bug fixes are supplied at a steady rhythm, and sometimes

important security problems are addressed.

The good news is that most Linux distributions provide tools so that you don't have to upgrade tens of

packages daily by hand. The following sections give an overview of package manager managers. There is

much more to this subject, even regular updates of source packages is manageable automatically; we only list

the most commonly known systems. Always refer to the documentation for your specific distribution for

advised procedures.

7.5.3.2. APT

The Advanced Package Tool is a management system for software packages. The command line tool for

handling packages is apt-get, which comes with an excellent man page describing how to install and update

packages and how to upgrade singular packages or your entire distribution. APT has its roots in the Debian

GNU/Linux distribution, where it is the default manager for the Debian packages. APT has been ported to

work with RPM packages as well. The main advantage of APT is that it is free and flexible to use. It will

allow you to set up systems similar to the distribution specific (and in some cases commercial) ones listed in

the next sections.

Generally, when first using apt-get, you will need to get an index of the available packages. This is done

using the command

apt-get update

After that, you can use apt-get to upgrade your system:

apt-get upgrade

Do this often, it's an easy way to keep your system up-to-date and thus safe.

Apart from this general usage, apt-get is also very fast for installing individual packages. This is how it

works:

[david@jupiter ~] su - -c "apt-get install xsnow"

Password:

Reading Package Lists... Done

Building Dependency Tree... Done

The following NEW packages will be installed:

 xsnow

Introduction to Linux

Chapter 7. Home sweet /home 131

0 packages upgraded, 1 newly installed, 0 removed and 3 not upgraded.

Need to get 33.6kB of archives.

After unpacking 104kB of additional disk space will be used.

Get:1 http://ayo.freshrpms.net redhat/9/i386/os xsnow 1.42-10 [33.6kB]

Fetched 33.6kB in 0s (106kB/s)

Executing RPM (-Uvh)...

Preparing... ### [100%]

 1:xsnow ### [100%]

Note the -c option to the su command, which indicates to the root shell to only execute this command, and

then return to the user's environment. This way, you cannot forget to quit the root account.

If there are any dependencies on other packages, apt-get will download and install these supporting packages.

More information can be found in the APT HOWTO.

7.5.3.3. Systems using RPM packages

Update Agent, which originally only supported RedHat RPM packages, is now ported to a wider set of

software, including non-RedHat repositories. This tool provides a complete system for updating the RPM

packages on a RedHat or Fedora Core system. On the command line, type up2date to update your system. On

the desktop, by default a small icon is activated, telleng you whether or not there are updates available for

your system.

Yellowdog's Updater Modified (yum) is another tool that recently became more popular. It is an interactive

but automated update program for installing, updating or removing RPM packages on a system. It is the tool

of choice on Fedora systems.

On SuSE Linux, everything is done with YaST, Yet another Setup Tool, which supports a wide variety of

system administration tasks, among which updating RPM packages. Starting from SuSE Linux 7.1 you can

also upgrade using a web interface and YOU, Yast Online Update.

Mandrake Linux and Mandriva provide so-called URPMI tools, a set of wrapper programs that make

installing new software easier for the user. These tools combine with RPMDrake and MandrakeUpdate to

provide everything needed for smooth install and uninstall of software packages. MandrakeOnline offers an

extended range of services and can automatically notify administrators when updates are available for your

particular Mandrake system. See man urpmi, among others, for more info.

Also the KDE and Gnome desktop suites have their own (graphical) versions of package managers.

7.5.4. Upgrading your kernel

Most Linux installations are fine if you periodically upgrade your distribution. The upgrade procedure will

install a new kernel when needed and make all necessary changes to your system. You should only compile or

install a new kernel manually if you need kernel features that are not supported by the default kernel included

in your Linux distribution.

Whether compiling your own optimized kernel or using a pre-compiled kernel package, install it in

co-existence with the old kernel until you are sure that everything works according to plan.

Then create a dual boot system that will allow you to choose which kernel to boot by updating your boot

loader configuration file grub.conf. This is a simple example:

Introduction to Linux

Chapter 7. Home sweet /home 132

http://www.debian.org/doc/user-manuals#apt-howto

grub.conf generated by anaconda

#

Note that you do not have to rerun grub after making config changes.

NOTICE: You have a /boot partition. This means that

all kernel and initrd paths are relative to /boot/, e.g.

root (hd0,0)

kernel /vmlinuz-version ro root=/dev/hde8

initrd /initrd-version.img

#boot=/dev/hde

default=0

timeout=10

splashimage=(hd0,0)/grub/splash.xpm.gz

title Red Hat Linux new (2.4.9-31)

 root (hd0,0)

 kernel /vmlinuz-2.4.9-31 ro root=/dev/hde8

 initrd /initrd-2.4.9-31.img

title old-kernel

 root (hd0,0)

 kernel /vmlinuz-2.4.9-21 ro root=/dev/hde8

 initrd /initrd-2.4.9-21.img

After the new kernel has proven to work, you may remove the lines for the old one from the GRUB config

file, although it is best to wait a couple of days just to be sure.

7.5.5. Installing extra packages from the installation CDs

7.5.5.1. Mounting a CD

This is basically done in the same way as installing packages manually, except that you have to append the

file system of the CD to your machine's file system to make it accessible. On most systems, this will be done

automatically upon insertion of a CD in the drive because the automount daemon is started up at boot time. If

your CD is not made available automatically, issue the mount command in a terminal window. Depending on

your actual system configuration, a line similar to this one will usually do the trick:

mount /dev/cdrom /mnt/cdrom

On some systems, only root can mount removable media; this depends on the configuration.

For automation purposes, the CD drive usually has an entry in /etc/fstab, which lists the file systems and

their mount points, that make up your file system tree. This is such a line:

[david@jupiter ~] grep cdrom /etc/fstab

/dev/cdrom /mnt/cdrom iso9660 noauto,owner,ro 0 0

This indicates that the system will understand the command mount /mnt/cdrom. The noauto option

means that on this system, CDs are not mounted at boot time.

You may even try to right click on the CD icon on your desktop to mount the CD if your file manager doesn't

do it for you. You can check whether it worked issuing the mount command with no arguments:

[david@jupiter ~] mount | grep cdrom

/dev/cdrom on /mnt/cdrom type iso9660 (ro,nosuid,nodev)

Introduction to Linux

Chapter 7. Home sweet /home 133

7.5.5.2. Using the CD

After mounting the CD, you can change directories, usually to the mount point /mnt/cdrom, where you can

access the content of the CD-ROM. Use the same commands for dealing with files and directories as you

would use for files on the hard disk.

7.5.5.3. Ejecting the CD

In order to get the CD out of the drive after you've finished using it, the file system on the CD should be

unused. Even being in one of the subdirectories of the mount point, /mnt/cdrom in our example, will be

considered as "using the file system", so you should get out of there. Do this for instance by typing cd with no

arguments, which will put you back in your home directory. After that, you can either use the command

umount /mnt/cdrom

or

eject cdrom

Blocked drives

NEVER force the drive. The trick with the paperclip is a bad idea, because this will eventually expunge

the CD, but your system will think the CD is still there because normal procedures were not followed.

Chances are likely that you will have to reboot to get the system back in a consistent state.

If you keep getting "device busy" messages, check first that all shell sessions have left the CD file

system and that no graphical applications are using it anymore. When in doubt, use the lsof tool to trace

down the process(es) still using the CD resource.

7.6. Summary

When everything has its place, that means already half the work is done.

While keeping order is important, it is equally important to feel at home in your environment, whether text or

graphical. The text environment is controlled through the shell setup files. The graphical environment is

primarily dependent on the X server configuration, on which a number of other applications are built, such as

window and desktop managers and graphical applications, each with their own config files. You should read

the system and program specific documentation to find out about how to configure them.

Regional settings such as keyboard setup, installing appropriate fonts and language support are best done at

installation time.

Software is managed either automatically or manually using a package system.

The following commands were introduced in this chapter:

Table 7-2. New commands in chapter 7: Making yourself at home

Command Meaning

Introduction to Linux

Chapter 7. Home sweet /home 134

aptitude Manage packages Debian-style.

automount automatically include newly inserted file systems.

dpkg Debian package manager.

dselect Manage packages Debian-style.

loadkeys Load keyboard configuration.

lsof Identify processes.

mount Include a new file system into the existing file system tree.

ntpdate Set the system time and date using a time server.

quota Display information about allowed disk space usage.

recode Convert files to another character set.

rpm Manage RPM packages.

setfont Choose a font.

timezone Set the timezone.

tzconfig Set the timezone.

ulimit Set or display resource limits.

up2date Manage RPM packages.

urpmi Manage RPM packages.

yum Manage RPM packages.

7.7. Exercises

7.7.1. Shell environment

Print out your environment settings. Which variable may be used to store the CPU type of your

machine?

•

Make a script that can say something on the lines of "hello, world." Give it appropriate permissions so

it can be run. Test your script.

•

Create a directory in your home directory and move the script to the new directory. Permanently add

this new directory to your search path. Test that the script can be executed without giving a path to its

actual location.

•

Create subdirectories in your home directory to store various files, for instance a directory music to

keep audio files, a directory documents for your notes, and so on. And use them!

•

Create a personalized prompt.•

Display limits on resource usage. Can you change them?•

Try to read compressed man pages without decompressing them first.•

Make an alias lll which actually executes ls -la.•

Why does the command tail testfile > testfile not work?•

Mount a data CD, such as your Linux installation CD, and have a look around. Don't forget to

unmount when you don't need it anymore.

•

The script from Section 7.2.5.2 is not perfect. It generates errors for files that are directories. Adapt

the script so that it only selects plain files for copying. Use find to make the selection. Do not forget

to make the script executable before you try to run it.

•

Introduction to Linux

Chapter 7. Home sweet /home 135

7.7.2. Graphical environment

Try all the mouse buttons in different regions (terminal, background, task bar).•

Explore the menus.•

Customize your terminal window.•

Use the mouse buttons to copy and paste text from one terminal to another.•

Find out how to configure your window manager; try different workspaces (virtual screens).•

Add an applet, such as a load monitor, to the task bar.•

Apply a different theme.•

Enable the so-called sloppy focus - this is when a window is activated by just moving the mouse over

it, so that you do not need to click the window in order to be able to use it.

•

Switch to a different window manager.•

Log out and select a different session type, like KDE if you were using Gnome before. Repeat the

previous steps.

•

Introduction to Linux

Chapter 7. Home sweet /home 136

Chapter 8. Printers and printing

In this chapter we will learn more about printers and printing files. After reading this part, you

will be able to:

Format documents♦

Preview documents before sending them to the printer♦

Choose a good printer that works with your Linux system♦

Print files and check on printer status♦

Troubleshoot printing problems♦

Find necessary documentation to install a printer♦

8.1. Printing files

8.1.1. Command line printing

8.1.1.1. Getting the file to the printer

Printing from within an application is very easy, selecting the Print option from the menu.

From the command line, use the lp or lpr command.

lp file(s)

lpr file(s)

These commands can read from a pipe, so you can print the output of commands using

command | lp

There are many options available to tune the page layout, the number of copies, the printer that you want to

print to if you have more than one available, paper size, one-side or double-sided printing if your printer

supports this feature, margins and so on. Read the man pages for a complete overview.

8.1.1.2. Status of your print jobs

Once the file is accepted in the print queue, an identification number for the print job is assigned:

davy:~> lp /etc/profile

request id is blob-253 (1 file(s))

To view (query) the print queue, use the lpq or lpstat command. When entered without arguments, it displays

the contents of the default print queue.

davy:~> lpq

blob is ready and printing

Rank Owner Job File(s) Total Size

active davy 253 profile 1024 bytes

davy:~> lpstat

blob-253 davy 1024 Tue 25 Jul 2006 10:20_01 AM CEST

Chapter 8. Printers and printing 137

8.1.1.3. Status of your printer

Which is the default printer on a system that has access to multiple printers?

lpstat -d

davy:~> lpstat -d

system default destination: blob

What is the status of my printer(s)?

lpstat -p

davy:~> lpstat -p

printer blob now printing blob-253. enabled since Jan 01 18:01

8.1.1.4. Removing jobs from the print queue

If you don't like what you see from the status commands, use lprm or cancel to delete jobs.

davy:~> lprm 253

In the graphical environment, you may see a popup window telling you that the job has been canceled.

In larger environments, lpc may be used to control multiple printers. See the Info or man pages on each

command.

There are many GUI print tools used as a front-end to lp, and most graphical applications have a print

function that uses lp. See the built-in Help functions and program specific documentation for more.

Why are there two commands for every task related to printing?

Printing on UNIX and alikes has a long history. There used to be two rather different approaches: the

BSD-style printing and the SystemV-style printing. For compatibility, Linux with CUPS supports the

commands from both styles. Also note that lp does not behave exactly like lpr, lpq has somewhat

different options than lpstat and lprm is almost, but not quite, like cancel. Which one you use is not

important, just pick the commands that you are comfortable with, or that you may know from previous

experiences with UNIX-like systems.

8.1.2. Formatting

8.1.2.1. Tools and languages

If we want to get something sensible out of the printer, files should be formatted first. Apart from an

abundance of formatting software, Linux comes with the basic UNIX formatting tools and languages.

Modern Linux systems support direct printing, without any formatting by the user, of a range of file types:

text, PDF, PostScript and several image formats like PNG, JPEG, BMP and GIF.

For those file formats that do need formatting, Linux comes with a lot of formatting tools, such as the pdf2ps,

fax2ps and a2ps commands, that convert other formats to PostScript. These commands can create files that

can then be used on other systems that don't have all the conversion tools installed.

Introduction to Linux

Chapter 8. Printers and printing 138

Apart from these command line tools there are a lot of graphical word processing programs. Several complete

office suites are available, many are free. These do the formatting automatically upon submission of a print

job. Just to name a few: OpenOffice.org, KOffice, AbiWord, WordPerfect, etc.

The following are common languages in a printing context:

groff: GNU version of the UNIX roff command. It is a front-end to the groff document formatting

system. Normally it runs the troff command and a post-processor appropriate for the selected device.

It allows generation of PostScript files.

•

TeX and the macro package LaTeX: one of the most widely used markup languages on UNIX

systems. Usually invoked as tex, it formats files and outputs a corresponding device-independent

representation of the typeset document.

Technical works are still frequently written in LaTeX because of its support for mathematic formulas,

although efforts are being made at W3C (the World Wide Web Consortium) to include this feature in

other applications.

•

SGML and XML: Free parsers are available for UNIX and Linux. XML is the next generation SGML,

it forms the basis for DocBook XML, a document system (this book is written in XML, for instance).

•

Printing documentation

The man pages contain pre-formatted troff data which has to be formatted before it can roll out of your

printer. Printing is done using the -t option to the man command:

man -t command > man-command.ps

Then print the PostScript file. If a default print destination is configured for your system/account, you

can just issue the command man -t command to send the formatted page to the printer directly.

8.1.2.2. Previewing formatted files

Anything that you can send to the printer can normally be sent to the screen as well. Depending on the file

format, you can use one of these commands:

PostScript files: with the gv (GhostView) command.•

TeX dvi files: with xdvi, or with KDE's kdvi.•

PDF files: xpdf, kpdf, gpdf or Adobe's viewer, acroread, which is also available for free but is not

free software. Adobe's reader supports PDF 1.6, the others only support PDF versions up to 1.5. The

version of a PDF file can be determined using the file command.

•

From within applications, such as Firefox or OpenOffice, you can usually select Print Preview from

one of the menus.

•

8.2. The server side

8.2.1. General

Until a couple of years ago, the choice for Linux users was simple: everyone ran the same old LPD from

BSD's Net-2 code. Then LPRng became more popular, but nowadays most modern Linux distributions use

CUPS, the Common UNIX Printing System. CUPS is an implementation of the Internet Printing Protocol

(IPP), an HTTP-like RFC standard replacement protocol for the venerable (and clunky) LPD protocol. CUPS

Introduction to Linux

Chapter 8. Printers and printing 139

http://www.w3.org
http://www.cups.org

is distributed under the GNU Public License. CUPS is also the default print system on MacOS X.

8.2.2. Graphical printer configuration

Most distributions come with a GUI for configuring networked and local (parallel port or USB) printers. They

let you choose the printer type from a list and allow easy testing. You don't have to bother about syntax and

location of configuration files. Check your system documentation before you attempt installing your printer.

CUPS can also be configured using a web interface that runs on port 631 on your computer. To check if this

feature is enabled, try browsing to localhost:631/help or localhost:631/.

8.2.3. Buying a printer for Linux

As more and more printer vendors make drivers for CUPS available, CUPS will allow easy connection with

almost any printer that you can plug into a serial, parallel, or USB port, plus any printer on the network.

CUPS will ensure a uniform presentation to you and your applications of all different types of printers.

Printers that only come with a Win9x driver could be problematic if they have no other support. Check with

http://linuxprinting.org/ when in doubt.

In the past, your best choice would have been a printer with native PostScript support in the firmware, since

nearly all UNIX or Linux software producing printable output, produces it in PostScript, the publishing

industry's printer control language of choice. PostScript printers are usually a bit more expensive, but it is a

device-independent, open programming language and you're always 100% sure that they will work. These

days, however, the importance of this rule of thumb is dwindling.

8.3. Print problems

In this section, we will discuss what you can do as a user when something goes wrong. We won't discuss any

problems that have to do with the daemon-part of the printing service, as that is a task for system

administrators.

8.3.1. Wrong file

If you print the wrong file, the job may be canceled using the command lprm jobID, where jobID is in the

form printername-printjobnumber (get it from information displayed by lpq or lpstat). This will work when

other jobs are waiting to be printed in this printer's queue. However, you have to be really quick if you are the

only one using this printer, since jobs are usually spooled and send to the printer in only seconds. Once they

arrive on the printer, it is too late to remove jobs using Linux tools.

What you can try in those cases, or in cases where the wrong print driver is configured and only rubbish

comes out of the printer, is power off the printer. However, that might not be the best course of action, as you

might cause paper jams and other irregularities.

8.3.2. My print hasn't come out

Use the lpq command and see if you can spot your job:

Introduction to Linux

Chapter 8. Printers and printing 140

http://linuxprinting.org/

elly:~> lpq

Printer: lp@blob

 Queue: 2 printable jobs

 Server: pid 29998 active

 Unspooler: pid 29999 active

 Status: waiting for subserver to exit at 09:43:20.699

 Rank Owner/ID Class Job Files Size Time

1 elly@blob+997 A 997 (STDIN) 129 09:42:54

2 elly@blob+22 A 22 /etc/profile 917 09:43:20

Lots of printers have web interfaces these days, which can display status information by typing the printer's IP

address in your web browser:

Figure 8-1. Printer Status through web interface

CUPS web interface versus printer web interface

Introduction to Linux

Chapter 8. Printers and printing 141

Note that this is not the CUPS web interface and only works for printers supporting this feature. Check

the documentation of your printer.

If your job ID is not there and not on the printer, contact your system administrator. If your job ID is listed in

the output, check that the printer is currently printing. If so, just wait, your job will get done in due time.

If the printer is not printing, check that it has paper, check the physical connections to both electricity and data

network. If that's okay, the printer may need restarting. Ask your system admin for advice.

In the case of a network printer, try printing from another host. If the printer is reachable from your own host

(see Chapter 10 for the ping utility), you may try to put the formatted file on it, like file.ps in case of a

PostScript printer, using an FTP client. If that works, your print system is misconfigured. If it doesn't work,

maybe the printer doesn't understand the format you are feeding it.

The GNU/Linux Printing site contains more tips and tricks.

8.4. Summary

The Linux print service comes with a set of printing tools based on the standard UNIX LPD tools, whether it

be the SystemV or BSD implementation. Below is a list of print-related commands.

Table 8-1. New commands in chapter 8: Printing

Command Meaning

lpr or lp Print file

lpq or lpstat Query print queue

lprm or cancel Remove print job

acroread PDF viewer

groff Formatting tool

gv PostScript viewer

printconf Configure printers

xdvi DVI viewer

xpdf PDF viewer

*2ps Convert file to PostScript

8.5. Exercises

Configuring and testing printers involves being in the possession of one, and having access to the root

account. If so, you may try:

Installing the printer using the GUI on your system.•

Printing a test page using the GUI.•

Printing a test page using the lp command.•

Print from within an application, for example Mozilla or OpenOffice, by choosing File->Print from

the menu.

•

Disconnect the printer from the network or the local machine/print-server. What happens when you

try to print something?

•

Introduction to Linux

Chapter 8. Printers and printing 142

http://www.linuxprinting.org

The following exercises can be done without printer or root access.

Try to make PostScript files from different source files, (e.g. HTML, PDF, man pages). Test the

results with the gv viewer.

•

Check that the print daemon is running.•

Print the files anyway. What happens?•

Make a PostScript file using Mozilla. Test it with gv.•

Convert it to PDF format. Test with xpdf.•

How would you go about printing a GIF file from the command line?•

Use a2ps to print the /etc/profile file to an output file. Test again with gv. What happens if you

don't specify an output file?

•

Introduction to Linux

Chapter 8. Printers and printing 143

Chapter 9. Fundamental Backup Techniques

Accidents will happen sooner or later. In this chapter, we'll discuss how to get data to a safe

place using other hosts, floppy disks, CD-ROMs and tapes. We will also discuss the most

popular compressing and archiving commands.

Upon completion of this chapter, you will know how to:

Make, query and unpack file archives♦

Handle floppy disks and make a boot disk for your system♦

Write CD-ROMs♦

Make incremental backups♦

Create Java archives♦

Find documentation to use other backup devices and programs♦

Encrypt your data♦

9.1. Introduction

Although Linux is one of the safest operating systems in existence, and even if it is designed to keep on going,

data can get lost. Data loss is most often the consequence of user errors, but occasionally a system fault, such

as a power or disk failure, is the cause, so it's always a good idea to keep an extra copy of sensitive and/or

important data.

9.1.1. Preparing your data

9.1.1.1. Archiving with tar

In most cases, we will first collect all the data to back up in a single archive file, which we will compress later

on. The process of archiving involves concatenating all listed files and taking out unnecessary blanks. In

Linux, this is commonly done with the tar command. tar was originally designed to archive data on tapes, but

it can also make archives, known as tarballs.

tar has many options, the most important ones are cited below:

-v: verbose•

-t: test, shows content of a tarball•

-x: extract archive•

-c: create archive•

-f archivedevice: use archivedevice as source/destination for the tarball, the device

defaults to the first tape device (usually /dev/st0 or something similar)

•

-j: filter through bzip2, see Section 9.1.1.2•

It is common to leave out the dash-prefix with tar options, as you can see from the examples below.

Use GNU tar for compatibility

The archives made with a proprietary tar version on one system, may be incompatible with tar on

another proprietary system. This may cause much headaches, such as if the archive needs to be recovered

Chapter 9. Fundamental Backup Techniques 144

on a system that doesn't exist anymore. Use the GNU tar version on all systems to prevent your system

admin from bursting into tears. Linux always uses GNU tar. When working on other UNIX machines,

enter tar --help to find out which version you are using. Contact your system admin if you don't see

the word GNU somewhere.

In the example below, an archive is created and unpacked.

gaby:~> ls images/

me+tux.jpg nimf.jpg

gaby:~> tar cvf images-in-a-dir.tar images/

images/

images/nimf.jpg

images/me+tux.jpg

gaby:~> cd images

gaby:~/images> tar cvf images-without-a-dir.tar *.jpg

me+tux.jpg

nimf.jpg

gaby:~/images> cd

gaby:~> ls */*.tar

images/images-without-a-dir.tar

gaby:~> ls *.tar

images-in-a-dir.tar

gaby:~> tar xvf images-in-a-dir.tar

images/

images/nimf.jpg

images/me+tux.jpg

gaby:~> tar tvf images/images-without-dir.tar

-rw-r--r-- gaby/gaby 42888 1999-06-30 20:52:25 me+tux.jpg

-rw-r--r-- gaby/gaby 7578 2000-01-26 12:58:46 nimf.jpg

gaby:~> tar xvf images/images-without-a-dir.tar

me+tux.jpg

nimf.jpg

gaby:~> ls *.jpg

me+tux.jpg nimf.jpg

This example also illustrates the difference between a tarred directory and a bunch of tarred files. It is

advisable to only compress directories, so files don't get spread all over when unpacking the tarball (which

may be on another system, where you may not know which files were already there and which are the ones

from the archive).

When a tape drive is connected to your machine and configured by your system administrator, the file names

ending in .tar are replaced with the tape device name, for example:

tar cvf /dev/tape mail/

The directory mail and all the files it contains are compressed into a file that is written on the tape

immediately. A content listing is displayed because we used the verbose option.

Introduction to Linux

Chapter 9. Fundamental Backup Techniques 145

9.1.1.2. Incremental backups with tar

The tar tool supports the creation of incremental backups, using the -N option. With this option, you can

specify a date, and tar will check modification time of all specified files against this date. If files are changed

more recent than date, they will be included in the backup. The example below uses the timestamp on a

previous archive as the date value. First, the initial archive is created and the timestamp on the initial backup

file is shown. Then a new file is created, upon which we take a new backup, containing only this new file:

jimmy:~> tar cvpf /var/tmp/javaproggies.tar java/*.java

java/btw.java

java/error.java

java/hello.java

java/income2.java

java/income.java

java/inputdevice.java

java/input.java

java/master.java

java/method1.java

java/mood.java

java/moodywaitress.java

java/test3.java

java/TestOne.java

java/TestTwo.java

java/Vehicle.java

jimmy:~> ls -l /var/tmp/javaproggies.tar

-rw-rw-r-- 1 jimmy jimmy 10240 Jan 21 11:58 /var/tmp/javaproggies.tar

jimmy:~> touch java/newprog.java

jimmy:~> tar -N /var/tmp/javaproggies.tar \

-cvp /var/tmp/incremental1-javaproggies.tar java/*.java 2> /dev/null

java/newprog.java

jimmy:~> cd /var/tmp/

jimmy:~> tar xvf incremental1-javaproggies.tar

java/newprog.java

Standard errors are redirected to /dev/null. If you don't do this, tar will print a message for each

unchanged file, telling you it won't be dumped.

This way of working has the disadvantage that it looks at timestamps on files. Say that you download an

archive into the directory containing your backups, and the archive contains files that have been created two

years ago. When checking the timestamps of those files against the timestamp on the initial archive, the new

files will actually seem old to tar, and will not be included in an incremental backup made using the -N

option.

A better choice would be the -g option, which will create a list of files to backup. When making incremental

backups, files are checked against this list. This is how it works:

jimmy:~> tar cvpf work-20030121.tar -g snapshot-20030121 work/

work/

work/file1

work/file2

work/file3

jimmy:~> file snapshot-20030121

Introduction to Linux

Chapter 9. Fundamental Backup Techniques 146

snapshot-20030121: ASCII text

The next day, user jimmy works on file3 a bit more, and creates file4. At the end of the day, he makes a

new backup:

jimmy:~> tar cvpf work-20030122.tar -g snapshot-20030121 work/

work/

work/file3

work/file4

These are some very simple examples, but you could also use this kind of command in a cronjob (see Section

4.4.4), which specifies for instance a snapshot file for the weekly backup and one for the daily backup.

Snapshot files should be replaced when taking full backups, in that case.

More information can be found in the tar documentation.

The real stuff

As you could probably notice, tar is OK when we are talking about a simple directory, a set of files that

belongs together. There are tools that are easier to manage, however, when you want to archive entire

partitions or disks or larger projects. We just explain about tar here because it is a very popular tool for

distributing archives. It will happen quite often that you need to install a software that comes in a

so-called "compressed tarball". See Section 9.3 for an easier way to perform regular backups.

9.1.1.3. Compressing and unpacking with gzip or bzip2

Data, including tarballs, can be compressed using zip tools. The gzip command will add the suffix .gz to the

file name and remove the original file.

jimmy:~> ls -la | grep tar

-rw-rw-r-- 1 jimmy jimmy 61440 Jun 6 14:08 images-without-dir.tar

jimmy:~> gzip images-without-dir.tar

jimmy:~> ls -la images-without-dir.tar.gz

-rw-rw-r-- 1 jimmy jimmy 50562 Jun 6 14:08 images-without-dir.tar.gz

Uncompress gzipped files with the -d option.

bzip2 works in a similar way, but uses an improved compression algorithm, thus creating smaller files. See

the bzip2 info pages for more.

Linux software packages are often distributed in a gzipped tarball. The sensible thing to do after unpacking

that kind of archives is find the README and read it. It will generally contain guidelines to installing the

package.

The GNU tar command is aware of gzipped files. Use the command

tar zxvf file.tar.gz

for unzipping and untarring .tar.gz or .tgz files. Use

tar jxvf file.tar.bz2

for unpacking tar archives that were compressed with bzip2.

Introduction to Linux

Chapter 9. Fundamental Backup Techniques 147

9.1.1.4. Java archives

The GNU project provides us with the jar tool for creating Java archives. It is a Java application that

combines multiple files into a single JAR archive file. While also being a general purpose archiving and

compression tool, based on ZIP and the ZLIB compression format, jar was mainly designed to facilitate the

packing of Java code, applets and/or applications in a single file. When combined in a single archive, the

components of a Java application, can be downloaded much faster.

Unlike tar, jar compresses by default, independent from other tools - because it is basically the Java version

of zip. In addition, it allows individual entries in an archive to be signed by the author, so that origins can be

authenticated.

The syntax is almost identical as for the tar command, we refer to info jar for specific differences.

tar, jar and symbolic links

One noteworthy feature not really mentioned in the standard documentation is that jar will follow

symbolic links. Data to which these links are pointing will be included in the archive. The default in tar

is to only backup the symbolic link, but this behavior can be changed using the -h to tar.

9.1.1.5. Transporting your data

Saving copies of your data on another host is a simple but accurate way of making backups. See Chapter 10

for more information on scp, ftp and more.

In the next section we'll discuss local backup devices.

9.2. Moving your data to a backup device

9.2.1. Making a copy on a floppy disk

9.2.1.1. Formatting the floppy

On most Linux systems, users have access to the floppy disk device. The name of the device may vary

depending on the size and number of floppy drives, contact your system admin if you are unsure. On some

systems, there will likely be a link /dev/floppy pointing to the right device, probably /dev/fd0 (the

auto-detecting floppy device) or /dev/fd0H1440 (set for 1,44MB floppies).

fdformat is the low-level floppy disk formatting tool. It has the device name of the floppy disk as an option.

fdformat will display an error when the floppy is write-protected.

emma:~> fdformat /dev/fd0H1440

Double-sided, 80 tracks, 18 sec/track. Total capacity 1440 kB.

Formatting ... done

Verifying ... done

emma:~>

The mformat command (from the mtools package) is used to create DOS-compatible floppies which can then

be accessed using the mcopy, mdir and other m-commands.

Introduction to Linux

Chapter 9. Fundamental Backup Techniques 148

Graphical tools are also available.

Figure 9-1. Floppy formatter

After the floppy is formatted, it can be mounted into the file system and accessed as a normal, be it small,

directory, usually via the /mnt/floppy entry.

Should you need it, install the mkbootdisk utility, which makes a floppy from which the current system can

boot.

9.2.1.2. Using the dd command to dump data

The dd command can be used to put data on a disk, or get it off again, depending on the given input and

output devices. An example:

gaby:~> dd if=images-without-dir.tar.gz of=/dev/fd0H1440

98+1 records in

98+1 records out

gaby~> dd if=/dev/fd0H1440 of=/var/tmp/images.tar.gz

2880+0 records in

2880+0 records out

gaby:~> ls /var/tmp/images*

/var/tmp/images.tar.gz

Note that the dumping is done on an unmounted device. Floppies created using this method will not be

mountable in the file system, but it is of course the way to go for creating boot or rescue disks. For more

information on the possibilities of dd, read the man pages.

This tool is part of the GNU coreutils package.

Dumping disks

The dd command can also be used to make a raw dump of an entire hard disk.

Introduction to Linux

Chapter 9. Fundamental Backup Techniques 149

9.2.2. Making a copy with a CD-writer

On some systems users are allowed to use the CD-writer device. Your data will need to be formatted first. Use

the mkisofs command to do this in the directory containing the files you want to backup. Check with df that

enough disk space is available, because a new file about the same size as the entire current directory will be

created:

[rose@blob recordables] df -h .

Filesystem Size Used Avail Use% Mounted on

/dev/hde5 19G 15G 3.2G 82% /home

[rose@blob recordables] du -h -s .

325M .

[rose@blob recordables] mkisofs -J -r -o cd.iso .

<--snap-->

making a lot of conversions

<--/snap-->

98.95% done, estimate finish Fri Apr 5 13:54:25 2002

Total translation table size: 0

Total rockridge attributes bytes: 35971

Total directory bytes: 94208

Path table size(bytes): 452

Max brk space used 37e84

166768 extents written (325 Mb)

The -J and -r options are used to make the CD-ROM mountable on different systems, see the man pages for

more. After that, the CD can be created using the cdrecord tool with appropriate options:

[rose@blob recordables] cdrecord -dev 0,0,0 -speed=8 cd.iso

Cdrecord 1.10 (i686-pc-linux-gnu) (C) 1995-2001 Joerg Schilling

scsidev: '0,0,0'

scsibus: 0 target: 0 lun: 0

Linux sg driver version: 3.1.20

Using libscg version 'schily-0.5'

Device type : Removable CD-ROM

Version : 0

Response Format: 1

Vendor_info : 'HP '

Identification : 'CD-Writer+ 8100 '

Revision : '1.0g'

Device seems to be: Generic mmc CD-RW.

Using generic SCSI-3/mmc CD-R driver (mmc_cdr).

Driver flags : SWABAUDIO

Starting to write CD/DVD at speed 4 in write mode for single session.

Last chance to quit, starting real write in 0 seconds.

Operation starts.

Depending on your CD-writer, you now have the time to smoke^H^H^H^H^H eat a healthy piece of fruit

and/or get a cup of coffee. Upon finishing the job, you will get a confirmation message:

Track 01: Total bytes read/written: 341540864/341540864

 (166768 sectors).

There are some graphical tools available to make it easier on you. One of the popular ones is xcdroast, which

is freely available from the X-CD-Roast web site and is included on most systems and in the GNU directory.

Both the KDE and Gnome desktop managers have facilities to make your own CDs.

Introduction to Linux

Chapter 9. Fundamental Backup Techniques 150

http://www.xcdroast.org/

9.2.3. Backups on/from jazz drives, USB devices and other removables

These devices are usually mounted into the file system. After the mount procedure, they are accessed as

normal directories, so you can use the standard commands for manipulating files.

In the example below, images are copied from a USB camera to the hard disk:

robin:~> mount /mnt/camera

robin:~> mount | grep camera

/dev/sda1 on /mnt/camera type vfat (rw,nosuid,nodev)

If the camera is the only USB storage device that you ever connect to your system, this is safe. But keep in

mind that USB devices are assigned entries in /dev as they are connected to the system. Thus, if you first

connect a USB stick to your system, it will be on the /dev/sda entry, and if you connect your camera after

that, it will be assigned to /dev/sdb - provided that you do not have any SCSI disks, which are also on

/dev/sd*. On newer systems, since kernel 2.6, a hotplug system called HAL (Hardware Abstraction Layer)

ensures that users don't have to deal with this burden. If you want to check where your device is, type dmesg

after inserting it.

You can now copy the files:

robin:~> cp -R /mnt/camera/* images/

robin:~> umount /mnt/camera

Likewise, a jazz drive may be mounted on /mnt/jazz.

Appropriate lines should be added in /etc/modules.conf and /etc/fstab to make this work. Refer

to specific hardware HOWTOs for more information. On systems with a 2.6.x kernel or higher, you may also

want to check the man pages for modprobe and modprobe.conf.

9.2.4. Backing up data using a tape device

This is done using tar (see above). The mt tool is used for controlling the magnetic tape device, like

/dev/st0. Entire books have been written about tape backup, therefore, refer to our reading-list in

Appendix B for more information. Keep in mind that databases might need other backup procedures because

of their architecture.

The appropriate backup commands are usually put in one of the cron directories in order to have them

executed on a regular basis. In larger environments, the freely available Amanda backup suite or a commercial

solution may be implemented to back up multiple machines. Working with tapes, however, is a system

administration task beyond the scope of this document.

9.2.5. Tools from your distribution

Most Linux distributions offer their own tools for making your life easy. A short overview:

SuSE: YaST now includes expanded backup and restore modules.•

RedHat: the File Roller tool provides visual management of (compressed) archives. They seem to be

in favour of the X-CD-Roast tool for moving backups to an external device.

•

Mandrake: X-CD-Roast.•

Introduction to Linux

Chapter 9. Fundamental Backup Techniques 151

http://www.amanda.org

Most distributions come with the BSD dump and restore utilities for making backups of ext2 and

ext3 file systems. This tool can write to a variety of devices and literally dumps the file(s) or file

system bit per bit onto the specified device. Like dd, this allows for backing up special file types such

as the ones in /dev.

•

9.3. Using rsync

9.3.1. Introduction

The rsync program is a fast and flexible tool for remote backup. It is common on UNIX and UNIX-like

systems, easy to configure and use in scripts. While the r in rsync stands for "remote", you do not need to take

this all too literally. Your "remote" device might just as well be a USB storage device or another partition on

your hard disk, you do not need to have two separated machines.

9.3.2. An example: rsync to a USB storage device

As discussed in Section 3.1.2.3, we will first have to mount the device. Possibly, this should be done as root:

root@theserver# mkdir /mnt/usbstore

root@theserver# mount -t vfat /dev/sda1 /mnt/usbstore

Userfriendly

More and more distributions give access to removable devices for non-prilileged users and mount USB

devices, CD-ROMs and other removable devices automatically.

Note that this guideline requires USB support to be installed on your system. See the USB Guide for help if

this does not work. Check with dmesg that /dev/sda1 is indeed the device to mount.

Then you can start the actual backup, for instance of the /home/karl directory:

karl@theserver:~> rsync -avz /home/karl/ /mnt/usbstore

As usual, refer to the man pages for more.

9.4. Encryption

9.4.1. General remarks

9.4.1.1. Why should you encrypt data?

Encryption is synonym to secrecy. In the context of backups, encryption can be very useful, for instance if

you need to leave your backed up data in a place where you can not control access, such as the server of your

provider.

Apart from that, encryption can be applied to E-mails as well: normally, mail is not encrypted and it is often

sent in the open over the netwerk or the Internet. If your message contains sensitive information, better

encrypt it.

Introduction to Linux

Chapter 9. Fundamental Backup Techniques 152

http://www.linux-usb.org/USB-guide/

9.4.1.2. GNU Privacy Guard

On Linux systems you will find GnuPG, the GNU Privacy Guard, which is a suite of programs that are

compatible with the PGP (Pretty Good Privacy) tools that are commercially available.

In this guide we will only discuss the very simple usage of the encryption tools and show what you will need

in order to generate an encryption key and use it to encrypt data for yourself, which you can then safely store

in a public place. More advanced usage directions can be found in the man pages of the various commands.

9.4.2. Generate a key

Before you can start encrypting your data, you need to create a pair of keys. The pair consists of a private and

a public key. You can send the public key to correspondents, who can use it to encrypt data for you, which

you decrypt with your private key. You always keep the private key, never share it with somebody else, or

they will be able to decrypt data that is only destined for you. Just to make sure that no accidents happen, the

private key is protected with a password. The key pair is created using this command:

willy@ubuntu:~$ gpg --key-gen

gpg (GnuPG) 1.4.2.2; Copyright (C) 2005 Free Software Foundation, Inc.

This program comes with ABSOLUTELY NO WARRANTY.

This is free software, and you are welcome to redistribute it

under certain conditions. See the file COPYING for details.

gpg: directory `/home/willy.gnupg' created

gpg: new configuration file `/home/willy/.gnupg/gpg.conf' created

gpg: WARNING: options in `/home/willy/.gnupg/gpg.conf' are not yet

 active during this run

gpg: keyring `/home/willy/.gnupg/secring.gpg' created

gpg: keyring `/home/willy/.gnupg/pubring.gpg' created

Please select what kind of key you want:

 (1) DSA and Elgamal (default)

 (2) DSA (sign only)

 (5) RSA (sign only)

Your selection? 1

DSA keypair will have 1024 bits.

ELG-E keys may be between 1024 and 4096 bits long.

What keysize do you want? (2048) 4096

Requested keysize is 4096 bits

Please specify how long the key should be valid.

 0 = key does not expire

 <n> = key expires in n days

 <n>w = key expires in n weeks

 <n>m = key expires in n month

 <n>y = key expires in n years

Key is valid for? (0) 0

Key does not expire at all

Is this correct? (y/N) y

You need a user ID to identify your key; the software constructs the

user ID from the Real Name, Comment and Email Address in this form:

 "Heinrich Heine (Der Dichter) <heinrichh@duesseldorf.de>"

Real name: Willy De Wandel

Email address: wdw@mvg.vl

Comment: Willem

You selected this USER-ID:

 "Willy De Wandel (Willem) <wdw@mvg.vl>"

Introduction to Linux

Chapter 9. Fundamental Backup Techniques 153

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? O

You need a Passphrase to protect your secret key.

Passphrase:

Now enetr your password. This can be a phrase, the longer, the better, the only condition is that you should be

able to remember it at all times. For verification, you need to enter the same phrase again.

Now the key pair is generated by a program that spawns random numbers and that is, among other factors, fed

with the activity data of the system. So it is a good idea to start some programs now, to move the mouse

cursor or to type some random characters in a terminal window. That way, the chances to generate a number

that contains lots of different digits will be much bigger and the key will be more difficult to crack.

9.4.3. About your key

When your key has been created, you will get a message about the fingerprint. This is a sequence of 40

hexadecimal numbers, which is so long that it is very, very hard to generate the same key twice, on any

computer. You can be rather sure that this is a unique sequence. The short form of this key consists of your

name, followed by the last 8 hexadecimal numbers.

You can get information about your key as follows:

willy@ubuntu:~$ gpg --list-keys

/home/willy/.gnupg/pubring.gpg

pub 1024D/BF5C3DBB 2006-08-08

uid Willy De Wandel (Willem) <wdw@mvg.vl>

sub 4096g/A3449CF7 2006-08-08

The key ID of this key is "BF5C3DBB". You can send your key ID and your name to a key server, so that

other people can get this info about you and use it to encrypt data for you. Alternatively, you can send your

public key directly to the people who need it. The public part of your key is the long series of numbers that

you see when using the --export option to the gpg command:

gpg --export -a

However, as far is this guide is concerned, we assume that you only need your key in order to encrypt and

decrypt data for yourself. Read the gpg man pages if you want to know more.

9.4.4. Encrypt data

Now you can encrypt a .tar archive or a compressed archive, prior to saving it to a backup medium or

transporting it to the backup server. Use the gpg command like this:

gpg -e -r (part of) uid archive

The -e option tells gpg to encrypt, the -r option indicates who to encrypt for. Keep in mind that only only

the user name(s) following this -r option will be able to decrypt the data again. An example:

willy@ubuntu:~$ gpg -e -r Willy /var/tmp/home-willy-20060808.tar

Introduction to Linux

Chapter 9. Fundamental Backup Techniques 154

9.4.5. Decrypting files

Using the -d option, you can decrypt files that have been encrypted for you. The data will scroll over your

screen, but an encrypted copy will remain on disk. So for file formats other than plain text, you will want to

save the decrypted data, so that you can view them with the appropriate program. This is done using the -o

option to the gpg command:

willy@ubuntu:~$ gpg -d -o /var/tmp/home-willy-decrypt.tar /var/tmp/home-willy-20060808.tar.gpg

You need a passphrase to unlock the secret key for

user: "Willy De Wandel (Willem) <wdw@mvg.vl>"

4096 ELG-E key, ID A3449CF7, created 2006-08-08 (main key ID BF5C3DBB)

gpg: encrypted with 4096-bit ELG-E key, ID A3449CF7, created 2006-08-08

 "Willy De Wandel (Willem) <wdw@mvg.vl>"

No password = no data

If you can not remember your password, the data is lost. Not even the system administrator will be able

to decrypt the data. That is why a copy of important keys is sometimes kept in a sealed vault in a bank.

9.5. Summary

Here's a list of the commands involving file backup:

Table 9-1. New commands in chapter 9: Backup

Command Meaning

bzip2 A block-sorting file compressor.

cdrecord Record audio or data Compact Disks from a master.

dd Convert and copy a file

fdformat Low-level formats a floppy disk.

gpg Encrypt and decrypt data.

gzip Compress or expand files.

mcopy Copy MSDOS files to/from UNIX.

mdir Display an MSDOS directory.

mformat Add an MSDOS file system to a low-level formatted floppy disk.

mkbootdisk Creates a stand-alone boot floppy for the running system.

mount Mount a file system (integrate it with the current file system by connecting it to a mount point).

rsync Synchronize directories.

tar Tape archiving utility, also used for making archives on disk instead of on tape.

umount Unmount file systems.

Introduction to Linux

Chapter 9. Fundamental Backup Techniques 155

9.6. Exercises

Make a backup copy of your home directory in /var/tmp using the tar command. Then further

compress the file using gzip or bzip2. Make it a clean tarred file, one that doesn't make a mess when

unpacking.

•

Format a floppy and put some files from your home directory on it. Switch floppies with another

trainee and recover his/her floppy in your home directory.

•

DOS format the floppy. Use the mtools to put and delete files on it.•

What happens to an unformatted floppy when you want to mount it into the file system?•

If you have any USB storage, try to put a file on it.•

Using rsync, make a copy of your home directory to another local or remote file system.•

When leaving files on a network server, it's best to encrypt them. Make a tar archive of your home

directory and encrypt it.

•

Introduction to Linux

Chapter 9. Fundamental Backup Techniques 156

Chapter 10. Networking

When it comes to networking, Linux is your operating system of choice, not only because

networking is tightly integrated with the OS itself and a wide variety of free tools and

applications are available, but for the robustness under heavy loads that can only be achieved

after years of debugging and testing in an Open Source project.

Bookshelves full of information have been written about Linux and networking, but we will

try to give an overview in this chapter. After completing this, you will know more about

Supported networking protocols♦

Network configuration files♦

Commands for configuring and probing the network♦

Daemons and client programs enabling different network applications♦

File sharing and printing♦

Remote execution of commands and applications♦

Basic network interconnection♦

Secure execution of remote applications♦

Firewalls and intrusion detection♦

10.1. Networking Overview

10.1.1. The OSI Model

A protocol is, simply put, a set of rules for communication.

In order to get data over the network, for instance an E-mail from your computer to some computer at the

other end of the world, lots of different hard- and software needs to work together.

All these pieces of hardware and the different software programs speak different languages. Imagine your

E-mail program: it is able to talk to the computer operating system, through a specific protocol, but it is not

able to talk to the computer hardware. We need a special program in the operating system that performs this

function. In turn, the computer needs to be able to communicate with the telephone line or other Internet

hookup method. And behind the scenes, network connection hardware needs to be able to communicate in

order to pass your E-mail from one appliance to the other, all the way to the destination computer.

All these different types of communication protocols are classified in 7 layers, which are known as the Open

Systems Interconnection Reference Model, the OSI Model for short. For easy understanding, this model is

reduced to a 4-layer protocol description, as described in the table below:

Table 10-1. The simplified OSI Model

Layer name Layer Protocols

Application layer HTTP, DNS, SMTP, POP, ...

Transport layer TCP, UDP

Network layer IP, IPv6

Chapter 10. Networking 157

Network access layer PPP, PPPoE, Ethernet

Each layer can only use the functionality of the layer below; each layer can only export functionality to the

layer above. In other words: layers communicate only with adjacent layers. Let's take the example of your

E-mail message again: you enter it through the application layer. In your computer, it travels down the

transport and network layer. Your computer puts it on the network through the network access layer. That is

also the layer that will move the message around the world. At the destination, the receiving computer will

accept the message through it's own network layer, and will display it to the recepient using the transport and

application layer.

It's really much more complicated

The above and following sections are included because you will come across some networking terms

sooner or later; they will give you some starting points, should you want to find out about the details.

10.1.2. Some popular networking protocols

Linux supports many different networking protocols. We list only the most important:

10.1.2.1. TCP/IP

The Transport Control Protocol and the Internet Protocol are the two most popular ways of communicating

on the Internet. A lot of applications, such as your browser and E-mail program, are built on top of this

protocol suite.

Very simply put, IP provides a solution for sending packets of information from one machine to another,

while TCP ensures that the packets are arranged in streams, so that packets from different applications don't

get mixed up, and that the packets are sent and received in the correct order.

A good starting point for learning more about TCP and IP is in the following documents:

man 7 ip: Describes the IPv4 protocol implementation on Linux (version 4 currently being the most

wide-spread edition of the IP protocol).

•

man 7 tcp: Implementation of the TCP protocol.•

RFC793, RFC1122, RFC2001 for TCP, and RFC791, RFC1122 and RFC1112 for IP.

The Request For Comments documents contain the descriptions of networking standards, protocols,

applications and implementation. These documents are managed by the Internet Engineering Task

Force, an international community concerned with the smooth operation of the Internet and the

evolution and development of the Internet architecture.

Your ISP usually has an RFC archive available, or you can browse the RFCs via

http://www.ietf.org/rfc.html.

•

10.1.2.2. TCP/IPv6

Nobody expected the Internet to grow as fast as it does. IP proved to have quite some disadvantages when a

really large number of computers is in a network, the most important being the availability of unique

addresses to assign to each machine participating. Thus, IP version 6 was deviced to meet the needs of today's

Internet.

Introduction to Linux

Chapter 10. Networking 158

http://www.ietf.org/rtf/
http://www.ietf.org/rfc.html

Unfortunately, not all applications and services support IPv6, yet. A migration is currently being set in motion

in many environments that can benefit from an upgrade to IPv6. For some applications, the old protocol is still

used, for applications that have been reworked the new version is already active. So when checking your

network configuration, sometimes it might be a bit confusing since all kinds of measures can be taken to hide

one protocol from the other so as the two don't mix up connections.

More information can be found in the following documents:

man 7 ipv6: the Linux IPv6 protocol implementation.•

RFC1883 describing the IPv6 protocol.•

10.1.2.3. PPP, SLIP, PLIP, PPPOE

The Linux kernel has built-in support for PPP (Point-to-Point-Protocol), SLIP (Serial Line IP), PLIP (Parallel

Line IP) and PPPP Over EThernet. PPP is the most popular way individual users access their ISP (Internet

Service Provider), although in densely populated areas it is often being replaced by PPPOE, the protocol used

for ADSL (Asymmetric Digital Subscriber Line) connections.

Most Linux distributions provide easy-to-use tools for setting up an Internet connection. The only thing you

basically need is a username and password to connect to your Internet Service Provider (ISP), and a telephone

number in the case of PPP. These data are entered in the graphical configuration tool, which will likely also

allow for starting and stopping the connection to your provider.

10.1.2.4. ISDN

The Linux kernel has built-in ISDN capabilities. Isdn4linux controls ISDN PC cards and can emulate a

modem with the Hayes command set ("AT" commands). The possibilities range from simply using a terminal

program to full connection to the Internet.

Check your system documentation.

10.1.2.5. AppleTalk

Appletalk is the name of Apple's internetworking stack. It allows a peer-to-peer network model which

provides basic functionality such as file and printer sharing. Each machine can simultaneously act as a client

and a server, and the software and hardware necessary are included with every Apple computer.

Linux provides full AppleTalk networking. Netatalk is a kernel-level implementation of the AppleTalk

Protocol Suite, originally for BSD-derived systems. It includes support for routing AppleTalk, serving UNIX

and AFS file systems using AppleShare and serving UNIX printers and accessing AppleTalk printers.

10.1.2.6. SMB/NMB

For compatibility with MS Windows environments, the Samba suite, including support for the NMB and

SMB protocols, can be installed on any UNIX-like system. The Server Message Block protocol (also called

Session Message Block, NetBIOS or LanManager protocol) is used on MS Windows 3.11, NT, 95/98, 2K and

XP to share disks and printers.

The basic functions of the Samba suite are: sharing Linux drives with Windows machines, accessing SMB

shares from Linux machines, sharing Linux printers with Windows machines and sharing Windows printers

Introduction to Linux

Chapter 10. Networking 159

with Linux machines.

Most Linux distributions provide a samba package, which does most of the server setup and starts up smbd,

the Samba server, and nmbd, the netbios name server, at boot time by default. Samba can be configured

graphically, via a web interface or via the command line and text configuration files. The daemons make a

Linux machine appear as an MS Windows host in an MS Windows My Network Places/Network

Neighbourhood window; a share from a Linux machine will be indistinguishable from a share on any other

host in an MS Windows environment.

More information can be found at the following locations:

man smb.conf: describes the format of the main Samba configuration file.•

The Samba Project Documentation (or check your local samba.org mirror) contains an easy to read

installation and testing guide, which also explains how to configure your Samba server as a Primary

Domain Controller. All the man pages are also available here.

•

10.1.2.7. Miscellaneous protocols

Linux also has support for Amateur Radio, WAN internetworking (X25, Frame Relay, ATM), InfraRed and

other wireless connections, but since these protocols usually require special hardware, we won't discuss them

in this document.

10.2. Network configuration and information

10.2.1. Configuration of network interfaces

All the big, userfriendly Linux distributions come with various graphical tools, allowing for easy setup of the

computer in a local network, for connecting it to an Internet Service Provider or for wireless access. These

tools can be started up from the command line or from a menu:

Ubuntu configuration is done selecting System->Administration->Networking.•

RedHat Linux comes with redhat-config-network, which has both a graphical and a text mode

interface.

•

Suse's YAST or YAST2 is an all-in-one configuration tool.•

Mandrake/Mandriva comes with a Network and Internet Configuration Wizard, which is preferably

started up from Mandrake's Control Center.

•

On Gnome systems: gnome-network-preferences.•

On KDE systems: knetworkconf.•

Your system documentation provides plenty of advice and information about availability and use of tools.

Information that you will need to provide:

For connecting to the local network, for instance with your home computers, or at work: hostname,

domainname and IP address. If you want to set up your own network, best do some more reading first.

At work, this information is likely to be given to your computer automatically when you boot it up.

When in doubt, it is better not to specify any information than making it up.

•

For connecting to the Internet: username and password for your ISP, telephone number when using a

modem. Your ISP usually automatically assigns you an IP address and all the other things necessary

for your Internet applications to work.

•

Introduction to Linux

Chapter 10. Networking 160

http://www.samba.org/

10.2.2. Network configuration files

The graphical helper tools edit a specific set of network configuration files, using a couple of basic

commands. The exact names of the configuration files and their location in the file system is largely

dependent on your Linux distribution and version. However, a couple of network configuration files are

common on all UNIX systems:

10.2.2.1. /etc/hosts

The /etc/hosts file always contains the localhost IP address, 127.0.0.1, which is used for interprocess

communication. Never remove this line! Sometimes contains addresses of additional hosts, which can be

contacted without using an external naming service such as DNS (the Domain Name Server).

A sample hosts file for a small home network:

Do not remove the following line, or various programs

that require network functionality will fail.

127.0.0.1 localhost.localdomain localhost

192.168.52.10 tux.mylan.com tux

192.168.52.11 winxp.mylan.com winxp

Read more in man hosts.

10.2.2.2. /etc/resolv.conf

The /etc/resolv.conf file configures access to a DNS server, see Section 10.3.7. This file contains your

domain name and the name server(s) to contact:

search mylan.com

nameserver 193.134.20.4

Read more in the resolv.conf man page.

10.2.2.3. /etc/nsswitch.conf

The /etc/nsswitch.conf file defines the order in which to contact different name services. For Internet

use, it is important that dns shows up in the "hosts" line:

[bob@tux ~] grep hosts /etc/nsswitch.conf

hosts: files dns

This instructs your computer to look up hostnames and IP addresses first in the /etc/hosts file, and to

contact the DNS server if a given host does not occur in the local hosts file. Other possible name services to

contact are LDAP, NIS and NIS+.

More in man nsswitch.conf.

10.2.3. Network configuration commands

Introduction to Linux

Chapter 10. Networking 161

10.2.3.1. The ip command

The distribution-specific scripts and graphical tools are front-ends to ip (or ifconfig and route on older

systems) to display and configure the kernel's networking configuration.

The ip command is used for assigning IP addresses to interfaces, for setting up routes to the Internet and to

other networks, for displaying TCP/IP configurations etcetera.

The following commands show IP address and routing information:

benny@home benny> ip addr show

1: lo: <LOOPBACK,UP> mtu 16436 qdisc noqueue

 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00

 inet 127.0.0.1/8 brd 127.255.255.255 scope host lo

 inet6 ::1/128 scope host

2: eth0: <BROADCAST,MULTICAST,UP> mtu 1500 qdisc pfifo_fast qlen 100

 link/ether 00:50:bf:7e:54:9a brd ff:ff:ff:ff:ff:ff

 inet 192.168.42.15/24 brd 192.168.42.255 scope global eth0

 inet6 fe80::250:bfff:fe7e:549a/10 scope link

benny@home benny> ip route show

192.168.42.0/24 dev eth0 scope link

127.0.0.0/8 dev lo scope link

default via 192.168.42.1 dev eth0

Things to note:

two network interfaces, even on a system that has only one network interface card: "lo" is the local

loop, used for internal network communication; "eth0" is a common name for a real interface. Do not

ever change the local loop configuration, or your machine will start mallfunctioning! Wireless

interfaces are usually defined as "wlan0"; modem interfaces as "ppp0", but there might be other

names as well.

•

IP addresses, marked with "inet": the local loop always has 127.0.0.1, the physical interface can have

any other combination.

•

The hardware address of your interface, which might be required as part of the authentication

procedure to connect to a network, is marked with "ether". The local loop has 6 pairs of all zeros, the

physical loop has 6 pairs of hexadecimal characters, of which the first 3 pairs are vendor-specific.

•

10.2.3.2. The ifconfig command

While ip is the most novel way to configure a Linux system, ifconfig is still very popular. Use it without

option for displaying network interface information:

els@asus:~$ /sbin/ifconfig

eth0 Link encap:Ethernet HWaddr 00:50:70:31:2C:14

 inet addr:60.138.67.31 Bcast:66.255.255.255 Mask:255.255.255.192

 inet6 addr: fe80::250:70ff:fe31:2c14/64 Scope:Link

 UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1

 RX packets:31977764 errors:0 dropped:0 overruns:0 frame:0

 TX packets:51896866 errors:0 dropped:0 overruns:0 carrier:0

 collisions:802207 txqueuelen:1000

 RX bytes:2806974916 (2.6 GiB) TX bytes:2874632613 (2.6 GiB)

 Interrupt:11 Base address:0xec00

 lo Link encap:Local Loopback

 inet addr:127.0.0.1 Mask:255.0.0.0

Introduction to Linux

Chapter 10. Networking 162

 inet6 addr: ::1/128 Scope:Host

 UP LOOPBACK RUNNING MTU:16436 Metric:1

 RX packets:765762 errors:0 dropped:0 overruns:0 frame:0

 TX packets:765762 errors:0 dropped:0 overruns:0 carrier:0

 collisions:0 txqueuelen:0

 RX bytes:624214573 (595.2 MiB) TX bytes:624214573 (595.2 MiB)

Here, too, we note the most important aspects of the interface configuration:

The IP address is marked with "inet addr".•

The hardware address follows the "HWaddr" tag.•

Both ifconfig and ip display more detailed configuration information and a number of statistics about each

interface and, maybe most important, whether it is "UP" and "RUNNING".

10.2.3.3. PCMCIA commands

On your laptop which you usually connect to the company network using the onboard Ethernet connection,

but which you are now to configure for dial-in at home or in a hotel, you might need to activate the PCMCIA

card. This is done using the cardctl control utility, or the pccardctl on newer distributions.

A usage example:

cardctl insert

Now the card can be configured, either using the graphical or the command line interface. Prior to taking the

card out, use this command:

cardctl eject

However, a good distribution should provide PCMCIA support in the network configuration tools, preventing

users from having to execute PCMCIA commands manually.

10.2.3.4. More information

Further discussion of network configuration is out of the scope of this document. Your primary source for

extra information is the man pages for the services you want to set up. Additional reading:

The Modem-HOWTO: Help with selecting, connecting, configuring, trouble-shooting, and

understanding analog modems for a PC.

•

LDP HOWTO Index, section 4.4: categorized list of HOWTOs about general networking, protocols,

dial-up, DNS, VPNs, bridging, routinfg, security and more.

•

Most systems have a version of the ip-cref file (locate it using the locate command); the PS

format of this file is viewable with for instance gv.

•

10.2.4. Network interface names

On a Linux machine, the device name lo or the local loop is linked with the internal 127.0.0.1 address. The

computer will have a hard time making your applications work if this device is not present; it is always there,

even on computers which are not networked.

Introduction to Linux

Chapter 10. Networking 163

http://www.tldp.org/HOWTO/Modem-HOWTO.html
http://www.tldp.org/HOWTO/HOWTO-INDEX/networking.html#NETGENERAL

The first ethernet device, eth0 in the case of a standard network interface card, points to your local LAN IP

address. Normal client machines only have one network interface card. Routers, connecting networks

together, have one network device for each network they serve.

If you use a modem to connect to the Internet, your network device will probably be named ppp0.

There are many more names, for instance for Virtual Private Network interfaces (VPNs), and multiple

interfaces can be active simultaneously, so that the output of the ifconfig or ip commands might become quite

extensive when no options are used. Even multiple interfaces of the same type can be active. In that case, they

are numbered sequentially: the first will get the number 0, the second will get a suffix of 1, the third will get 2,

and so on. This is the case on many application servers, on machines which have a failover configuration, on

routers, firewalls and many more.

10.2.5. Checking the host configuration with netstat

Apart from the ip command for displaying the network configuration, there's the common netstat command

which has a lot of options and is generally useful on any UNIX system.

Routing information can be displayed with the -nr option to the netstat command:

bob:~> netstat -nr

Kernel IP routing table

Destination Gateway Genmask Flags MSS Window irtt Iface

192.168.42.0 0.0.0.0 255.255.255.0 U 40 0 0 eth0

127.0.0.0 0.0.0.0 255.0.0.0 U 40 0 0 lo

0.0.0.0 192.168.42.1 0.0.0.0 UG 40 0 0 eth0

This is a typical client machine in an IP network. It only has one network device, eth0. The lo interface is the

local loop.

The modern way

The novel way to get this info from your system is by using the ip command:

ip route show

When this machine tries to contact a host that is on another network than its own, indicated by the line starting

with 0.0.0.0, it will send the connection requests to the machine (router) with IP address 192.168.42.1, and it

will use its primary interface, eth0, to do this.

Hosts that are on the same network, the line starting with 192.168.42.0, will also be contacted through the

primary network interface, but no router is necessary, the data are just put on the network.

Machines can have much more complicated routing tables than this one, with lots of different

"Destination-Gateway" pairs to connect to different networks. If you have the occasion to connect to an

application server, for instance at work, it is most educating to check the routing information.

10.2.6. Other hosts

An impressive amount of tools is focused on network management and remote administration of Linux

machines. Your local Linux software mirror will offer plenty of those. It would lead us too far to discuss them

in this document, so please refer to the program-specific documentation.

Introduction to Linux

Chapter 10. Networking 164

We will only discuss some common UNIX/Linux text tools in this section.

10.2.6.1. The host command

To display information on hosts or domains, use the host command:

[emmy@pc10 emmy]$ host www.eunet.be

www.eunet.be. has address 193.74.208.177

[emmy@pc10 emmy]$ host -t any eunet.be

eunet.be. SOA dns.eunet.be. hostmaster.Belgium.EU.net.

 2002021300 28800 7200 604800 86400

eunet.be. mail is handled by 50 pophost.eunet.be.

eunet.be. name server ns.EU.net.

eunet.be. name server dns.eunet.be.

Similar information can be displayed using the dig command, which gives additional information about how

records are stored in the name server.

10.2.6.2. The ping command

To check if a host is alive, use ping. If your system is configured to send more than one packet, interrupt ping

with the Ctrl+C key combination:

[emmy@pc10 emmy]$ ping a.host.be

PING a.host.be (1.2.8.3) from 80.20.84.26: 56(84) bytes of data.

64 bytes from a.host.be(1.2.8.3):icmp_seq=0 ttl=244 time=99.977msec

--- a.host.be ping statistics ---

1 packets transmitted, 1 packets received, 0% packet loss

round-trip min/avg/max/mdev = 99.977/99.977/99.977/0.000 ms

10.2.6.3. The traceroute command

To check the route that packets follow to a network host, use the traceroute command:

[emmy@pc10 emmy]$ /usr/sbin/traceroute www.eunet.be

traceroute to www.eunet.be(193.74.208.177),30 hops max,38b packets

1 blob (10.0.0.1)

 0.297ms 0.257ms 0.174ms

2 adsl-65.myprovider.be (217.136.111.1)

 12.120ms 13.058ms 13.009ms

3 194.78.255.177 (194.78.255.177)

 13.845ms 14.308ms 12.756ms

4 gigabitethernet2-2.intl2.gam.brussels.skynet.be (195.238.2.226)

 13.123ms 13.164ms 12.527ms

5 pecbru2.car.belbone.be (194.78.255.118)

 16.336ms 13.889ms 13.028ms

6 ser-2-1-110-ias-be-vil-ar01.kpnbelgium.be (194.119.224.9)

 14.602ms 15.546ms 15.959ms

7 unknown-195-207-939.eunet.be (195.207.93.49)

 16.514ms 17.661ms 18.889ms

8 S0-1-0.Leuven.Belgium.EU.net (195.207.129.1)

 22.714ms 19.193ms 18.432ms

9 dukat.Belgium.EU.net (193.74.208.178) 22.758ms * 25.263ms

On some systems, traceroute has been renamed to tracepath.

Introduction to Linux

Chapter 10. Networking 165

10.2.6.4. The whois command

Specific domain name information can be queried using the whois command, as is explained by many whois

servers, like the one below:

[emmy@pc10 emmy]$ whois cnn.com

[whois.crsnic.net]

Whois Server Version 1.3

 $<--snap server message-->

 Domain Name: CNN.COM

 Registrar: NETWORK SOLUTIONS, INC.

 Whois Server: whois.networksolutions.com

 Referral URL: http://www.networksolutions.com

 Name Server: TWDNS-01.NS.AOL.COM

 Name Server: TWDNS-02.NS.AOL.COM

 Name Server: TWDNS-03.NS.AOL.COM

 Name Server: TWDNS-04.NS.AOL.COM

 Updated Date: 12-mar-2002

>>> Last update of whois database: Fri, 5 Apr 2002 05:04:55 EST <<<

The Registry database contains ONLY .COM, .NET, .ORG, .EDU domains

and Registrars.

[whois.networksolutions.com]

 $<--snap server message-->

Registrant:

Turner Broadcasting (CNN-DOM)

 1 CNN Center

 Atlanta, GA 30303

 Domain Name: CNN.COM

 Administrative Contact:

 $<--snap contactinfo-->

 Technical Contact:

 $<--snap contactinfo-->

 Billing Contact:

 $<--snap contactinfo-->

 Record last updated on 12-Mar-2002.

 Record expires on 23-Sep-2009.

 Record created on 22-Sep-1993.

 Database last updated on 4-Apr-2002 20:10:00 EST.

 Domain servers in listed order:

 TWDNS-01.NS.AOL.COM 149.174.213.151

 TWDNS-02.NS.AOL.COM 152.163.239.216

 TWDNS-03.NS.AOL.COM 205.188.146.88

 TWDNS-04.NS.AOL.COM 64.12.147.120

For other domain names than .com, .net, .org and .edu, you might need to specify the whois server, such as

this one for .be domains:

whois domain.be@whois.dns.be

Introduction to Linux

Chapter 10. Networking 166

10.3. Internet/Intranet applications

The Linux system is a great platform for offering networking services. In this section, we will try to give an

overview of most common network servers and applications.

10.3.1. Server types

10.3.1.1. Standalone server

Offering a service to users can be approached in two ways. A daemon or service can run in standalone mode,

or it can be dependent on another service to be activated.

Network services that are heavily and/or continuously used, usually run in the standalone mode: they are

independent program daemons that are always running. They are most likely started up at system boot time,

and they wait for requests on the specific connection points or ports for which they are set up to listen. When a

request comes, it is processed, and the listening continues until the next request. A web server is a typical

example: you want it to be available 24 hours a day, and if it is too busy it should create more listening

instances to serve simultaneous users. Other examples are the large software archives such as Sourceforge or

your Tucows mirror, which must handle thousands of FTP requests per day.

An example of a standalone network service on your home computer might be the named (name daemon), a

caching name server. Standalone services have their own processes running, you can check any time using ps:

bob:~> ps auxw | grep named

named 908 0.0 1.0 14876 5108 ? S Mar14 0:07 named -u named

However, there are some services that you can use on your PC, even if there is no server process running for

that services. Examples could be the FTP service, the secure copy service or the finger service. Those services

have the Internet Daemon (inetd) listening in their place.

10.3.1.2. (x)inetd

On your home PC, things are usually a bit calmer. You may have a small network, for instance, and you may

have to transfer files from one PC to another from time to time, using FTP or Samba (for connectivity with

MS Windows machines). In those cases, starting all the services which you only need occasionally and having

them run all the time would be a waste of resources. So in smaller setups, you will find the necessary daemons

dependent on a central program, that listen on all the ports of the services for which it is responsible.

This super-server, the Internet services daemon, is started up at system initialization time. There are two

common implementations: inetd and xinetd (the extended Internet services daemon). One or the other is

usually running on every Linux system:

bob:~> ps -ef | grep inet

root 926 1 0 Mar14 ? 00:00:00 xinetd-ipv6 -stayalive -reuse \

-pidfile /var/run/xinetd.pid

The services for which the Internet daemon is responsible, are listed in its configuration file,

/etc/inetd.conf, for inetd, and in the directory /etc/xinetd.d for xinetd. Commonly managed

services include file share and print services, SSH, FTP, telnet, the Samba configuration daemon, talk and

time services.

Introduction to Linux

Chapter 10. Networking 167

http://sourceforge.net
http://tucows.com

As soon as a connection request is received, the central server will start an instance of the required server.

Thus, in the example below, when user bob starts an FTP session to the local host, an FTP daemon is running

as long as the session is active:

bob:~> ps auxw | grep ftp

bob 793 0.1 0.2 3960 1076 pts/6 S 16:44 0:00 ncftp localhost

ftp 794 0.7 0.5 5588 2608 ? SN 16:44 0:00 ftpd:

localhost.localdomain: anonymous/bob@his.server.com: IDLE

Of course, the same happens when you open connections to remote hosts: either a daemon answers directly, or

a remote (x)inetd starts the service you need and stops it when you quit.

10.3.2. Mail

10.3.2.1. Servers

Sendmail is the standard mail server program or Mail Transport Agent for UNIX platforms. It is robust,

scalable, and when properly configured with appropriate hardware, handles thousands of users without

blinking. More information about how to configure Sendmail is included with the sendmail and sendmail-cf

packages, you may want to read the README and README.cf files in /usr/share/doc/sendmail.

The man sendmail and man aliases are also useful.

Qmail is another mail server, gaining popularity because it claims to be more secure than Sendmail. While

Sendmail is a monolithic program, Qmail consists of smaller interacting program parts that can be better

secured. Postfix is another mail server which is gaining popularity.

These servers handle mailing lists, filtering, virus scanning and much more. Free and commercial scanners are

available for use with Linux. Examples of mailing list software are Mailman, Listserv, Majordomo and

EZmlm. See the web page of your favorite virus scanner for information on Linux client and server support.

Amavis and Spamassassin are free implementations of a virus scanner and a spam scanner.

10.3.2.2. Remote mail servers

The most popular protocols to access mail remotely are POP3 and IMAP4. IMAP and POP both allow offline

operation, remote access to new mail and they both rely on an SMTP server to send mail.

While POP is a simple protocol, easy to implement and supported by almost any mail client, IMAP is to be

preferred because:

It can manipulate persistent message status flags.•

It can store as well as fetch mail messages.•

It can access and manage multiple mailboxes.•

It supports concurrent updates and shared mailboxes.•

It is also suitable for accessing Usenet messages and other documents.•

IMAP works both on-line and off-line.•

it is optimized for on-line performance, especially over low-speed links.•

Introduction to Linux

Chapter 10. Networking 168

10.3.2.3. Mail user-agents

There are plenty of both text and graphical E-mail clients, we'll just name a few of the common ones. Pick

your favorite.

The UNIX mail command has been around for years, even before networking existed. It is a simple interface

to send messages and small files to other users, who can then save the message, redirect it, reply to it etcetera.

While it is not commonly used as a client anymore, the mail program is still useful, for example to mail the

output of a command to somebody:

mail <future.employer@whereIwant2work.com> < cv.txt

The elm mail reader is a much needed improvement to mail, and so is pine (Pine Is Not ELM). The mutt

mail reader is even more recent and offers features like threading.

For those users who prefer a graphical interface to their mail (and a tennis elbow or a mouse arm), there are

hundreds of options. The most popular for new users are Mozilla Mail/Thunderbird, which has easy anti-spam

configuring options, and Evolution, the MS Outlook clone. Kmail is popular among KDE users.

Figure 10-1. Evolution mail and news reader

Introduction to Linux

Chapter 10. Networking 169

mailto:future.employer@whereIwant2work.com

There are also tens of web mail applications available, such as Squirrelmail, Yahoo! mail, gmail from Google

and Hotmail.

An overview is available via the Linux Mail User HOWTO.

Most Linux distributions include fetchmail, a mail-retrieval and forwarding utility. It fetches mail from

remote mail servers (POP, IMAP and some others) and forwards it to your local delivery system. You can

then handle the retrieved mail using normal mail clients. It can be run in daemon mode to repeatedly poll one

or more systems at a specified interval. Information and usage examples can be found in the Info pages; the

directory /usr/share/doc/fetchmail[-<version>] contains a full list of features and a FAQ for

beginners.

The procmail filter can be used for filtering incoming mail, to create mailing lists, to pre-process mail, to

selectively forward mail and more. The accompanying formail program, among others, enables generation of

auto-replies and splitting up mailboxes. Procmail has been around for years on UNIX and Linux machines and

is a very robust system, designed to work even in the worst circumstances. More information may be found in

the /usr/share/doc/procmail[-<version>] directory and in the man pages.

A note on E-mail Etiquette

Some people these days seem to think that an E-mail message shouldn't be too formal. That depends, of

course. If you are writing to someone you don't know, best to keep some distance, just like you would do

in a traditional letter. And don't forget: people you don't know might be male or female...

10.3.3. Web

10.3.3.1. The Apache Web Server

Apache is by far the most popular web server, used on more than half of all Internet web servers. Most Linux

distributions include Apache. Apache's advantages include its modular design, SSL support, stability and

speed. Given the appropriate hardware and configuration it can support the highest loads.

On Linux systems, the server configuration is usually done in the /etc/httpd directory. The most

important configuration file is httpd.conf; it is rather self-explanatory. Should you need help, you can

find it in the httpd man page or on the Apache website.

10.3.3.2. Web browsers

A number of web browsers, both free and commercial, exist for the Linux platform. Netscape Navigator as the

only decent option has long been a thing of the past, as Mozilla/Firefox offers a competitive alternative

running on many other operating systems, like MS Windows and MacOS X as well.

Amaya is the W3C browser. Opera is a commercial browser, compact and fast. Many desktop managers offer

web browsing features in their file manager, like nautilus.

Among the popular text based browsers are lynx and links. You may need to define proxy servers in your

shell, by setting the appropriate variables. Text browsers are fast and handy when no graphical environment is

available, such as when used in scripts.

Introduction to Linux

Chapter 10. Networking 170

http://www.tldp.org/HOWTO/Mail-User-HOWTO/index.html
http://www.apache.org

10.3.3.3. Proxy servers

10.3.3.3.1. What is a proxy server?

Companies and organizations often want their users to use a proxy server. Especially in environments with

lots of users, a proxy server can enable faster downloads of web pages. The proxy server stores web pages.

When a user asks for a web page that has already been requested previously, the proxy server will give that

page to the user directly, so that s/he does not need to get it from the Internet, which would take longer. Of

course, measures can be taken so that the proxy server does a quick check and always serves the most recent

version of a page. In some environments, usage of the proxy server is compulsory, in other environments you

may have the choice whether or not to use it.

10.3.3.3.2. Proxy configuration

If you have the proxy server name and port, it should be rather obvious to feed that information into your

browser. However, many (command line) applications depend on the variables http_proxy and

ftp_proxy for correct functioning. For your convenience, you might want to add a line like the following to

your ~/.bashrc:

export http_proxy=http://username:password@proxy_server_name:port_number

For instance:

export http_proxy=http://willy:Appelsi3ntj3@proxy:80

If you do not need to give a username and password, simply leave out everything before the "@" sign, this

sign included.

10.3.4. File Transfer Protocol

10.3.4.1. FTP servers

On a Linux system, an FTP server is typically run from xinetd, using the WU-ftpd server, although the FTP

server may be configured as a stand-alone server on systems with heavy FTP traffic. See the exercises.

Other FTP servers include among others vsftpd, Ncftpd and Proftpd.

Most Linux distributions contain the anonftp package, which sets up an anonymous FTP server tree and

accompanying configuration files.

10.3.4.2. FTP clients

Most Linux distributions include ncftp, an improved version of the common UNIX ftp command, which you

may also know from the Windows command line. The ncftp program offers extra features such as a nicer and

more comprehensible user interface, file name completion, append and resume functions, bookmarking,

session management and more:

thomas:~> ncftp blob

NcFTP 3.0.3 (April 15, 2001) by Mike Gleason (ncftp@ncftp.com).

Connecting to blob...

blob.some.net FTP server (Version wu-2.6.1-20) ready.

Introduction to Linux

Chapter 10. Networking 171

Logging in...

Guest login ok, access restrictions apply.

Logged in to blob.

ncftp / > help

Commands may be abbreviated. 'help showall' shows hidden and

unsupported commands.

'help <command>' gives a brief description of <command>.

ascii cat help lpage open quote site

bgget cd jobs lpwd page rename type

bgput chmod lcd lrename pdir rhelp umask

bgstart close lchmod lrm pls rm version

binary debug lls lrmdir put rmdir

bookmark dir lmkdir ls pwd set

bookmarks get lookup mkdir quit show

ncftp / >

Excellent help with lot of examples can be found in the man pages. And again, a number of GUI applications

are available.

FTP is insecure!

Don't use the File Transfer Protocol for non-anonymous login unless you know what you are doing.

Your user name and password might be captured by malevolent fellow network users! Use secure FTP

instead; the sftp program comes with the Secure SHell suite, see Section 10.4.4.4.

10.3.5. Chatting and conferencing

Various clients and systems are available in each distribution, replacing the old-style IRC text-based chat. A

short and incomplete list of the most popular programs:

gaim: multi-protocol instant messaging client for Linux, Windows and Mac, compatible with MSN

Messenger, ICQ, IRC and much more; see the Info pages or the Gaim site for more.

•

xchat: IRC client for the X window system:

Figure 10-2. X-Chat

•

Introduction to Linux

Chapter 10. Networking 172

http://gaim.sourceforge.net

The home page is at SourceForge.

aMSN: an MSN clone.•

Konversation, kopete, KVIrc and many other K-tools from the KDE suite.•

gnomemeeting: videoconferencing program for UNIX (now Ekiga).•

jabber: Open Source Instant Messenging platform, compatible with ICQ, AIM, Yahoo, MSN, IRC,

SMTP and much more.

•

psi: jabber client, see the PSI Jabber Client Homepage.•

skype: program for making telephone-like calls over the Internet to other Skype users, see

http://www.skype.com for more info. Skype is free but not open.

•

Gizmo: a free (but not open) phone for your computer, see http://www.gizmoproject.com.•

10.3.6. News services

Running a Usenet server involves a lot of expertise and fine-tuning, so refer to the INN homepage for more

information.

There are a couple of interesting newsgroups in the comp.* hierarchy, which can be accessed using a variety

of text and graphical clients. A lot of mail clients support newsgroup browsing as well, check your program or

see your local Open Source software mirror for text clients such as tin, slrnn and mutt, or download Mozilla

or one of a number of other graphical clients.

Deja.com keeps a searchable archive of all newsgroups, powered by Google. This is a very powerful

instrument for getting help: chances are very high that somebody has encountered your problem, found a

solution and posted it in one of the newsgroups.

Introduction to Linux

Chapter 10. Networking 173

http://sourceforge.net/projects/xchat/
http://psi.affinix.com/
http://www.skype.com
http://www.gizmoproject.com
http://www.isc.org
http://deja.com

10.3.7. The Domain Name System

All these applications need DNS services to match IP addresses to host names and vice versa. A DNS server

does not know all the IP addresses in the world, but networks with other DNS servers which it can query to

find an unknown address. Most UNIX systems can run named, which is part of the BIND (Berkeley Internet

Name Domain) package distributed by the Internet Software Consortium. It can run as a stand-alone caching

nameserver, which is often done on Linux systems in order to speed up network access.

Your main client configuration file is /etc/resolv.conf, which determines the order in which Domain

Name Servers are contacted:

search somewhere.org

nameserver 192.168.42.1

nameserver 193.74.208.137

More information can be found in the Info pages on named, in the

/usr/share/doc/bind[-<version>] files and on the Bind project homepage. The DNS HOWTO

covers the use of BIND as a DNS server.

10.3.8. DHCP

DHCP is the Dynamic Host Configuration Protocol, which is gradually replacing good old bootp in larger

environments. It is used to control vital networking parameters such as IP addresses and name servers of

hosts. DHCP is backward compatible with bootp. For configuring the server, you will need to read the

HOWTO.

DHCP client machines will usually be configured using a GUI that configures the dhcpcd, the DHCP client

daemon. Check your system documentation if you need to configure your machine as a DHCP client.

10.3.9. Authentication services

10.3.9.1. Traditional

Traditionally, users are authenticated locally, using the information stored in /etc/passwd and

/etc/shadow on each system. But even when using a network service for authenticating, the local files will

always be present to configure system accounts for administrative use, such as the root account, the daemon

accounts and often accounts for additional programs and purposes.

These files are often the first candidates for being examined by hackers, so make sure the permissions and

ownerships are strictly set as should be:

bob:~> ls -l /etc/passwd /etc/shadow

-rw-r--r-- 1 root root 1803 Mar 10 13:08 /etc/passwd

-r-------- 1 root root 1116 Mar 10 13:08 /etc/shadow

10.3.9.2. PAM

Linux can use PAM, the Pluggable Authentication Module, a flexible method of UNIX authentication.

Advantages of PAM:

A common authentication scheme that can be used with a wide variety of applications.•

Introduction to Linux

Chapter 10. Networking 174

http://www.isc.org/products/BIND
http://www.tldp.org/HOWTO/DNS-HOWTO.html

PAM can be implemented with various applications without having to recompile the applications to

specifically support PAM.

•

Great flexibility and control over authentication for the administrator and application developer.•

Application developers do not need to develop their program to use a particular authentication

scheme. Instead, they can focus purely on the details of their program.

•

The directory /etc/pam.d contains the PAM configuration files (used to be /etc/pam.conf). Each

application or service has its own file. Each line in the file has four elements:

Module:

auth: provides the actual authentication (perhaps asking for and checking a password) and

sets credentials, such as group membership or Kerberos tickets.

♦

account: checks to make sure that access is allowed for the user (the account has not

expired, the user is allowed to log in at this time of day, and so on).

♦

password: used to set passwords.♦

session: used after a user has been authenticated. This module performs additional tasks

which are needed to allow access (for example, mounting the user's home directory or making

their mailbox available).

♦

The order in which modules are stacked, so that multiple modules can be used, is very important.

•

Control Flags: tell PAM which actions to take upon failure or success. Values can be required,

requisite, sufficient or optional.

•

Module Path: path to the pluggable module to be used, usually in /lib/security.•

Arguments: information for the modules•

Shadow password files are automatically detected by PAM.

More information can be found in the pam man pages or at the Linux-PAM project homepage.

10.3.9.3. LDAP

The Lightweight Directory Access Protocol is a client-server system for accessing global or local directory

services over a network. On Linux, the OpenLDAP implementation is used. It includes slapd, a stand-alone

server; slurpd, a stand-alone LDAP replication server; libraries implementing the LDAP protocol and a series

of utilities, tools and sample clients.

The main benefit of using LDAP is the consolidation of certain types of information within your organization.

For example, all of the different lists of users within your organization can be merged into one LDAP

directory. This directory can be queried by any LDAP-enabled applications that need this information. It can

also be accessed by users who need directory information.

Other LDAP or X.500 Lite benefits include its ease of implementation (compared to X.500) and its

well-defined Application Programming Interface (API), which means that the number of LDAP-enabled

applications and LDAP gateways should increase in the future.

On the negative side, if you want to use LDAP, you will need LDAP-enabled applications or the ability to use

LDAP gateways. While LDAP usage should only increase, currently there are not very many LDAP-enabled

applications available for Linux. Also, while LDAP does support some access control, it does not possess as

many security features as X.500.

Introduction to Linux

Chapter 10. Networking 175

http://www.kernel.org/pub/linux/libs/pam

Since LDAP is an open and configurable protocol, it can be used to store almost any type of information

relating to a particular organizational structure. Common examples are mail address lookups, central

authentication in combination with PAM, telephone directories and machine configuration databases.

See your system specific information and the man pages for related commands such as ldapmodify and

ldapsearch for details. More information can be found in the LDAP Linux HOWTO, which discusses

installation, configuration, running and maintenance of an LDAP server on Linux. The author of this

Introduction to Linux document also wrote an LDAP Operations HOWTO, describing the basics everyone

should know about when dealing with LDAP management, operations and integration of services.

10.4. Remote execution of applications

10.4.1. Introduction

There are a couple of different ways to execute commands or run programs on a remote machine and have the

output, be it text or graphics, sent to your workstation. The connections can be secure or insecure. While it is

of course advised to use secure connections instead of transporting your password over the network

unencrypted, we will discuss some practical applications of the older (unsafe) mechanisms, as they are still

useful in a modern networked environment, such as for troubleshooting or running exotic programs.

10.4.2. Rsh, rlogin and telnet

The rlogin and rsh commands for remote login and remote execution of commands are inherited from UNIX.

While seldom used because they are blatantly insecure, they still come with almost every Linux distribution

for backward compatibility with UNIX programs.

Telnet, on the other hand, is still commonly used, often by system and network administrators. Telnet is one

of the most powerful tools for remote access to files and remote administration, allowing connections from

anywhere on the Internet. Combined with an X server, remote graphical applications can be displayed locally.

There is no difference between working on the local machine and using the remote machine.

Because the entire connection is unencrypted, allowing telnet connections involves taking high security risks.

For normal remote execution of programs, Secure SHell or ssh is advised. We will discuss the secure method

later in this section.

However, telnet is still used in many cases. Below are some examples in which a mail server and a web server

are tested for replies:

Checking that a mail server works:

[jimmy@blob ~] telnet mailserver 25

Trying 192.168.42.1...

Connected to mailserver.

Escape character is '^]'.

220 m1.some.net ESMTP Sendmail 8.11.6/8.11.6; 200302281626

ehlo some.net

250-m1.some.net Hello blob.some.net [10.0.0.1], pleased to meet you

250-ENHANCEDSTATUSCODES

250-8BITMIME

250-SIZE

250-DSN

Introduction to Linux

Chapter 10. Networking 176

http://www.tldp.org/HOWTO/LDAP-HOWTO.html
http://tille.garrels.be/training/ldap/

250-ONEX

250-ETRN

250-XUSR

250 HELP

mail from: jimmy@some.net

250 2.1.0 jimmy@some.net... Sender ok

rcpt to: davy@some.net

250 2.1.5 davy@some.net... Recipient ok

data

354 Enter mail, end with "." on a line by itself

test

.

250 2.0.0 g2MA1R619237 Message accepted for delivery

quit

221 2.0.0 m1.some.net closing connection

Connection closed by foreign host.

Checking that a web server answers to basic requests:

[jimmy@blob ~] telnet www.some.net 80

Trying 64.39.151.23...

Connected to www.some.net.

Escape character is '^]'.

HEAD / ;HTTP/1.1

HTTP/1.1 200 OK

Date: Fri, 22 Mar 2002 10:05:14 GMT

Server: Apache/1.3.22 (UNIX) (Red-Hat/Linux)

 mod_ssl/2.8.5 OpenSSL/0.9.6

 DAV/1.0.2 PHP/4.0.6 mod_perl/1.24_01

Last-Modified: Fri, 04 Jan 2002 08:21:00 GMT

ETag: "70061-68-3c3565ec"

Accept-Ranges: bytes

Content-Length: 104

Connection: close

Content-Type: text/html

Connection closed by foreign host.

[jimmy@blob ~]

This is perfectly safe, because you never have to give a username and/or password for getting the data you

want, so nobody can snoop that important information off the cable.

10.4.3. The X Window System

10.4.3.1. X features

As we already explained in Chapter 7 (see Section 7.3.3), the X Window system comes with an X server

which serves graphics to clients that need a display.

It is important to realize the distinction between the X server and the X client application(s). The X server

controls the display directly and is responsible for all input and output via keyboard, mouse and display. The

X client, on the other hand, does not access the input and output devices directly. It communicates with the X

server which handles input and output. It is the X client which does the real work, like computing values,

running applications and so forth. The X server only opens windows to handle input and output for the

specified client.

Introduction to Linux

Chapter 10. Networking 177

In normal operation (graphical mode), every Linux workstation is an X server to itself, even if it only runs

client applications. All the applications you are running (for example, Gimp, a terminal window, your

browser, your office application, your CD playing tool, and so on) are clients to your X server. Server and

client are running on the same machine in this case.

This client/server nature of the X system makes it an ideal environment for remote execution of applications

and programs. Because the process is actually being executed on the remote machine, very little CPU power is

needed on the local host. Such machines, purely acting as servers for X, are called X terminals and were once

very popular. More information may be found in the Remote X applications mini-HOWTO.

10.4.3.2. Telnet and X

If you would want to use telnet to display graphical applications running on a remote machine, you first need

to give the remote machine access to your display (to your X server!) using the xhost command, by typing a

command similar to the one below in a terminal window on your local machine:

davy:~> xhost +remote.machine.com

After that, connect to the remote host and tell it to display graphics on the local machine by setting the

environment variable DISPLAY:

[davy@remote ~] export DISPLAY="local.host.com:0.0"

After completing this step, any application started in this terminal window will be displayed on your local

desktop, using remote resources for computing, but your local graphical resources (your X server) for

displaying the application.

This procedure assumes that you have some sort of X server (XFree86, X.org, Exceed, Cygwin) already set up

on the machine where you want to display images. The architecture and operating system of the client

machine are not important as long as they allow you to run an X server on it.

Mind that displaying a terminal window from the remote machine is also considered to be a display of an

image.

10.4.4. The SSH suite

10.4.4.1. Introduction

Most UNIX and Linux systems now run Secure SHell in order to leave out the security risks that came with

telnet. Most Linux systems will run a version of OpenSSH, an Open Source implementation of the SSH

protocol, providing secure encrypted communications between untrusted hosts over an untrusted network. In

the standard setup X connections are automatically forwarded, but arbitrary TCP/IP ports may also be

forwarded using a secure channel.

The ssh client connects and logs into the specified host name. The user must provide his identity to the remote

machine as specified in the sshd_config file, which can usually be found in /etc/ssh. The

configuration file is rather self-explanatory and by defaults enables most common features. Should you need

help, you can find it in the sshd man pages.

When the user's identity has been accepted by the server, the server either executes the given command, or

logs into the machine and gives the user a normal shell on the remote machine. All communication with the

remote command or shell will be automatically encrypted.

Introduction to Linux

Chapter 10. Networking 178

http://www.tldp.org/HOWTO/Remote-X-Apps.html

The session terminates when the command or shell on the remote machine exits and all X11 and TCP/IP

connections have been closed.

When connecting to a host for the first time, using any of the programs that are included in the SSH

collection, you need to establish the authenticity of that host and acknowledge that you want to connect:

lenny ~> ssh blob

The authenticity of host 'blob (10.0.0.1)' can't be established.

RSA fingerprint is 18:30:50:46:ac:98:3c:93:1a:56:35:09:8d:97:e3:1d.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'blob,192.168.30.2' (RSA) to the list of

known hosts.

Last login: Sat Dec 28 13:29:19 2002 from octarine

This space for rent.

lenny is in ~

It is important that you type "yes", in three characters, not just "y". This edits your ~/.ssh/known_hosts

file, see Section 10.4.4.3.

If you just want to check something on a remote machine and then get your prompt back on the local host, you

can give the commands that you want to execute remotely as arguments to ssh:

lenny ~> ssh blob who

jenny@blob's password:

root tty2 Jul 24 07:19

lena tty3 Jul 23 22:24

lena 0: Jul 25 22:03

lenny ~> uname -n

magrat.example.com

10.4.4.2. X11 and TCP forwarding

If the X11Forwarding entry is set to yes on the target machine and the user is using X applications, the

DISPLAY environment variable is set, the connection to the X11 display is automatically forwarded to the

remote side in such a way that any X11 programs started from the shell will go through the encrypted channel,

and the connection to the real X server will be made from the local machine. The user should not manually set

DISPLAY. Forwarding of X11 connections can be configured on the command line or in the sshd

configuration file.

The value for DISPLAY set by ssh will point to the server machine, but with a display number greater than

zero. This is normal, and happens because ssh creates a proxy X server on the server machine (that runs the X

client application) for forwarding the connections over the encrypted channel.

This is all done automatically, so when you type in the name of a graphical application, it is displayed on your

local machine and not on the remote host. We use xclock in the example, since it is a small program which is

generally installed and ideal for testing:

Figure 10-3. SSH X11 forwarding

Introduction to Linux

Chapter 10. Networking 179

SSH will also automatically set up Xauthority data on the server machine. For this purpose, it will generate a

random authorization cookie, store it in Xauthority on the server, and verify that any forwarded

connections carry this cookie and replace it by the real cookie when the connection is opened. The real

authentication cookie is never sent to the server machine (and no cookies are sent in the plain).

Forwarding of arbitrary TCP/IP connections over the secure channel can be specified either on the command

line or in a configuration file.

The X server

This procedure assumes that you have a running X server on the client where you want to display the

application from the remote host. The client may be of different architecture and operating system than

the remote host, as long as it can run an X server, such as Cygwin (which implements an X.org server for

MS Windows clients and others) or Exceed, it should be possible to set up a remote connection with any

Linux or UNIX machine.

10.4.4.3. Server authentication

The ssh client/server system automatically maintains and checks a database containing identifications for all

hosts it has ever been used with. Host keys are stored in $HOME/.ssh/known_hosts in the user's home

directory. Additionally, the file /etc/ssh/ssh_known_hosts is automatically checked for known hosts.

Any new hosts are automatically added to the user's file. If a host's identification ever changes, ssh warns

about this and disables password authentication to prevent a Trojan horse from getting the user's password.

Another purpose of this mechanism is to prevent man-in-the-middle attacks which could otherwise be used to

circumvent the encryption. In environments where high security is needed, sshd can even be configured to

prevent logins to machines whose host keys have changed or are unknown.

Introduction to Linux

Chapter 10. Networking 180

10.4.4.4. Secure remote copying

The SSH suite provides scp as a secure alternative to the rcp command that used to be popular when only rsh

existed. scp uses ssh for data transfer, uses the same authentication and provides the same security as ssh.

Unlike rcp, scp will ask for passwords or passphrases if they are needed for authentication:

lenny /var/tmp> scp Schedule.sdc.gz blob:/var/tmp/

lenny@blob's password:

Schedule.sdc.gz 100% |*****************************| 100 KB 00:00

lenny /var/tmp>

Any file name may contain a host and user specification to indicate that the file is to be copied to/from that

host. Copies between two remote hosts are permitted. See the Info pages for more information.

If you would rather use an FTP-like interface, use sftp:

lenny /var/tmp> sftp blob

Connecting to blob...

lenny@blob's password:

sftp> cd /var/tmp

sftp> get Sch*

Fetching /var/tmp/Schedule.sdc.gz to Schedule.sdc.gz

sftp> bye

lenny /var/tmp>

Secure copy or FTP GUIs

Don't feel comfortable with the command line yet? Try Konqueror's capabilities for secure remote copy,

or install Putty.

10.4.4.5. Authentication keys

The ssh-keygen command generates, manages and converts authentication keys for ssh. It can create RSA

keys for use by SSH protocol version 1 and RSA or DSA keys for use by SSH protocol version 2.

Normally each user wishing to use SSH with RSA or DSA authentication runs this once to create the

authentication key in $HOME/.ssh/identity, id_dsa or id_rsa. Additionally, the system

administrator may use this to generate host keys for the system.

Normally this program generates the key and asks for a file in which to store the private key. The public key is

stored in a file with the same name but .pub appended. The program also asks for a passphrase. The

passphrase may be empty to indicate no passphrase (host keys must have an empty passphrase), or it may be a

string of arbitrary length.

There is no way to recover a lost passphrase. If the passphrase is lost or forgotten, a new key must be

generated and copied to the corresponding public keys.

We will study SSH keys in the exercises. All information can be found in the man or Info pages.

Introduction to Linux

Chapter 10. Networking 181

10.4.5. VNC

VNC or Virtual Network Computing is in fact a remote display system which allows viewing a desktop

environment not only on the local machine on which it is running, but from anywhere on the Internet and from

a wide variety of machines and architectures, including MS Windows and several UNIX distributions. You

could, for example, run MS Word on a Windows NT machine and display the output on your Linux desktop.

VNC provides servers as well as clients, so the opposite also works and it may thus be used to display Linux

programs on Windows clients. VNC is probably the easiest way to have X connections on a PC. The

following features make VNC different from a normal X server or commercial implementations:

No state is stored at the viewer side: you can leave your desk and resume from another machine,

continuing where you left. When you are running a PC X server, and the PC crashes or is restarted, all

remote applications that you were running will die. With VNC, they keep on running.

•

It is small and simple, no installation needed, can be run from a floppy if needed.•

Platform independent with the Java client, runs on virtually everything that supports X.•

Sharable: one desktop may be displayed on multiple viewers.•

Free.•

More information can be found in the VNC client man pages (man vncviewer) or on the VNC website.

10.4.6. The rdesktop protocol

In order to ease management of MS Windows hosts, recent Linux distributions support the Remote Desktop

Protocol (RDP), which is implemented in the rdesktop client. The protocol is used in a number of Microsoft

products, including Windows NT Terminal Server, Windows 2000 Server, Windows XP and Windows 2003

Server.

Surprise your friends (or management) with the fullscreen mode, multiple types of keyboard layouts and

single application mode, just like the real thing. The man rdesktop manual provides more information. The

project's homepage is at http://www.rdesktop.org/.

10.4.7. Cygwin

Cygwin provides substantial UNIX functionality on MS Windows systems. Apart from providing UNIX

command line tools and graphical applications, it can also be used to display a Linux desktop on an MS

Windows machine, using remote X. From a Cygwin Bash shell, type the command

/usr/X11R6/bin/XWin.exe -query your_linux_machine_name_or_IP

The connection is by default denied. You need to change the X Display Manager (XDM) configuration and

possibly the X Font Server (XFS) configuration to enable this type of connection, where you get a login

screen on the remote machine. Depending on your desktop manager (Gnome, KDE, other), you might have to

change some configurations there, too.

If you do not need to display the entire desktop, you can use SSH in Cygwin, just like explained in Section

10.4.4. without all the fuss of editing configuration files.

Introduction to Linux

Chapter 10. Networking 182

http://www.realvnc.com/
http://www.rdesktop.org/
http://www.cygwin.com

10.5. Security

10.5.1. Introduction

As soon as a computer is connected to the network, all kinds of abuse becomes possible, be it a UNIX-based

or any other system. Admittedly, mountains of papers have been spilled on this subject and it would lead us

too far to discuss the subject of security in detail. There are, however, a couple of fairly logical things even a

novice user can do to obtain a very secure system, because most break-ins are the result of ignorant or careless

users.

Maybe you are asking yourself if this all applies to you, using your computer at home or working at your

office on a desktop in a fairly protected environment. The questions you should be asking yourself, however,

are more on the lines of:

Do you want to be in control of your own system?•

Do you want to (unwittingly) participate in criminal activities?•

Do you want your equipment to be used by someone else?•

Do you want to take risks on losing your Internet connection?•

Do you want to rebuild your system every time it has been hacked?•

Do you want to risk personal or other data loss?•

Presuming you don't, we will quickly list the steps you can take to secure your machine. Extended information

can be found in the Linux Security HOWTO.

10.5.2. Services

The goal is to run as few services as possible. If the number of ports that are open for the outside world are

kept to a minimum, this is all the better to keep an overview. If services can't be turned off for the local

network, try to at least disable them for outside connections.

A rule of thumb is that if you don't recognize a particular service, you probably won't need it anyway. Also

keep in mind that some services are not really meant to be used over the Internet. Don't rely on what should be

running, check which services are listening on what TCP ports using the netstat command:

[elly@mars ~] netstat -l | grep tcp

tcp 0 0 *:32769 *:* LISTEN

tcp 0 0 *:32771 *:* LISTEN

tcp 0 0 *:printer *:* LISTEN

tcp 0 0 *:kerberos_master *:* LISTEN

tcp 0 0 *:sunrpc *:* LISTEN

tcp 0 0 *:6001 *:* LISTEN

tcp 0 0 *:785 *:* LISTEN

tcp 0 0 localhost.localdom:smtp *:* LISTEN

tcp 0 0 *:ftp *:* LISTEN

tcp 0 0 *:ssh *:* LISTEN

tcp 0 0 ::1:x11-ssh-offset *:* LISTEN

Things to avoid:

exec, rlogin and rsh, and telnet just to be on the safe side.•

X11 on server machines.•

No lp if no printer is physically attached.•

Introduction to Linux

Chapter 10. Networking 183

http://www.tldp.org/HOWTO/Security-HOWTO.html

No MS Windows hosts in the network, no Samba required.•

Don't allow FTP unless an FTP server is required.•

Don't allow NFS and NIS over the Internet, disable all related services on a stand-alone installation.•

Don't run an MTA if you're not actually on a mail server.•

...•

Stop running services using the chkconfig command, the initscripts or by editing the (x)inetd configuration

files.

10.5.3. Update regularly

Its ability to adapt quickly in an ever changing environment is what makes Linux thrive. But it also creates a

possibility that security updates have been released even while you are installing a brand new version, so the

first thing you should do (and this goes for about any OS you can think of) after installing is getting the

updates as soon as possible. After that, update all the packages you use regularly.

Some updates may require new configuration files, and old files may be replaced. Check the documentation,

and ensure that everything runs normal after updating.

Most Linux distributions provide mailing list services for security update announcements, and tools for

applying updates to the system. General Linux only security issues are reported among others at

Linuxsecurity.com.

Updating is an ongoing process, so it should be an almost daily habit.

10.5.4. Firewalls and access policies

10.5.4.1. What is a firewall?

In the previous section we already mentioned firewall capabilities in Linux. While firewall administration is

one of the tasks of your network admin, you should know a couple of things about firewalls.

Firewall is a vague term that can mean anything that acts as a protective barrier between us and the outside

world, generally the Internet. A firewall can be a dedicated system or a specific application that provides this

functionality. Or it can be a combination of components, including various combinations of hardware and

software. Firewalls are built from "rules" that are used to define what is allowed to enter and/or exit a given

system or network.

After disabling unnecessary services, we now want to restrict accepted services as to allow only the minimum

required connections. A fine example is working from home: only the specific connection between your office

and your home should be allowed, connections from other machines on the Internet should be blocked.

10.5.4.2. Packet filters

The first line of defense is a packet filter, which can look inside IP packets and make decisions based on the

content. Most common is the Netfilter package, providing the iptables command, a next generation packet

filter for Linux.

One of the most noteworthy enhancements in the newer kernels is the stateful inspection feature, which not

only tells what is inside a packet, but also detects if a packet belongs or is related to a new or existing

Introduction to Linux

Chapter 10. Networking 184

http://linuxsecurity.com

connection.

The Shoreline Firewall or Shorewall for short is a front-end for the standard firewall functionality in Linux.

More information can be found at the Netfilter/iptables project page.

10.5.4.3. TCP wrappers

TCP wrapping provides much the same results as the packet filters, but works differently. The wrapper

actually accepts the connection attempt, then examines configuration files and decides whether to accept or

reject the connection request. It controls connections at the application level rather than at the network level.

TCP wrappers are typically used with xinetd to provide host name and IP-address-based access control. In

addition, these tools include logging and utilization management capabilities that are easy to configure.

The advantages of TCP wrappers are that the connecting client is unaware that wrappers are used, and that

they operate separately from the applications they protect.

The host based access is controlled in the hosts.allow and hosts.deny files. More information can be

found in the TCP wrapper documentation files in /usr/share/doc/tcp_wrappers[-<version>/]

or /usr/share/doc/tcp and in the man pages for the host based access control files, which contain

examples.

10.5.4.4. Proxies

Proxies can perform various duties, not all of which have much to do with security. But the fact that they are

an intermediary make proxies a good place to enforce access control policies, limit direct connections through

a firewall, and control how the network behind the proxy looks to the Internet.

Usually in combination with a packet filter, but sometimes all by themselves, proxies provide an extra level of

control. More information can be found in the Firewall HOWTO or on the Squid website.

10.5.4.5. Access to individual applications

Some servers may have their own access control features. Common examples include Samba, X Window,

Bind, Apache and CUPS. For every service you want to offer check which configuration files apply.

10.5.4.6. Log files

If anything, the UNIX way of logging all kinds of activities into all kinds of files confirms that "it is doing

something." Of course, log files should be checked regularly, manually or automatically. Firewalls and other

means of access control tend to create huge amounts of log files, so the trick is to try and only log abnormal

activities.

10.5.5. Intrusion detection

Intrusion Detection Systems are designed to catch what might have gotten past the firewall. They can either be

designed to catch an active break-in attempt in progress, or to detect a successful break-in after the fact. In the

latter case, it is too late to prevent any damage, but at least we have early awareness of a problem. There are

two basic types of IDS: those protecting networks, and those protecting individual hosts.

Introduction to Linux

Chapter 10. Networking 185

http://www.netfilter.org/
http://www.tldp.org/HOWTO/Firewall-HOWTO.html

For host based IDS, this is done with utilities that monitor the file system for changes. System files that have

changed in some way, but should not change, are a dead give-away that something is amiss. Anyone who gets

in and gets root access will presumably make changes to the system somewhere. This is usually the very first

thing done, either so he can get back in through a backdoor, or to launch an attack against someone else, in

which case, he has to change or add files to the system. Some systems come with the tripwire monitoring

system, which is documented at the Tripwire Open Source Project website.

Network intrusion detection is handled by a system that sees all the traffic that passes the firewall (not by

portscanners, which advertise usable ports). Snort is an Open Source example of such a program.

Whitehats.com features an open Intrusion detection database, arachNIDS.

10.5.6. More tips

Some general things you should keep in mind:

Do not allow root logins. UNIX developers came up with the su over two decades ago for extra

security.

•

Direct root access is always dangerous and susceptible to human errors, be it by allowing root login or

by using the su - command. Rather than using su, it is even better to use sudo to only execute the

command that you need extra permissions for, and to return afterwards to your own environment.

•

Take passwords seriously. Use shadow passwords. Change your passwords regularly.•

Try to always use SSH or SSL. Avoid telnet, FTP and E-mail clients and other client programs which

send unencrypted passwords over the network. Security is not only about securing your computer, it is

also about securing your passwords.

•

Limit resources using quota and/or ulimit.•

The mail for root should be delivered to, or at least read by, an actual person.•

The SANS institute has more tips and tricks, sorted per distribution, with mailing list service.•

Check the origin of new software, get it from a trusted place/site. Verify new packages before

installing.

•

When using a non-permanent Internet connection, shut it down as soon as you don't need it anymore.•

Run private services on odd ports instead of the ones expected by possible hackers.•

Know your system. After a while, you can almost feel when something is happening.•

10.5.7. Have I been hacked?

How can you tell? This is a checklist of suspicious events:

Mysterious open ports, strange processes.•

System utilities (common commands) behaving strange.•

Login problems.•

Unexplained bandwidth usage.•

Damaged or missing log files, syslog daemon behaving strange.•

Interfaces in unusual modes.•

Unexpectedly modified configuration files.•

Strange entries in shell history files.•

Unidentified temporary files.•

Introduction to Linux

Chapter 10. Networking 186

http://www.tripwire.org
http://www.snort.org
http://www.whitehats.com
http://www.sans.org

10.5.8. Recovering from intrusion

In short, stay calm. Then take the following actions in this order:

Disconnect the machine from the network.•

Try to find out as much as you can about how your security was breached.•

Backup important non-system data. If possible, check these data against existing backups, made

before the system was compromised, to ensure data integrity.

•

Re-install the system.•

Use new passwords.•

Restore from system and data backups.•

Apply all available updates.•

Re-examine the system: block off unnecessary services, check firewall rules and other access policies.•

Reconnect.•

10.6. Summary

Linux and networking go hand in hand. The Linux kernel has support for all common and most uncommon

network protocols. The standard UNIX networking tools are provided in each distribution. Next to those, most

distributions offer tools for easy network installation and management.

Linux is well known as a stable platform for running various Internet services, the amount of Internet software

is endless. Like UNIX, Linux can be just as well used and administered from a remote location, using one of

several solutions for remote execution of programs.

We briefly touched the subject of security. Linux is an ideal firewall system, light and cheap, but can be used

in several other network functions such as routers and proxy servers.

Increasing network security is mainly done by applying frequent updates and common sense.

Here is an overview of network related commands:

Table 10-2. New commands in chapter 10: Networking

Command Meaning

ftp Transfer files to another host (insecure).

host Get information about networked hosts.

ifconfig Display IP address information.

ip Display IP address information.

netstat Display routing information and network statistics.

ping Send answer requests to other hosts.

rdesktop Display and MS Windows desktop on your Linux system.

route Show routing information.

scp Secure copy files to and from other hosts.

sftp Secure FTP files to and from other hosts.

ssh Make an encrypted connection to another host.

Introduction to Linux

Chapter 10. Networking 187

ssh-keygen Generate authentication keys for Secure SHell.

telnet Make an insecure connection to another hosts.

tracepath/traceroute Print the route that packets follow to another host.

whois Get information abotu a domain name.

xclock X Window clock application, handy for testing remote display.

xhost X Window access control tool.

10.7. Exercises

10.7.1. General networking

Display network information for your workstation: IP address, routes, name servers.•

Suppose no DNS is available. What would you do to reach your neighbour's machine without typing

the IP address all the time?

•

How would you permanently store proxy information for a text mode browser such as links?•

Which name servers handle the redhat.com domain?•

Send an E-mail to your local account. Try two different ways to send and read it. How can you check

that it really arrived?

•

Does your machine accept anonymous FTP connections? How do you use the ncftp program to

authenticate with your user name and password?

•

Does your machine run a web server? If not, make it do so. Check the log files!•

10.7.2. Remote connections

From your local workstation, display a graphical application, such as xclock on your neighbour's

screen. The necessary accounts will have to be set up. Use a secure connection!

•

Set up SSH keys so you can connect to your neighbour's machine without having to enter a password.•

Make a backup copy of your home directory in /var/tmp on your neighbour's "backup server,"

using scp. Archive and compress before starting the data transfer! Connect to the remote host using

ssh, unpack the backup, and put one file back on the original machine using sftp.

•

10.7.3. Security

Make a list of open (listening) ports on your machine.•

Supposing you want to run a web server. Which services would you deactivate? How would you do

that?

•

Install available updates.•

How can you see who connected to your system?•

Make a repetitive job that reminds you to change your password every month, and preferably the root

password as well.

•

Introduction to Linux

Chapter 10. Networking 188

Chapter 11. Sound and Video

This chapter addresses the following tasks (briefly, as the field of sound and video is very

wide):

Sound card configuration♦

Playing CDs, copying CDs,♦

Playing music files♦

Volume control♦

Video and television♦

Recording sound♦

11.1. Audio Basics

11.1.1. Installation

Most likely, your system is already installed with audio drivers and the configuration was done at installation

time. Likewise, should you ever need to replace your audio hardware, most systems provide tools that allow

easy setup and configuration of the device. Most currently available plug-and-play sound cards should be

recognized automatically. If you can hear the samples that are played during configuration, just click OK and

everything will be set up for you.

If your card is not detected automatically, you may be presented with a list of sound cards and/or of sound

card properties from which to choose. After that, you will have to provide the correct I/O port, IRQ and DMA

settings. Information about these settings can be found in your sound card documentation. If you are on a dual

boot system with MS Windows, this information can be found in the Windows Control Panel as well.

If automatic sound card detection fails

If your soundcard is not supported by default, you will need to apply other techniques. These are

described in the Linux Sound HOWTO.

11.1.2. Drivers and Architecture

There are generally two types of sound architecture: the older Open Sound System or OSS, which works with

every UNIX-like system, and the newer Advanced Linux Sound Architecture or ALSA, that has better support

for Linux, as the name indicates. ALSA also has more features and allows for faster driver development. We

will focus here on the ALSA system.

Today, almost all mainstream audio chipsets are supported. Only some high-end professional solutions and

some cards developed by manufacturers refusing to document their chipset specifications are unsupported. An

overview of supported devices can be found on the ALSA site at

http://www.alsa-project.org/alsa-doc/index.php?vendor=All#matrix.

Configuring systems installed with ALSA is done using the alsaconf tool. Additionally, distributions usually

provide their own tools for configuring the sound card; these tools might even integrate the old and the new

way of handling sound devices.

Chapter 11. Sound and Video 189

http://www.tldp.org/HOWTO/Sound-HOWTO/index.html
http://www.alsa-project.org/alsa-doc/index.php?vendor=All#matrix

11.2. Sound and video playing

11.2.1. CD playing and copying

The cdp package comes with most distributions and provides cdp or cdplay, a text-based CD player. Desktop

managers usually include a graphical tool, such as the gnome-cd player in Gnome, that can be started from a

menu.

Be sure to understand the difference between an audio CD and a data CD. You do not have to mount an audio

CD into the file system in order to listen to it. This is because the data on such a CD are not Linux file system

data; they are accessed and sent to the audio output channel directly, using a CD player program. If your CD

is a data CD containing .mp3 files, you will first need to mount it into the file system, and then use one of the

programs that we discuss below in order to play the music. How to mount CDs into the file system is

explained in Section 7.5.5.

The cdparanoia tool from the package with the same name reads audio directly as data from the CD, without

analog conversions, and writes data to a file or pipe in different formats, of which .wav is probably the most

popular. Various tools for conversion to other formats, formats, such as .mp3, come with most distributions

or are downloadable as separate packages. The GNU project provides several CD playing, ripping and

encoding tools, database managers; see the Free Software Directory, Audio section for detailed information.

Audio-CD creation is eased, among many others, with the kaudiocreator tool from the KDE suite. It comes

with clear information from the KDE Help Center.

CD burning is covered in general in Section 9.2.2.

11.2.2. Playing music files

11.2.2.1. mp3 files

The popular .mp3 format is widely supported on Linux machines. Most distributions include multiple

programs that can play these files. Among many other applications, XMMS, which is presented in the

screenshot below, is one of the most wide-spread, partially because it has the same look and feel as the

Windows tool.

Figure 11-1. XMMS mp3 player

Also very popular for playing music are AmaroK, a KDE application that is steadily gaining popularity, and

MPlayer, which can also play movies.

Restrictions

Introduction to Linux

Chapter 11. Sound and Video 190

http://www.gnu.org/directory/audio/

Some distributions don't allow you to play MP3's without modifying your configuration, this is due to

license restrictions on the MP3 tools. You might need to install extra software to be able to play your

music.

In text mode, you can use the mplayer command:

[tille@octarine ~]$ mplayer /opt/mp3/oriental/*.mp3

MPlayer 1.0pre7-RPM-3.4.2 (C) 2000-2005 MPlayer Team

CPU: Advanced Micro Devices Duron Spitfire (Family: 6, Stepping: 1)

Detected cache-line size is 64 bytes

CPUflags: MMX: 1 MMX2: 1 3DNow: 1 3DNow2: 1 SSE: 0 SSE2: 0

Playing /opt/oldopt/mp3/oriental/Mazika_Diana-Krozon_Super-Star_Ensani-Ma-

Bansak.mp3.

Cache fill: 1.17% (98304 bytes) Audio file detected.

Clip info:

Title: Ensani-Ma-Bansak.mp3

Artist: Diana-Krozon

Album: Super-Star

Year:

Comment:

Genre: Unknown

==

Opening audio decoder: [mp3lib] MPEG layer-2, layer-3

mpg123: Can't rewind stream by 450 bits!

AUDIO: 44100 Hz, 2 ch, s16le, 160.0 kbit/11.34% (ratio: 20000->176400)

Selected audio codec: [mp3] afm:mp3lib (mp3lib MPEG layer-2, layer-3)

==

Checking audio filter chain for 44100Hz/2ch/s16le -> 44100Hz/2ch/s16le...

AF_pre: 44100Hz/2ch/s16le

AO: [oss] 44100Hz 2ch s16le (2 bps)

Building audio filter chain for 44100Hz/2ch/s16le -> 44100Hz/2ch/s16le...

Video: no video

Starting playback...

A: 227.8 (03:23:.1) 1.8% 12%

11.2.2.2. Other formats

It would lead us too far to discuss all possible audio formats and ways to play them. An (incomplete)

overview of other common sound playing and manipulating software:

Ogg Vorbis: Free audio format: see the GNU audio directory for tools - they might be included in

your distribution as well. The format was developed because MP3 is patented.

•

Real audio and video: realplay from RealNetworks.•

SoX or Sound eXchange: actually a sound converter, comes with th e play program. Plays .wav, .

ogg and various other formats, including raw binary formats.

•

Playmidi: a MIDI player, see the GNU directory.•

AlsaPlayer: from the Advanced Linux Sound Architecture project, see the AlsaPlayer web site.•

mplayer: plays just about anything, including mp3 files. More info on the MPlayerHQ website.•

hxplay: supports RealAudio and RealVideo, mp3, mp4 audio, Flash, wav and more, see HelixDNA

(not all components of this software are completely free).

•

rhythmbox: based on the GStreamer framework, can play everything supported in GStreamer, which

claims to be able to play everything, see the Rhythmbox and GStreamer sites.

•

Check your system documentation and man pages for particular tools and detailed explanations on how to use

them.

Introduction to Linux

Chapter 11. Sound and Video 191

http://www.gnu.org/directory/audio/ogg/
http://real.com
http://www.alsaplayer.org
http://www.mplayerhq.hu/
http://www.helixdna.com
http://www.rhythmbox.org
http://gstreamer.freedesktop.org

I don't have these applications on my system!

A lot of the tools and applications discussed in the above sections are optional software. It is possible

that such applications are not installed on your system by default, but that you can find them in your

distribution as additional packages. It might also very well be that the application that you are looking

for is not in your distribution at all. In that case, you need to download it from the application's web site.

11.2.2.3. Volume control

aumix and alsamixer are two common text tools for adjusting audio controls. Use the arrow keys to toggle

settings. The alsamixer has a graphical interface when started from the Gnome menu or as gnome-alsamixer

from the command line. The kmix tool does the same in KDE.

Regardless of how you choose to listen to music or other sounds, remember that there may be other people

who may not be interested in hearing you or your computer. Try to be courteous, especially in office

environments. Use a quality head-set, rather than the ones with the small ear pieces. This is better for your

ears and causes less distraction for your colleagues.

11.2.3. Recording

Various tools are again available that allow you to record voice and music. For recording voice you can use

arecord on the command line:

alexey@russia:~> arecord /var/tmp/myvoice.wav

Recording WAVE '/var/tmp/myvoice.wav' : Unsigned 8 bit, Rate 8000 Hz, Mono

Aborted by signal Interrups...

"Interrupt" means that the application has caught a Ctrl+C. Play the sample using the simple play command.

This is a good test that you can execute prior to testing applications that need voice input, like Voice over IP

(VoIP). Keep in mind that the microphone input should be activated. If you don't hear your own voice, check

your sound settings. It often happens that the microphone is muted or on verry low volume. This can be easily

adjusted using alsamixer or your distribution-specific graphical interface to the sound system.

In KDE you can start the krec utility, Gnome provides the gnome-sound-recorder.

11.3. Video playing, streams and television watching

Various players are available:

xine: a free video player•

ogle: DVD player.•

okle: KDE version of ogle•

mplayer: Movie Player for Linux•

totem: plays both audio and video files, audio CDs, VCD and DVD.•

realplay: from RealNetworks.•

hxplay: a Real alternative, see HelixDNA.•

kaffeine: media player for KDE3.•

Most likely, you will find one of these in your graphical menus.

Introduction to Linux

Chapter 11. Sound and Video 192

http://helixcommunity.org

Keep in mind that all codecs necessary for viewing different types of video might not be on your system by

default. You can get a long way downloading W32codecs and libdvdcss.

The LDP released a document that is very appropriate for this section. It is entitled DVD Playback HOWTO

and describes the different tools available for viewing movies on a system that has a DVD drive. It is a fine

addition to the DVD HOWTO that explains installation of the drive.

For watching TV there is choice of the following tools, among many others for watching and capturing TV,

video and other streams:

tvtime: great program with station management, interaction with teletext, film mode and much more.•

zapping: Gnome-specific TV viewer.•

xawtv: X11 TV viewer.•

11.4. Internet Telephony

11.4.1. What is it?

Internet telephony, or more common, Voice over IP (VoIP) or digital telephony allows parties to exchange

voice data flows over the network. The big difference is that the data flows over a general purpose network,

the Internet, contrary to conventional telephony, that uses a dedicated network of voice transmission lines.

The two networks can be connected, however, under special circumstances, but for now this is certainly not a

standard. In other words: it is very likely that you will not be able to call people who are using a conventional

telephone. If it is possible at all, it is likely that you will need to pay for a subscription.

While there are currently various applications available for free download, both free and proprietary, there are

some major drawbacks to telephony over the Internet. Most noticably, the system is unreliable, it can be slow

or there can be a lot of noise on the connection, and it can thus certainly not be used to replace conventional

telephony - think about emergency calls. While some providers take their precautions, there is no guarantee

that you can reach the party that you want to call.

Most applications currently do not use encryption, so be aware that it is potentially easy for someone to

eavesdrop on your conversations. If security is a concern for you, read the documentation that comes with

your VoIP client. Additionally, if you are using a firewall, it should be configured to allow incoming

connections from anywhere, so using VoIP also includes taking risks on the level of site security.

11.4.2. What do you need?

11.4.2.1. Server Side

First of all, you need a provider offering the service. This service might integrate traditional telephony and it

might or might not be free. Among others are SIPphone, Vonage, Lingo, AOL TotalTalk and many locally

accessible providers offering the so-called "full phone service". Internet phone service only is offered by

Skype, SIP Broker, Google and many others.

If you want to set up a server of your own, you might want to look into Asterisk.

Introduction to Linux

Chapter 11. Sound and Video 193

http://www.tldp.org/
http://www.tldp.org/HOWTO/DVD-Playback-HOWTO/index.html
http://www.tldp.org/HOWTO/DVD-HOWTO.html
http://tvtime.sourceforge .net/
http://www.sipphone.com/
http://www.vonage.com/
http://www.lingo.com/
http://www.totaltalk.com/
http://www.skype.com/
http://www.sipbroker.com/
http://www.google.com/talk/
http://www.asterisk.org

11.4.2.2. Client Side

On the client side, the applications that you can use depend on your network configuration. If you have a

direct Internet connection, there won't be any problems, provided that you know on what server you can

connect, and usually that you also have a username and password to authenticate to the service.

If you are behind a firewall that does Network Address Translation (NAT), however, some services might not

work, as they will only see the IP address of the firewall and not the address of your computer, which might

well be unroutable over the Internet, for instance when you are in a company network and your IP address

starts with 10., 192.168. or another non-routable subnet prefix. This depends on the protocol that is used by

the application.

Also, available bandwidth might be a blocking factor: some applications are optimized for low bandwidth

consumption, while others might require high bandwidth connections. This depends on the codec that is used

by the application.

Among the most common applications are the Skype client, which has an interface that reminds of instant

messaging, and X-Lite, the free version of the XTen softphone, which looks like a mobile telephone.

However, while these programs are available for free download and very popular, they are not free as in free

speech: they use proprietary protocols and/or are only available in binary packages, not in source format.

Free and open VoIP clients are for instance Gizmo, Linphone, GnomeMeeting and KPhone.

Client hardware

While your computer, especially if it is a laptop PC, might have a built-in microphone, the result will be

far better if you connect a headset. If you have the choice, opt for a USB headset, as it functions

independently from existing audio hardware. Use alsamixer to configure input and output sound levels

to your taste.

VoIP applications are definitely a booming market. Volunteers try to document the current status at

http://www.voip-info.org/.

11.5. Summary

The GNU/Linux platform is fully multi-media enabled. A wide variety of devices like sound cards, tv-cards,

headsets, microphones, CD and DVD players is supported. The list of applications is sheer endless, that is

why we needed to shortenthe list of new commands below and limit ourselves to general audio commands.

Table 11-1. New commands in chapter 11: Audio

Command Meaning

alsaconf Configure the ALSA sound system.

alsamixer Tune output levels of ALSA driver.

arecord Record a sound sample.

aumix Audio mixer tool.

cdp Play an audio CD.

cdparanoia Rip an audio CD.

cdplay Play an audio CD.

Introduction to Linux

Chapter 11. Sound and Video 194

http://www.counterpath.com/
http://www.gizmoproject.com/
http://www.linphone.org
http://www.gnomemeeting.org/
http://www.wirlab.net/kphone/
http://www.voip-info.org/

gnome-alsamixer Gnome ALSA front-end.

gnome-cd Gnome front-end for playing audio CDs.

gnome-sound-recorder Gnome front-end for recording sound samples.

kaudiocreator KDE front-end for creating audio CDs.

kmix KDE front-end for sound settings.

krec KDE front-end for recording sound samples.

mplayer Multi-media player.

play Command line tool for playing sound samples.

11.6. Exercises

From the Gnome or KDE menu, open your sound configuration panel. Make sure audio boxes or

headset are connected to your system and find an output level that is comfortable for you. Make sure,

when your system is ALSA-compatible, that you use the appropriate panel.

1.

If you have a microphone, try recording a sample of your own voice. Make sure the input volume is

not too high, as this will result in high-pitched tones when you communicate with others, or in

transfering background noise to the other party. On the command line, you might even try to use

arecord and aplay for recording and playing sound.

2.

Locate sound files on your system and try to play them.3.

Insert an audio CD and try to play it.4.

Find a chat partner and configure a VoIP program. (You might need to install one first.)5.

Can you listen to Internet radio?6.

If you have a DVD player and a movie on a DVD disk, try to play it.7.

Introduction to Linux

Chapter 11. Sound and Video 195

Appendix A. Where to go from here?

This document gives an overview of useful books and sites.

A.1. Useful Books

A.1.1. General Linux

"Linux in a Nutshell" by Ellen Siever, Jessica P. Hackman, Stephen Spainhour, Stephen Figgins,

O'Reilly UK, ISBN 0596000251

•

"Running Linux" by Matt Welsh, Matthias Kalle Dalheimer, Lar Kaufman, O'Reilly UK, ISBN

156592469X

•

"Linux Unleashed" by Tim Parker, Bill Ball, David Pitts, Sams, ISBN 0672316889•

"When You Can't Find Your System Administrator" by Linda Mui, O'Reilly UK, ISBN 1565921046•

When you actually buy a distribution, it will contain a very decent user manual.•

A.1.2. Editors

"Learning the Vi Editor" by Linda Lamb and Arnold Robbins, O'Reilly UK, ISBN 1565924266•

"GNU Emacs Manual" by Richard M.Stallman, iUniverse.Com Inc., ISBN 0595100333•

"Learning GNU Emacs" by Debra Cameron, Bill Rosenblatt and Eric Raymond, O'Reilly UK, ISBN

1565921526

•

"Perl Cookbook" by Tom Christiansen and Nathan Torkington, O'Reilly UK, ISBN 1565922433•

A.1.3. Shells

"Unix Shell Programming" by Stephen G.Kochan and Patrick H.Wood, Sams Publishing, ISBN

067248448X

•

"Learning the Bash Shell" by Cameron Newham and Bill Rosenblatt, O'Reilly UK, ISBN

1565923472

•

"The Complete Linux Shell Programming Training Course" by Ellie Quigley and Scott Hawkins,

Prentice Hall PTR, ISBN 0130406767

•

"Linux and Unix Shell Programming" by David Tansley, Addison Wesley Publishing Company,

ISBN 0201674726

•

"Unix C Shell Field Guide" by Gail and Paul Anderson, Prentice Hall, ISBN 013937468X•

A.1.4. X Window

"Gnome User's Guide" by the Gnome Community, iUniverse.Com Inc., ISBN 0595132251•

"KDE Bible" by Dave Nash, Hungry Minds Inc., ISBN 0764546929•

"The Concise Guide to XFree86 for Linux" by Aron HSiao, Que, ISBN 0789721821•

"The New XFree86" by Bill Ball, Prima Publishing, ISBN 0761531521•

"Beginning GTK+ and Gnome" by Peter Wright, Wrox Press, ISBN 1861003811•

"KDE 2.0 Development" by David Sweet and Matthias Ettrich, Sams Publishing, ISBN 0672318911•

"GTK+/Gnome Application Development" by Havoc Pennington, New Riders Publishing, ISBN

0735700788

•

Appendix A. Where to go from here? 196

A.1.5. Networking

"TCP/IP Illustrated, Volume I: The Protocols" by W. Richard Stevens, Addison-Wesley Professional

Computing Series, ISBN 0-201-63346-9

•

"DNS and BIND" by Paul Albitz, Cricket Liu, Mike Loukides and Deborah Russell, O'Reilly &

Associates, ISBN 0596001584

•

"The Concise Guide to DNS and BIND" by Nicolai Langfeldt, Que, ISBN 0789722739•

"Implementing LDAP" by Mark Wilcox, Wrox Press, ISBN 1861002211•

"Understanding and deploying LDAP directory services" by Tim Howes and co., Sams, ISBN

0672323168

•

"Sendmail" by Brian Costales and Eric Allman, O'Reilly UK, ISBN 1565922220•

"Removing the Spam : Email Processing and Filtering" by Geoff Mulligan, Addison Wesley

Publishing Company, ISBN 0201379570

•

"Managing IMAP" by Dianna & Kevin Mullet, O'Reilly UK, ISBN 059600012X•

A.2. Useful sites

A.2.1. General information

The Linux documentation project: all docs, manpages, HOWTOs, FAQs•

LinuxQuestions.org: forum, downloads, docs and much more•

Google for Linux: the specialized search engine•

Google Groups: an archive of all newsgroup postings, including the comp.os.linux hierarchy•

Slashdot: daily news•

http://www.oreilly.com: books on Linux System and Network administration, Perl, Java, ...•

POSIX: the standard•

Linux HQ: Maintains a complete database of source, patches and documentation for various versions

of the Linux kernel.

•

A.2.2. Architecture Specific References

AlphaLinux: Linux on Alpha architecture (e.g. Digital Workstation)•

Linux-MIPS: Linux on MIPS (e.g. SGI Indy)•

Linux on the Road: Specific guidelines for installing and running Linux on laptops, PDAs, mobile

phones and so on. Configuration files for various models.

•

MkLinux: Linux on Apple•

A.2.3. Distributions

The Fedora Project: RedHat-sponsored community effort OS.•

Mandriva•

Ubuntu•

Debian•

TurboLinux•

Slackware•

SuSE•

LinuxISO.org: CD images for all distributions.•

Introduction to Linux

Appendix A. Where to go from here? 197

http://www.tldp.org
http://www.linuxquestions.org
http://www.google.com/linux
http://groups.google.com
http://slashdot.org
http://www.oreilly.com
http://www.posix.com/posix.html
http://www.linuxhq.com
http://www.alphalinux.org
http://www.linux-mips.org
http://tldp.org/LDP/Mobile-Guide/html/index.html
http://www.mklinux.org
http://fedora.redhat.com/
http://www.mandriva.com
http://www.ubuntu.com
http://www.debian.org
http://www.turbolinux.com
http://www.slackware.com
http://www.suse.de
http://www.linuxiso.org

Knoppix: distribution that runs from a CD, you don't need to install anything for this one.•

DistroWatch.com: find a Linux that goes with your style.•

...•

A.2.4. Software

Freshmeat: new software, software archives•

OpenSSH: Secure SHell site•

OpenOffice: MS compatible Office Suite•

KDE: K Desktop site•

GNU: GNU and GNU software•

Gnome: The official Gnome site•

RPM Find: all RPM packages•

Samba: MS Windows file and print services•

Home of the OpenLDAP Project: OpenLDAP server/clients/utilities, FAQ and other documentation.•

Sendmail Homepage: A thorough technical discussion of Sendmail features, includes configuration

examples.

•

Netfilter: contains assorted information about iptables: HOWTO, FAQ, guides, ...•

Official GIMP website: All information about the GNU Image Manipulation Program.•

SourceForge.net: Open SOurce software development site.•

vIm homepage•

Introduction to Linux

Appendix A. Where to go from here? 198

http://www.knoppix.org/
http://www.distrowatch.com/
http://freshmeat.net
http://www.openssh.org
http://www.openoffice.org
http://www.kde.org
http://www.gnu.org
http://www.gnome.org
http://www.rpmfind.net
http://www.samba.org
http://www.openldap.org
http://www.sendmail.org
http://netfilter.samba.org
http://www.gimp.org
http://sourceforge.net/
http://www.vim.org/

Appendix B. DOS versus Linux commands

In this appendix, we matched DOS commands with their Linux equivalent.

As an extra means of orientation for new users with a Windows background, the table below lists MS-DOS

commands with their Linux counterparts. Keep in mind that Linux commands usually have a number of

options. Read the Info or man pages on the command to find out more.

Table B-1. Overview of DOS/Linux commands

DOS commands Linux command

<command> /?
man <command> or command

--help

cd cd

chdir pwd

cls clear

copy cp

date date

del rm

dir ls

echo echo

edit vim (or other editor)

exit exit

fc diff

find grep

format mke2fs or mformat

mem free

mkdir mkdir

more more or even less

move mv

ren mv

time date

Appendix B. DOS versus Linux commands 199

Appendix C. Shell Features

This document gives an overview of common shell features (the same in every shell flavour)

and differing shell features (shell specific features).

C.1. Common features

The following features are standard in every shell. Note that the stop, suspend, jobs, bg and fg commands are

only available on systems that support job control.

Table C-1. Common Shell Features

Command Meaning

> Redirect output

>> Append to file

< Redirect input

<< "Here" document (redirect input)

| Pipe output

& Run process in background.

; Separate commands on same line

* Match any character(s) in filename

? Match single character in filename

[] Match any characters enclosed

() Execute in subshell

` ` Substitute output of enclosed command

" " Partial quote (allows variable and command expansion)

' ' Full quote (no expansion)

\ Quote following character

$var Use value for variable

$$ Process id

$0 Command name

$n nth argument (n from 0 to 9)

$* All arguments as a simple word

Begin comment

bg Background execution

break Break from loop statements

cd Change directories

continue Resume a program loop

echo Display output

eval Evaluate arguments

exec Execute a new shell

Appendix C. Shell Features 200

fg Foreground execution

jobs Show active jobs

kill Terminate running jobs

newgrp Change to a new group

shift Shift positional parameters

stop Suspend a background job

suspend Suspend a foreground job

time Time a command

umask Set or list file permissions

unset Erase variable or function definitions

wait Wait for a background job to finish

C.2. Differing features

The table below shows major differences between the standard shell (sh), Bourne Again SHell (bash), Korn

shell (ksh) and the C shell (csh).

Shell compatibility

Since the Bourne Again SHell is a superset of sh, all sh commands will also work in bash - but not vice

versa. bash has many more features of its own, and, as the table below demonstrates, many features

incorporated from other shells.

Since the Turbo C shell is a superset of csh, all csh commands will work in tcsh, but not the other way

round.

Table C-2. Differing Shell Features

sh bash ksh csh Meaning/Action

$ $ $ %
Default user

prompt

>| >| >! Force redirection

> file

2>&1
&> file or > file 2>&1

> file

2>&1
>& file

Redirect stdout

and stderr to

file

{ } { }
Expand elements

in list

`command` `command` or $(command) $(command) `command`

Substitute output

of enclosed

command

$HOME $HOME $HOME $home Home directory

~ ~ ~
Home directory

symbol

~+, ~-, dirs ~+, ~- =-, =N
Access directory

stack

var=value VAR=value var=value

Introduction to Linux

Appendix C. Shell Features 201

set

var=value

Variable

assignment

export var export VAR=value
export

var=val

setenv var

val

Set environment

variable

${nnnn} ${nn}

More than 9

arguments can

be referenced

"$@" "$@" "$@"
All arguments as

separate words

$# $# $# $#argv
Number of

arguments

$? $? $? $status

Exit status of the

most recently

executed

command

$! $! $!

PID of most

recently

backgrounded

process

$- $- $- Current options

. file source file or . file . file source file
Read commands

in file

alias x='y' alias x=y alias x y
Name x stands

for command y

case case case
switch or

case

Choose

alternatives

done done done end
End a loop

statement

esac esac esac endsw
End case or

switch

exit n exit n exit n exit (expr) Exit with a status

for/do for/do for/do foreach
Loop through

variables

set -f , set -o

nullglob|dotglob|nocaseglob|noglob
noglob

Ignore

substitution

characters for

filename

generation

hash hash alias -t hashstat

Display hashed

commands

(tracked aliases)

hash cmds hash cmds
alias -t

cmds
rehash

Remember

command

locations

hash -r hash -r unhash
Forget command

locations

Introduction to Linux

Appendix C. Shell Features 202

history history history
List previous

commands

ArrowUp+Enter or !! r !!
Redo previous

command

!str r str !str

Redo last

command that

starts with "str"

!cmd:s/x/y/ r x=y cmd !cmd:s/x/y/

Replace "x" with

"y" in most

recent command

starting with

"cmd", then

execute.

if [$i -eq 5

]
if [$i -eq 5] if ((i==5)) if ($i==5)

Sample

condition test

fi fi fi endif End if statement

ulimit ulimit ulimit limit
Set resource

limits

pwd pwd pwd dirs
Print working

directory

read read read $<
Read from

terminal

trap 2 trap 2 trap 2 onintr Ignore interrupts

unalias unalias unalias Remove aliases

until until until Begin until loop

while/do while/do while/do while Begin while loop

The Bourne Again SHell has many more features not listed here. This table is just to give you an idea of how

this shell incorporates all useful ideas from other shells: there are no blanks in the column for bash. More

information on features found only in Bash can be retrieved from the Bash info pages, in the "Bash Features"

section.

More information:

You should at least read one manual, being the manual of your shell. The preferred choice would be info

bash, bash being the GNU shell and easiest for beginners. Print it out and take it home, study it whenever you

have 5 minutes.

See Appendix B if you are having difficulties to assimilate shell commands.

Introduction to Linux

Appendix C. Shell Features 203

Glossary

This section contains an alphabetical overview of commands discussed in this document.

A

a2ps

Format files for printing on a PostScript printer, see Section 8.1.2.

acroread

PDF viewer, see Section 8.1.2.2.

adduser

Create a new user or update default new user information.

alias

Create a shell alias for a command.

alsaconf

Configure sound card using the ALSA driver, see Section 11.1.2.

alsamixer

Tune ALSA sound device output, see Section 11.2.2.3.

anacron

Execute commands periodically, does not assume continuously running machine.

apropos

Search the whatis database for strings, see Section 2.3.3.2.

apt-get

APT package handling utility, see Section 7.5.3.2.

arecord

Record a sound sample, see Section 11.2.3.

aspell

Spell checker.

at, atq, atrm

Queue, examine or delete jobs for later execution, see Section 4.1.2.2 and Section 4.4.3.

aumix

Adjust audio mixer, see Section 11.2.2.3.

(g)awk

Pattern scanning and processing language.

B

bash

Bourne Again SHell, see Section 3.2.3.2 and Section 7.2.5.

batch

Queue, examine or delete jobs for later execution, see Section 4.1.2.2.

bg

Run a job in the background, see Section 4.1.2.1.

bitmap

Bitmap editor and converter utilities for the X window System.

bzip2

A block-sorting file compressor, see Section 9.1.1.3.

Glossary 204

C

cardctl

Manage PCMCIA cards, see Section 10.2.3.3.

cat

Concatenate files and print to standard output, see Section 2.2 and Section 3.2.4.

cd

Change directory, see Section 2.2.

cdp/cdplay

An interactive text-mode program for controlling and playing audio CD Roms under Linux, see

Section 11.2.1.

cdparanoia

An audio CD reading utility which includes extra data verification features, see Section 11.2.1.

cdrecord

Record a CD-R, see Section 9.2.2.

chattr

Change file attributes.

chgrp

Change group ownership, see Section 3.4.2.3.

chkconfig

Update or query run level information for system services, see Section 4.2.5.1.

chmod

Change file access permissions, see Section 3.4.1, Section 3.4.2.1 and Section 3.4.2.4.

chown

Change file owner and group, see Section 3.4.2.3.

compress

Compress files.

cp

Copy files and directories, see Section 3.3.2.

crontab

Maintain crontab files, see Section 4.4.4.

csh

Open a C shell, see Section 3.2.3.2.

cut

Remove sections from each line of file(s), see Section 7.2.5.2.

D

date

Print or set system date and time.

dd

Convert and copy a file (disk dump), see Section 9.2.1.2.

df

Report file system disk usage, see Section 3.1.2.3.

dhcpcd

DHCP client daemon, see Section 10.3.8.

diff

Find differences between two files.

dig

Send domain name query packets to name servers, see Section 10.2.6.1.

Introduction to Linux

Glossary 205

dmesg

Print or control the kernel ring buffer.

du

Estimate file space usage.

dump

Backup file system, see Section 9.2.5.

E

echo

Display a line of text, see Section 3.2.1.

ediff

Diff to English translator.

egrep

Extended grep.

eject

Unmount and eject removable media, see Section 7.5.5.2.

emacs

Start the Emacs editor, see Section 6.1.2.1.

exec

Invoke subprocess(es), see Section 4.1.5.1.

exit

Exit current shell, see Section 2.2.

export

Add function(s) to the shell environment, see Section 3.2.1, Section 7.2.1.2 and Section 7.2.4.2.

F

fax2ps

Convert a TIFF facsimile to PostScript, see Section 8.1.2.

fdformat

Format floppy disk, see Section 9.2.1.1.

fdisk

Partition table manipulator for Linux, see Section 3.1.2.2.

fetchmail

Fetch mail from a POP, IMAP, ETRN or ODMR-capable server, see Section 10.3.2.3.

fg

Bring a job in the foreground, see Section 4.1.2.1.

file

Determine file type, see Section 3.3.1.2.

find

Find files, see Section 3.3.3.3.

firefox

Web browser, see Section 10.3.3.2.

fork

Create a new process, see Section 4.1.5.1.

formail

Mail (re)formatter, see Section 10.3.2.3.

fortune

Print a random, hopefully interesting adage.

Introduction to Linux

Glossary 206

ftp

Transfer files (unsafe unless anonymous account is used!)services, see Section 10.3.4.2.

G

galeon

Graphical web browser.

gdm

Gnome Display Manager, see Section 4.2.4.

gedit

GUI editor, see Section 6.3.3.3.

(min/a)getty

Control console devices.

gimp

Image manipulation program.

gpg

Encrypt, check and decrypt files, see Section 9.4.1.2.

grep

Print lines matching a pattern, see Section 3.3.3.4 and Section 5.3.1.

groff

Emulate nroff command with groff, see Section 8.1.2.

grub

The grub shell, see Section 4.2.3 and Section 7.5.4.

gv

A PostScript and PDF viewer, see Section 8.1.2.2.

gvim

Graphical version of the vIm editor, see Section 6.3.3.3.

gzip

Compress or expand files, see Section 9.1.1.3.

H

halt

Stop the system, see Section 4.2.6.

head

Output the first part of files, see Section 3.3.4.3.

help

Display help on a shell built-in command.

host

DNS lookup utility, see Section 10.2.6.1.

httpd

Apache hypertext transfer protocol server, see Section 10.2.3.1.

I

id

Print real and effective UIDs and GIDs, see Section 3.4.1.

ifconfig

Configure network interface or show configuration, see Section 10.1.2.3.

Introduction to Linux

Glossary 207

info

Read Info documents, see Section 2.3.3.1.

init

Process control initialization, see Section 4.1.5.1, Section 4.2.4 and Section 4.2.5.

insserv

Manage init scripts, see Section 4.2.5.1.

iostat

Display I/O statistics, see Section 4.3.5.4.

ip

Display/change network interface status, see Section 10.1.2.3.

ipchains

IP firewall administration, see Section 10.4.4.2.

iptables

IP packet filter administration, see Section 10.4.4.2.

J

jar

Java archive tool, see Section 9.1.1.4.

jobs

List backgrounded tasks.

K

kdm

Desktop manager for KDE, see Section 4.2.4.

kedit

KDE graphical editor, see Section 6.3.3.3.

kill(all)

Terminate process(es), see Section 4.1.2.1.

konqueror

File manager, (help) browser, see Section 3.3.2.1.

ksh

Open a Korn shell, see Section 3.2.3.2.

kwrite

KDE graphical editor, see Section 6.3.3.3.

L

less

more with features, see Section 3.3.4.2.

lilo

Linux boot loader, see Section 4.2.

links

Text mode WWW browser, see Section 10.2.3.2.

ln

Make links between files, see Section 3.3.5.

loadkeys

Load keyboard translation tables, see Section 7.4.1.

Introduction to Linux

Glossary 208

locate

Find files, see Section 3.3.3.3 and Section 4.4.4.

logout

Close current shell, see Section 2.1.3.

lp

Send requests to the LP print service, see Section 8.1.

lpc

Line printer control program, see Section 8.1.

lpq

Print spool queue examination program, see Section 8.1.

lpr

Offline print, see Section 8.1.

lprm

Remove print requests, see Section 8.1.

ls

List directory content, see Section 2.2, Section 3.1.1.2 and Section 3.3.1.1.

lynx

Text mode WWW browser, see Section 10.2.3.2.

M

mail

Send and receive mail, see Section 10.3.2.3.

man

Read man pages, see Section 2.3.2.

mc

Midnight COmmander, file manager, see Section 3.3.2.1.

mcopy

Copy MSDOS files to/from Unix.

mdir

Display an MSDOS directory.

memusage

Display memory usage, see Section 4.3.5.3.

memusagestat

Display memory usage statistics, see Section 4.3.5.3.

mesg

Control write access to your terminal, see Section 4.1.6.

mformat

Add an MSDOS file system to a low-level formatted floppy disk, see Section 9.2.1.1.

mkbootdisk

Creates a stand-alone boot floppy for the running system.

mkdir

Create directory, see Section 3.3.2.

mkisofs

Create a hybrid ISO9660 filesystem, see Section 9.2.2.

mplayer

Movie player/encoder for Linux, see Section 11.2.2 and Section 11.3.

more

Filter for displaying text one screen at the time, see Section 3.3.4.2.

mount

Introduction to Linux

Glossary 209

Mount a file system or display information about mounted file systems, see Section 7.5.5.1.

mozilla

Web browser, see Section 10.2.3.2.

mt

Control magnetic tape drive operation.

mtr

Network diagnostic tool.

mv

Rename files, Section 3.3.2.

N

named

Internet domain name server, see Section 10.3.7.

nautilus

File manager, see Section 3.3.2.1.

ncftp

Browser program for ftp services (insecure!), see Section 10.3.4.2.

netstat

Print network connections, routing tables, interface statistics, masquerade connections, and multi-cast

memberships, see Section 10.1.2.5 and Section 10.4.2.

newgrp

Log in to another group, see Section 3.4.2.2.

nfsstat

Print statistics about networked file systems.

nice

Run a program with modified scheduling priority, see Section 4.3.5.1.

nmap

Network exploration tool and security scanner.

ntpd

Network Time Protocol Daemon, see Section 7.4.3.

ntpdate

Set the date and time via an NTP server, see Section 7.4.3.

ntsysv

Simple interface for configuring run levels, see Section 4.2.5.1.

O

ogle

DVD player with support for DVD menus, see Section 11.3.

P

passwd

Change password, see Section 2.2 and Section 4.1.6.

pccardctl

Manage PCMCIA cards, see Section 10.2.3.3.

pdf2ps

Ghostscript PDF to PostScript translator, see Section 8.1.2.

Introduction to Linux

Glossary 210

perl

Practical Extraction and Report Language.

pg

Page through text output, see Section 3.3.4.2.

pgrep

Look up processes based on name and other attributes, see Section 4.1.4.

ping

Send echo request to a host, see Section 10.2.6.2.

play

Play a sound sample, see Section 11.2.3.

pr

Convert text files for printing.

printenv

Print all or part of environment, see Section 7.2.1.

procmail

Autonomous mail processor, see Section 10.3.2.3.

ps

Report process status, see Section 4.1.4 and Section 4.3.5.4.

pstree

Display a tree of processes, see Section 4.1.4.

pwd

Print present working directory, see Section 2.2.

Q

quota

Display disk usage and limits, see Section 3.2.3.3.

R

rcp

Remote copy (unsafe!)

rdesktop

Remote Desktop Protocol client, see Section 10.4.6.

reboot

Stop the system, see Section 4.2.6.

recode

Convert files to another character set, see Section 7.4.4.

renice

Alter priority of a running process, see Section 4.3.5.1.

restore

Restore backups made with dump, see Section 9.2.5.

rlogin

Remote login (telnet, insecure!), see Section 10.4.2 and Section 10.5.2.

rm

Remove a file, see Section 3.3.2.

rmdir

Remove a directory, see Section 3.3.2.2.

roff

A survey of the roff typesetting system, see Section 8.1.2.

Introduction to Linux

Glossary 211

rpm

RPM Package Manager, see Section 7.5.2.1.

rsh

Remote shell (insecure!), see Section 10.4.2.

rsync

Synchronize two directories, see Section 9.3.

S

scp

Secure remote copy, see Section 10.4.4.1.

screen

Screen manager with VT100 emulation, see Section 4.1.2.1.

set

Display, set or change variable.

setterm

Set terminal attributes.

sftp

Secure (encrypted) ftp, see and Section 10.4.4.1.

sh

Open a standard shell, see Section 3.2.3.2.

shutdown

Bring the system down, see Section 4.2.6.

sleep

Wait for a given period, see Section 4.4.1.

slocate

Security Enhanced version of the GNU Locate, see Section 3.3.3.3.

slrnn

text mode Usenet client, see Section 10.2.6.

snort

Network intrusion detection tool.

sort

Sort lines of text files, see Section 5.3.2.

spell

Spell checker, see Section 5.1.2.3.

ssh

Secure shell, see Section 10.4.4.1.

ssh-keygen

Authentication key generation, management and conversion, see Section 10.4.4.5.

stty

Change and print terminal line settings.

su

Switch user, see Section 3.2.1, Section 7.5.3.2 and Section 10.4.6.

T

tac

Concatenate and print files in reverse, see cat.

tail

Output the last part of files, see Section 3.3.4.3.

Introduction to Linux

Glossary 212

talk

Talk to a user.

tar

Archiving utility, see Section 9.1.1.1.

tcsh

Open a Turbo C shell, see Section 3.2.3.2.

telinit

Process control initialization, see Section 4.2.5.

telnet

User interface to the TELNET protocol (insecure!), see Section 10.4.2.

tex

Text formatting and typesetting, see Section 8.1.2.

time

Time a simple command or give resource usage, see Section 4.3.2.

tin

News reading program, see Section 10.2.6.

top

Display top CPU processes, see Section 4.1.4, Section 4.3.5.3 and Section 4.3.5.4.

touch

Change file timestamps, see Section 7.1.2.

traceroute

Print the route packets take to network host, see Section 10.2.6.3.

tripwire

A file integrity checker for UNIX systems, see Section 10.4.5.

troff

Format documents, see Section 8.1.2.

tvime

A high quality television application.

twm

Tab Window Manager for the X Window System.

U

ulimit

Controll resources, see Section 7.1.2.5.

umask

Set user file creation mask, see Section 3.4.2.2.

umount

Unmount a file system.

uncompress

Decompress compressed files.

uniq

Remove duplicate lines from a sorted file, see Section 5.3.2.

up2date

Update RPM packages, see Section 7.5.3.3.

update

Kernel daemon to flush dirty buffers back to disk.

update-rc.d

Configure init scripts, see Section 4.2.5.1.

uptime

Introduction to Linux

Glossary 213

Display system uptime and average load, see Section 4.1.4 and Section 4.3.5.2.

urpmi

Update RPM packages, see Section 7.5.3.3.

userdel

Delete a user account and related files.

V

vi(m)

Start the vi (improved) editor, see Section 6.1.2.2.

vimtutor

The Vim tutor.

vmstat

Report virtual memory statistics, see Section 4.3.5.4.

W

w

Show who is logged on and what they are doing.

wall

Send a message to everybody's terminal, see Section 4.1.6.

wc

Print the number of bytes, words and lines in files, see Section 3.2.1.

which

Shows the full path of (shell) commands, see Section 3.2.1 and Section 3.3.3.2.

who

Show who is logged on, see Section 4.1.6.

who am i

Print effective user ID.

whois

Query a whois or nicname database, see Section 10.2.6.4.

write

Send a message to another user, see Section 4.1.6.

X

xargs

Build and execute command lines from standard input, see Section 3.3.3.3.

xauth

X authority file utility.

xawtv

An X11 program for watching TV.

xcdroast

Graphical front end to cdrecord, see Section 9.2.2.

xclock

Analog/digital clock for X.

xconsole

Monitor system console messages with X.

xdm

Introduction to Linux

Glossary 214

X Display Manager with support for XDMCP, host chooser, see Section 4.2.4 and Section 7.3.2.

xdvi

DVI viewer, see Section 8.1.2.2.

xedit

X Window graphical editor, see Section 6.3.3.3.

xfs

X font server.

xhost

Server access control program for X, see Section 10.4.3.2.

xine

A free video player, see Section 11.3.

xinetd

The extended Internet services daemon, see Section 10.3.1.2.

xload

System load average display for X, see Section 4.3.5.6.

xlsfonts

Server font list displayer for X.

xmms

Audio player for X, see Section 11.2.2.1.

xpdf

PDF viewer, see Section 8.1.2.2.

xterm

Terminal emulator for X.

Y

yast

System administration tool on Novell SuSE Linux.

yum

Update RPM packages, see Section 7.5.3.3.

Z

zapping

A TV viewer for the Gnome environment.

zcat

Compress or expand files.

zgrep

Search possibly compressed files for a regular expression.

zmore

Filter for viewing compressed text.

Index

Introduction to Linux

Glossary 215

	Table of Contents
	Introduction
	1. Why this guide?
	2. Who should read this book?
	3. New versions and availability
	4. Revision History
	5. Contributions
	6. Feedback
	7. Copyright information
	8. What do you need?
	9. Conventions used in this document
	10. Organization of this document

	Chapter 1. What is Linux?
	1.1. History
	1.1.1. UNIX
	1.1.2. Linus and Linux
	1.1.3. Current application of Linux systems

	1.2. The user interface
	1.2.1. Is Linux difficult?
	1.2.2. Linux for non-experienced users

	1.3. Does Linux have a future?
	1.3.1. Open Source
	1.3.2. Ten years of experience at your service

	1.4. Properties of Linux
	1.4.1. Linux Pros
	1.4.2. Linux Cons

	1.5. Linux Flavors
	1.5.1. Linux and GNU
	1.5.2. GNU/Linux
	1.5.3. Which distribution should I install?

	1.6. Summary
	1.7. Exercises

	Chapter 2. Quickstart
	2.1. Logging in, activating the user interface and logging out
	2.1.1. Introduction
	2.1.2. Graphical mode
	2.1.3. Text mode

	2.2. Absolute basics
	2.2.1. The commands
	2.2.2. General remarks
	2.2.3. Using Bash features

	2.3. Getting help
	2.3.1. Be warned
	2.3.2. The man pages
	2.3.3. More info

	2.4. Summary
	2.5. Exercises
	2.5.1. Connecting and disconnecting
	2.5.2. Passwords
	2.5.3. Directories
	2.5.4. Files
	2.5.5. Getting help

	Chapter 3. About files and the file system
	3.1. General overview of the Linux file system
	3.1.1. Files
	3.1.2. About partitioning
	3.1.3. More file system layout

	3.2. Orientation in the file system
	3.2.1. The path
	3.2.2. Absolute and relative paths
	3.2.3. The most important files and directories
	3.2.4. The most important configuration files
	3.2.5. The most common devices
	3.2.6. The most common variable files

	3.3. Manipulating files
	3.3.1. Viewing file properties
	3.3.2. Creating and deleting files and directories
	3.3.3. Finding files
	3.3.4. More ways to view file content
	3.3.5. Linking files

	3.4. File security
	3.4.1. Access rights: Linux's first line of defense
	3.4.2. The tools

	3.5. Summary
	3.6. Exercises
	3.6.1. Partitions
	3.6.2. Paths
	3.6.3. Tour of the system
	3.6.4. Manipulating files
	3.6.5. File permissions

	Chapter 4. Processes
	4.1. Processes inside out
	4.1.1. Multi-user and multi-tasking
	4.1.2. Process types
	4.1.3. Process attributes
	4.1.4. Displaying process information
	4.1.5. Life and death of a process
	4.1.6. SUID and SGID

	4.2. Boot process, Init and shutdown
	4.2.1. Introduction
	4.2.2. The boot process
	4.2.3. GRUB features
	4.2.4. Init
	4.2.5. Init run levels
	4.2.6. Shutdown

	4.3. Managing processes
	4.3.1. Work for the system admin
	4.3.2. How long does it take?
	4.3.3. Performance
	4.3.4. Load
	4.3.5. Can I do anything as a user?

	4.4. Scheduling processes
	4.4.1. Use that idle time!
	4.4.2. The sleep command
	4.4.3. The at command
	4.4.4. Cron and crontab

	4.5. Summary
	4.6. Exercises
	4.6.1. General
	4.6.2. Booting, init etc.
	4.6.3. Scheduling

	Chapter 5. I/O redirection
	5.1. Simple redirections
	5.1.1. What are standard input and standard output?
	5.1.2. The redirection operators

	5.2. Advanced redirection features
	5.2.1. Use of file descriptors
	5.2.2. Examples

	5.3. Filters
	5.3.1. More about grep
	5.3.2. Filtering output

	5.4. Summary
	5.5. Exercises

	Chapter 6. Text editors
	6.1. Text editors
	6.1.1. Why should I use an editor?
	6.1.2. Which editor should I use?

	6.2. Using the Vim editor
	6.2.1. Two modes
	6.2.2. Basic commands
	6.2.3. The easy way

	6.3. Linux in the office
	6.3.1. History
	6.3.2. Suites and programs
	6.3.3. Remarks

	6.4. Summary
	6.5. Exercises

	Chapter 7. Home sweet /home
	7.1. General good housekeeping
	7.1.1. Introduction
	7.1.2. Make space

	7.2. Your text environment
	7.2.1. Environment variables
	7.2.2. Shell setup files
	7.2.3. A typical set of setup files
	7.2.4. The Bash prompt
	7.2.5. Shell scripts

	7.3. The graphical environment
	7.3.1. Introduction
	7.3.2. The X Window System
	7.3.3. X server configuration

	7.4. Region specific settings
	7.4.1. Keyboard setup
	7.4.2. Fonts
	7.4.3. Date and time zone
	7.4.4. Language
	7.4.5. Country-specific Information

	7.5. Installing new software
	7.5.1. General
	7.5.2. Package formats
	7.5.3. Automating package management and updates
	7.5.4. Upgrading your kernel
	7.5.5. Installing extra packages from the installation CDs

	7.6. Summary
	7.7. Exercises
	7.7.1. Shell environment
	7.7.2. Graphical environment

	Chapter 8. Printers and printing
	8.1. Printing files
	8.1.1. Command line printing
	8.1.2. Formatting

	8.2. The server side
	8.2.1. General
	8.2.2. Graphical printer configuration
	8.2.3. Buying a printer for Linux

	8.3. Print problems
	8.3.1. Wrong file
	8.3.2. My print hasn't come out

	8.4. Summary
	8.5. Exercises

	Chapter 9. Fundamental Backup Techniques
	9.1. Introduction
	9.1.1. Preparing your data

	9.2. Moving your data to a backup device
	9.2.1. Making a copy on a floppy disk
	9.2.2. Making a copy with a CD-writer
	9.2.3. Backups on/from jazz drives, USB devices and other removables
	9.2.4. Backing up data using a tape device
	9.2.5. Tools from your distribution

	9.3. Using rsync
	9.3.1. Introduction
	9.3.2. An example: rsync to a USB storage device

	9.4. Encryption
	9.4.1. General remarks
	9.4.2. Generate a key
	9.4.3. About your key
	9.4.4. Encrypt data
	9.4.5. Decrypting files

	9.5. Summary
	9.6. Exercises

	Chapter 10. Networking
	10.1. Networking Overview
	10.1.1. The OSI Model
	10.1.2. Some popular networking protocols

	10.2. Network configuration and information
	10.2.1. Configuration of network interfaces
	10.2.2. Network configuration files
	10.2.3. Network configuration commands
	10.2.4. Network interface names
	10.2.5. Checking the host configuration with netstat
	10.2.6. Other hosts

	10.3. Internet/Intranet applications
	10.3.1. Server types
	10.3.2. Mail
	10.3.3. Web
	10.3.4. File Transfer Protocol
	10.3.5. Chatting and conferencing
	10.3.6. News services
	10.3.7. The Domain Name System
	10.3.8. DHCP
	10.3.9. Authentication services

	10.4. Remote execution of applications
	10.4.1. Introduction
	10.4.2. Rsh, rlogin and telnet
	10.4.3. The X Window System
	10.4.4. The SSH suite
	10.4.5. VNC
	10.4.6. The rdesktop protocol
	10.4.7. Cygwin

	10.5. Security
	10.5.1. Introduction
	10.5.2. Services
	10.5.3. Update regularly
	10.5.4. Firewalls and access policies
	10.5.5. Intrusion detection
	10.5.6. More tips
	10.5.7. Have I been hacked?
	10.5.8. Recovering from intrusion

	10.6. Summary
	10.7. Exercises
	10.7.1. General networking
	10.7.2. Remote connections
	10.7.3. Security

	Chapter 11. Sound and Video
	11.1. Audio Basics
	11.1.1. Installation
	11.1.2. Drivers and Architecture

	11.2. Sound and video playing
	11.2.1. CD playing and copying
	11.2.2. Playing music files
	11.2.3. Recording

	11.3. Video playing, streams and television watching
	11.4. Internet Telephony
	11.4.1. What is it?
	11.4.2. What do you need?

	11.5. Summary
	11.6. Exercises

	Appendix A. Where to go from here?
	A.1. Useful Books
	A.1.1. General Linux
	A.1.2. Editors
	A.1.3. Shells
	A.1.4. X Window
	A.1.5. Networking

	A.2. Useful sites
	A.2.1. General information
	A.2.2. Architecture Specific References
	A.2.3. Distributions
	A.2.4. Software

	Appendix B. DOS versus Linux commands
	Appendix C. Shell Features
	C.1. Common features
	C.2. Differing features

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Index

